scheduler.py 80.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
15
"""A scheduler that manages a tensor parallel GPU worker."""

16
import faulthandler
17
import logging
18
import os
19
import signal
20
import sys
Lianmin Zheng's avatar
Lianmin Zheng committed
21
import threading
22
23
import time
import warnings
24
from collections import defaultdict, deque
Lianmin Zheng's avatar
Lianmin Zheng committed
25
from concurrent import futures
26
from dataclasses import dataclass
27
from http import HTTPStatus
28
from types import SimpleNamespace
29
from typing import Dict, List, Optional, Tuple, Union
30

31
import psutil
32
import setproctitle
33
import torch
34
import zmq
35
from torch.distributed import barrier
36

37
from sglang.global_config import global_config
Lianmin Zheng's avatar
Lianmin Zheng committed
38
from sglang.srt.configs.model_config import ModelConfig
39
from sglang.srt.constrained.base_grammar_backend import create_grammar_backend
Byron Hsu's avatar
Byron Hsu committed
40
41
42
43
44
45
46
47
48
49
50
51
from sglang.srt.disaggregation.decode import (
    DecodePreallocQueue,
    DecodeTransferQueue,
    SchedulerDisaggregationDecodeMixin,
)
from sglang.srt.disaggregation.prefill import (
    PrefillBootstrapQueue,
    SchedulerDisaggregationPrefillMixin,
)
from sglang.srt.disaggregation.utils import (
    DisaggregationMode,
    ReqToMetadataIdxAllocator,
52
    TransferBackend,
Byron Hsu's avatar
Byron Hsu committed
53
)
54
from sglang.srt.hf_transformers_utils import get_processor, get_tokenizer
55
from sglang.srt.layers.dp_attention import compute_dp_attention_world_info
56
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
57
from sglang.srt.managers.expert_distribution import ExpertDistributionRecorder
58
59
from sglang.srt.managers.io_struct import (
    AbortReq,
60
    CloseSessionReqInput,
61
    ExpertDistributionReq,
62
    ExpertDistributionReqOutput,
63
    FlushCacheReq,
64
65
    GetInternalStateReq,
    GetInternalStateReqOutput,
66
67
    GetWeightsByNameReqInput,
    GetWeightsByNameReqOutput,
68
    HealthCheckOutput,
69
70
    InitWeightsUpdateGroupReqInput,
    InitWeightsUpdateGroupReqOutput,
71
72
    OpenSessionReqInput,
    OpenSessionReqOutput,
73
    ProfileReq,
74
75
    ProfileReqOutput,
    ProfileReqType,
76
77
78
79
    ReleaseMemoryOccupationReqInput,
    ReleaseMemoryOccupationReqOutput,
    ResumeMemoryOccupationReqInput,
    ResumeMemoryOccupationReqOutput,
80
81
    RpcReqInput,
    RpcReqOutput,
82
83
    SetInternalStateReq,
    SetInternalStateReqOutput,
84
85
    TokenizedEmbeddingReqInput,
    TokenizedGenerateReqInput,
Chayenne's avatar
Chayenne committed
86
87
    UpdateWeightFromDiskReqInput,
    UpdateWeightFromDiskReqOutput,
88
89
    UpdateWeightsFromDistributedReqInput,
    UpdateWeightsFromDistributedReqOutput,
90
91
    UpdateWeightsFromTensorReqInput,
    UpdateWeightsFromTensorReqOutput,
92
93
94
)
from sglang.srt.managers.schedule_batch import (
    FINISH_ABORT,
Mick's avatar
Mick committed
95
    MultimodalInputs,
96
97
    Req,
    ScheduleBatch,
98
    global_server_args_dict,
99
)
100
101
102
103
104
from sglang.srt.managers.schedule_policy import (
    AddReqResult,
    PrefillAdder,
    SchedulePolicy,
)
105
106
107
from sglang.srt.managers.scheduler_output_processor_mixin import (
    SchedulerOutputProcessorMixin,
)
108
from sglang.srt.managers.session_controller import Session
109
from sglang.srt.managers.tp_worker import TpModelWorker
110
from sglang.srt.managers.tp_worker_overlap_thread import TpModelWorkerClient
111
from sglang.srt.managers.utils import validate_input_length
112
from sglang.srt.mem_cache.chunk_cache import ChunkCache
113
from sglang.srt.mem_cache.hiradix_cache import HiRadixCache
114
from sglang.srt.mem_cache.radix_cache import RadixCache
115
from sglang.srt.metrics.collector import SchedulerMetricsCollector, SchedulerStats
Mick's avatar
Mick committed
116
from sglang.srt.model_executor.forward_batch_info import ForwardMode
117
from sglang.srt.reasoning_parser import ReasoningParser
118
from sglang.srt.server_args import PortArgs, ServerArgs
119
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
120
from sglang.srt.torch_memory_saver_adapter import TorchMemorySaverAdapter
121
from sglang.srt.utils import (
122
    DynamicGradMode,
123
124
    broadcast_pyobj,
    configure_logger,
125
    crash_on_warnings,
126
    get_bool_env_var,
127
    get_zmq_socket,
Lianmin Zheng's avatar
Lianmin Zheng committed
128
    kill_itself_when_parent_died,
129
    pyspy_dump_schedulers,
130
    set_gpu_proc_affinity,
131
132
133
    set_random_seed,
    suppress_other_loggers,
)
134
from sglang.utils import TypeBasedDispatcher, get_exception_traceback
135

