"src/client/Utilities.hpp" did not exist on "26717d504b8c72f972a9388a1d446e9a9c57ef83"
reference_hf.py 2.96 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
"""
Usage:
python3 reference_hf.py --model TinyLlama/TinyLlama-1.1B-Chat-v0.4

Reference output:
<s> The capital of France is Paris.
The capital of the United States is Washington, D.C.
The capital of Canada is Ottawa.
The capital of Japan is Tokyo
prefill logits tensor([-8.3125, -7.1172,  3.3398,  ..., -4.9570, -4.1328, -3.4141],
       device='cuda:0')
<s> The capital of the United Kindom is London.
The capital of the United Kingdom is London.
The capital of the United Kingdom is London.
The capital of the United Kingdom is London.
prefill logits tensor([-8.9062, -9.0156,  4.1406,  ..., -4.9922, -4.4961, -4.0742],
       device='cuda:0')
<s> Today is a sunny day and I like to go for a walk in the park.
I'm going to the park to play in the grass and water.
Today is a very
prefill logits tensor([-9.6328, -9.0547,  4.0195,  ..., -5.3047, -4.7148, -4.4609],
       device='cuda:0')
"""

Lianmin Zheng's avatar
Lianmin Zheng committed
25
26
27
28
29
30
31
32
import argparse

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer


@torch.inference_mode()
def normal_text(args):
zhyncs's avatar
zhyncs committed
33
    t = AutoTokenizer.from_pretrained(args.model_path, trust_remote_code=True)
Lianmin Zheng's avatar
Lianmin Zheng committed
34
    m = AutoModelForCausalLM.from_pretrained(
zhyncs's avatar
zhyncs committed
35
36
37
38
        args.model_path,
        torch_dtype=torch.float16,
        low_cpu_mem_usage=True,
        trust_remote_code=True,
Lianmin Zheng's avatar
Lianmin Zheng committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    )
    m.cuda()

    print(m)

    prompts = [
        "The capital of France is",
        "The capital of the United Kindom is",
        "Today is a sunny day and I like",
    ]
    max_new_tokens = 32

    for p in prompts:
        if isinstance(p, str):
            input_ids = t.encode(p, return_tensors="pt").cuda()
        else:
            input_ids = torch.tensor([p], device="cuda")

        output_ids = m.generate(
            input_ids, do_sample=False, max_new_tokens=max_new_tokens
        )
        output_str = t.decode(output_ids[0])
        print(output_str)

        prefill_logits = m.forward(input_ids).logits[0][-1]
        print("prefill logits", prefill_logits)


@torch.inference_mode()
def synthetic_tokens(args):
    m = AutoModelForCausalLM.from_pretrained(
        args.model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True
    )
    m.cuda()
    print(m)

    input_len = 256
    output_len = 8
    prompts = [list(range(5, 5 + input_len))]

    for p in prompts:
        input_ids = p
        for i in range(output_len + 1):
            prefill_logits = m.forward(torch.tensor([input_ids], device="cuda")).logits[
                0
            ][-1]

            if i == 0:
                print("prefill logits", prefill_logits)
            else:
                print("decode", i - 1, prefill_logits)

            input_ids.append(torch.argmax(prefill_logits).item())


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--model-path",
        type=str,
        default="TinyLlama/TinyLlama-1.1B-Chat-v0.4",
        # default="meta-llama/Llama-2-7b-chat-hf",
    )
    args = parser.parse_args()

    normal_text(args)
    # synthetic_tokens(args)