136
137
expert_distribution_recorder = ExpertDistributionRecorder()

138
139
logger = logging.getLogger(__name__)

140
# Test retract decode for debugging purposes
141
142
TEST_RETRACT = get_bool_env_var("SGLANG_TEST_RETRACT")
RECORD_STEP_TIME = get_bool_env_var("SGLANG_RECORD_STEP_TIME")
143

144

145
146
147
148
@dataclass
class GenerationBatchResult:
    logits_output: LogitsProcessorOutput
    next_token_ids: List[int]
149
150
    extend_input_len_per_req: List[int]
    extend_logprob_start_len_per_req: List[int]
151
152
153
154
155
156
157
158
159
    bid: int


@dataclass
class EmbeddingBatchResult:
    embeddings: torch.Tensor
    bid: int


Byron Hsu's avatar
Byron Hsu committed
160
161
162
163
164
class Scheduler(
    SchedulerOutputProcessorMixin,
    SchedulerDisaggregationDecodeMixin,
    SchedulerDisaggregationPrefillMixin,
):
165
166
167
168
169
170
171
172
    """A scheduler that manages a tensor parallel GPU worker."""

    def __init__(
        self,
        server_args: ServerArgs,
        port_args: PortArgs,
        gpu_id: int,
        tp_rank: int,
173
        dp_rank: Optional[int],
174
175
    ):
        # Parse args
176
        self.server_args = server_args
177
178
        self.tp_rank = tp_rank
        self.tp_size = server_args.tp_size
179
180
181
        self.schedule_policy = server_args.schedule_policy
        self.lora_paths = server_args.lora_paths
        self.max_loras_per_batch = server_args.max_loras_per_batch
182
        self.enable_overlap = not server_args.disable_overlap_schedule
183
        self.skip_tokenizer_init = server_args.skip_tokenizer_init
184
        self.enable_metrics = server_args.enable_metrics
185
        self.stream_interval = server_args.stream_interval
186
187
188
        self.spec_algorithm = SpeculativeAlgorithm.from_string(
            server_args.speculative_algorithm
        )
189
190
        self.gpu_id = gpu_id
        self.enable_hierarchical_cache = server_args.enable_hierarchical_cache
Lianmin Zheng's avatar
Lianmin Zheng committed
191
        self.page_size = server_args.page_size
192

193
        # Distributed rank info
194
195
196
197
198
199
200
201
202
203
        self.dp_size = server_args.dp_size
        self.attn_tp_rank, self.attn_tp_size, self.dp_rank = (
            compute_dp_attention_world_info(
                server_args.enable_dp_attention,
                self.tp_rank,
                self.tp_size,
                self.dp_size,
            )
        )

204
205
        # Init inter-process communication
        context = zmq.Context(2)
206
        if self.attn_tp_rank == 0:
207
            self.recv_from_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
208
                context, zmq.PULL, port_args.scheduler_input_ipc_name, False
209
            )
210
            self.send_to_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
211
                context, zmq.PUSH, port_args.tokenizer_ipc_name, False
212
            )
213

214
            if server_args.skip_tokenizer_init:
215
                # Directly send to the TokenizerManager
216
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
217
                    context, zmq.PUSH, port_args.tokenizer_ipc_name, False
218
219
                )
            else:
220
                # Send to the DetokenizerManager
221
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
222
                    context, zmq.PUSH, port_args.detokenizer_ipc_name, False
223
                )
224
225
226
227

            self.recv_from_rpc = get_zmq_socket(
                context, zmq.DEALER, port_args.rpc_ipc_name, False
            )
228
        else:
229
            self.recv_from_tokenizer = None
230
            self.recv_from_rpc = None
231
232
            self.send_to_tokenizer = SimpleNamespace(send_pyobj=lambda x: None)
            self.send_to_detokenizer = SimpleNamespace(send_pyobj=lambda x: None)
233
234

        # Init tokenizer
235
        self.init_tokenizer()
236

237
238
239
240
241
242
243
244
245
        # Set reasoning_parser and think_end_id if --reasoning_parser is enabled
        if self.server_args.reasoning_parser and self.tokenizer:
            reasoning_parser = ReasoningParser(
                model_type=self.server_args.reasoning_parser, stream_reasoning=False
            )
            self.tokenizer.think_end_id = self.tokenizer.encode(
                reasoning_parser.detector.think_end_token, add_special_tokens=False
            )[0]

246
247
248
249
        # Check whether overlap can be enabled
        if not self.is_generation:
            self.enable_overlap = False
            logger.info("Overlap scheduler is disabled for embedding models.")
250
251
252
253
        if self.model_config.is_multimodal:
            self.enable_overlap = False
            logger.info("Overlap scheduler is disabled for multimodal models.")

254
        # Launch a tensor parallel worker
255
        if self.enable_overlap:
256
            TpWorkerClass = TpModelWorkerClient
257
258
        else:
            TpWorkerClass = TpModelWorker
259

260
        self.tp_worker = TpWorkerClass(
261
            server_args=server_args,
262
263
            gpu_id=gpu_id,
            tp_rank=tp_rank,
264
            dp_rank=dp_rank,
265
            nccl_port=port_args.nccl_port,
266
        )
267

268
        # Launch a draft worker for speculative decoding
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        if self.spec_algorithm.is_eagle():
            from sglang.srt.speculative.eagle_worker import EAGLEWorker

            self.draft_worker = EAGLEWorker(
                gpu_id=gpu_id,
                tp_rank=tp_rank,
                server_args=server_args,
                nccl_port=port_args.nccl_port,
                target_worker=self.tp_worker,
                dp_rank=dp_rank,
            )
        else:
            self.draft_worker = None

283
        # Get token and memory info from the model worker
284
285
286
287
        (
            self.max_total_num_tokens,
            self.max_prefill_tokens,
            self.max_running_requests,
288
            self.max_req_len,
289
290
            self.max_req_input_len,
            self.random_seed,
291
            self.device,
292
293
294
295
296
            worker_global_server_args_dict,
            _,
            _,
            _,
        ) = self.tp_worker.get_worker_info()
297
        self.tp_cpu_group = self.tp_worker.get_tp_cpu_group()
298
        self.attn_tp_cpu_group = self.tp_worker.get_attention_tp_cpu_group()
299
        self.pad_input_ids_func = self.tp_worker.get_pad_input_ids_func()
300
        global_server_args_dict.update(worker_global_server_args_dict)
301
        set_random_seed(self.random_seed)
302

303
304
305
        # Print debug info
        logger.info(
            f"max_total_num_tokens={self.max_total_num_tokens}, "
306
            f"chunked_prefill_size={server_args.chunked_prefill_size}, "
307
308
309
310
311
            f"max_prefill_tokens={self.max_prefill_tokens}, "
            f"max_running_requests={self.max_running_requests}, "
            f"context_len={self.model_config.context_len}"
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
312
        # Init memory pool and cache
313
        self.init_memory_pool_and_cache()
314
315
316

        # Init running status
        self.waiting_queue: List[Req] = []
317
        # The running decoding batch for continuous batching
Lianmin Zheng's avatar
Lianmin Zheng committed
318
        self.running_batch: ScheduleBatch = ScheduleBatch(reqs=[], batch_is_full=False)
319
        # The current forward batch
Lianmin Zheng's avatar
Lianmin Zheng committed
320
        self.cur_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
321
        # The last forward batch
322
        self.last_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
323
324
        self.forward_ct = 0
        self.forward_ct_decode = 0
325
        self.num_generated_tokens = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
326
        self.num_prefill_tokens = 0
327
        self.last_decode_stats_tic = time.time()
Lianmin Zheng's avatar
Lianmin Zheng committed
328
        self.last_prefill_stats_tic = time.time()
329
        self.return_health_check_ct = 0
330
        self.current_stream = torch.get_device_module(self.device).current_stream()
331
332
        if self.device == "cpu":
            self.current_stream.synchronize = lambda: None  # No-op for CPU
333

334
        # Init session info
335
        self.sessions: Dict[str, Session] = {}
336
337
338

        # Init chunked prefill
        self.chunked_prefill_size = server_args.chunked_prefill_size
339
340
        if self.chunked_prefill_size <= 0:  # -1 means disable
            self.chunked_prefill_size = None
341
        self.chunked_req = None
342
343
344
345
        self.is_mixed_chunk = (
            self.chunked_prefill_size is not None and server_args.enable_mixed_chunk
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
346
        # Init the grammar backend for constrained generation
347
        self.grammar_queue: List[Req] = []
348
        if not server_args.skip_tokenizer_init:
349
350
351
            self.grammar_backend = create_grammar_backend(
                server_args, self.tokenizer, self.model_config.vocab_size
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
352
353
        else:
            self.grammar_backend = None
354

355
        # Init schedule policy and new token estimation
356
        self.policy = SchedulePolicy(
Lianmin Zheng's avatar
Lianmin Zheng committed
357
358
359
            self.schedule_policy,
            self.tree_cache,
            self.enable_hierarchical_cache,
360
        )
361
362
363
        assert (
            server_args.schedule_conservativeness >= 0
        ), "Invalid schedule_conservativeness"
364
365
        self.init_new_token_ratio = min(
            global_config.default_init_new_token_ratio
366
367
            * server_args.schedule_conservativeness,
            1.0,
368
        )
369
370
371
372
373
374
375
376
377
378
        self.min_new_token_ratio = min(
            self.init_new_token_ratio
            * global_config.default_min_new_token_ratio_factor,
            1.0,
        )
        self.new_token_ratio_decay = (
            self.init_new_token_ratio - self.min_new_token_ratio
        ) / global_config.default_new_token_ratio_decay_steps
        self.new_token_ratio = self.init_new_token_ratio

Lianmin Zheng's avatar
Lianmin Zheng committed
379
380
381
382
        # Init watchdog thread
        self.watchdog_timeout = server_args.watchdog_timeout
        t = threading.Thread(target=self.watchdog_thread, daemon=True)
        t.start()
383
        self.parent_process = psutil.Process().parent()
Lianmin Zheng's avatar
Lianmin Zheng committed
384

385
        # Init memory saver
386
387
388
389
        self.memory_saver_adapter = TorchMemorySaverAdapter.create(
            enable=server_args.enable_memory_saver
        )

390
        # Init profiler
391
392
        self.torch_profiler = None
        self.torch_profiler_output_dir: Optional[str] = None
393
        self.profiler_activities: Optional[List[str]] = None
394
        self.profiler_target_forward_ct: Optional[int] = None
395

396
        # Init metrics stats
397
        self.init_metrics()
398

399
400
        # Init request dispatcher
        self._request_dispatcher = TypeBasedDispatcher(
401
402
403
404
405
            [
                (TokenizedGenerateReqInput, self.handle_generate_request),
                (TokenizedEmbeddingReqInput, self.handle_embedding_request),
                (FlushCacheReq, self.flush_cache_wrapped),
                (AbortReq, self.abort_request),
406
407
                (OpenSessionReqInput, self.open_session),
                (CloseSessionReqInput, self.close_session),
408
409
410
411
412
413
414
415
                (UpdateWeightFromDiskReqInput, self.update_weights_from_disk),
                (InitWeightsUpdateGroupReqInput, self.init_weights_update_group),
                (
                    UpdateWeightsFromDistributedReqInput,
                    self.update_weights_from_distributed,
                ),
                (UpdateWeightsFromTensorReqInput, self.update_weights_from_tensor),
                (GetWeightsByNameReqInput, self.get_weights_by_name),
416
417
                (ReleaseMemoryOccupationReqInput, self.release_memory_occupation),
                (ResumeMemoryOccupationReqInput, self.resume_memory_occupation),
418
                (ProfileReq, self.profile),
419
                (GetInternalStateReq, self.get_internal_state),
420
                (SetInternalStateReq, self.set_internal_state),
421
                (RpcReqInput, self.handle_rpc_request),
422
                (ExpertDistributionReq, self.expert_distribution_handle),
423
424
425
            ]
        )

Byron Hsu's avatar
Byron Hsu committed
426
427
428
429
430
        self.disaggregation_mode = DisaggregationMode(
            self.server_args.disaggregation_mode
        )
        self.init_disaggregation()

431
432
    def init_tokenizer(self):
        server_args = self.server_args
Lianmin Zheng's avatar
Lianmin Zheng committed
433

434
435
436
437
438
439
440
        self.model_config = ModelConfig(
            server_args.model_path,
            trust_remote_code=server_args.trust_remote_code,
            revision=server_args.revision,
            context_length=server_args.context_length,
            model_override_args=server_args.json_model_override_args,
            is_embedding=server_args.is_embedding,
441
            enable_multimodal=server_args.enable_multimodal,
442
443
444
445
            dtype=server_args.dtype,
            quantization=server_args.quantization,
        )
        self.is_generation = self.model_config.is_generation
446

447
448
449
450
451
452
453
454
455
        if server_args.skip_tokenizer_init:
            self.tokenizer = self.processor = None
        else:
            if self.model_config.is_multimodal:
                self.processor = get_processor(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
456
                    use_fast=not server_args.disable_fast_image_processor,
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
                )
                self.tokenizer = self.processor.tokenizer
            else:
                self.tokenizer = get_tokenizer(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
                )

    def init_memory_pool_and_cache(self):
        server_args = self.server_args

        self.req_to_token_pool, self.token_to_kv_pool_allocator = (
            self.tp_worker.get_memory_pool()
        )

        if (
            server_args.chunked_prefill_size is not None
            and server_args.disable_radix_cache
        ):
            self.tree_cache = ChunkCache(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
            )
        else:
            if self.enable_hierarchical_cache:
                self.tree_cache = HiRadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
487
                    tp_cache_group=self.tp_worker.get_tp_cpu_group(),
488
                    page_size=self.page_size,
489
                    hicache_ratio=server_args.hicache_ratio,
490
491
492
493
494
                )
            else:
                self.tree_cache = RadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
Lianmin Zheng's avatar
Lianmin Zheng committed
495
                    page_size=self.page_size,
496
497
498
499
500
501
502
503
504
505
506
507
508
                    disable=server_args.disable_radix_cache,
                )

        self.decode_mem_cache_buf_multiplier = (
            1
            if self.spec_algorithm.is_none()
            else (
                server_args.speculative_num_draft_tokens
                + (
                    server_args.speculative_eagle_topk
                    * server_args.speculative_num_steps
                )
            )
509
        )
510
511
512
513
514
515
516

    def init_metrics(self):
        # The largest prefill length of a single request
        self._largest_prefill_len: int = 0
        # The largest context length (prefill + generation) of a single request
        self._largest_prefill_decode_len: int = 0
        self.last_gen_throughput: float = 0.0
Lianmin Zheng's avatar
Lianmin Zheng committed
517
        self.last_input_throughput: float = 0.0
518
519
520
521
522
523
524
525
526
527
528
529
530
531
        self.step_time_dict = defaultdict(list)  # Dict[batch size -> step time]
        self.spec_num_total_accepted_tokens = 0
        self.spec_num_total_forward_ct = 0
        self.cum_spec_accept_length = 0
        self.cum_spec_accept_count = 0
        self.stats = SchedulerStats()
        if self.enable_metrics:
            engine_type = "unified"
            self.metrics_collector = SchedulerMetricsCollector(
                labels={
                    "model_name": self.server_args.served_model_name,
                    "engine_type": engine_type,
                },
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
532

Byron Hsu's avatar
Byron Hsu committed
533
    def init_disaggregation(self):
534
535
536
537
        self.transfer_backend = TransferBackend(
            self.server_args.disaggregation_transfer_backend
        )

Byron Hsu's avatar
Byron Hsu committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
        if (
            self.disaggregation_mode == DisaggregationMode.DECODE
        ):  # *2 for the headroom.
            buffer_size = (self.req_to_token_pool.size) * 2
            req_to_metadata_buffer_idx_allocator = ReqToMetadataIdxAllocator(
                buffer_size
            )
            aux_dtype = torch.int32
            # A list of metadata buffers. The shape is (b, metadata_size) where
            # b corresponds to a max running requests. The last shape * dtype.itemsize
            # should be larger than 64 bytes to work with RDMA, so we pad it.
            output_id_buffer = torch.zeros(
                (buffer_size, 16), dtype=aux_dtype, device="cpu"
            )
            metadata_buffers = [output_id_buffer]

            # The decode requests polling kv cache
            self.disagg_decode_transfer_queue = DecodeTransferQueue(
                gloo_group=self.tp_worker.get_attention_tp_cpu_group(),
                req_to_metadata_buffer_idx_allocator=req_to_metadata_buffer_idx_allocator,
                metadata_buffers=metadata_buffers,
            )

            # The decode requests pending for pre-allocation
            self.disagg_decode_prealloc_queue = DecodePreallocQueue(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
                req_to_metadata_buffer_idx_allocator=req_to_metadata_buffer_idx_allocator,
                metadata_buffers=metadata_buffers,
                aux_dtype=aux_dtype,
                scheduler=self,
                transfer_queue=self.disagg_decode_transfer_queue,
                tree_cache=self.tree_cache,
                gloo_group=self.tp_worker.get_attention_tp_cpu_group(),
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
                bootstrap_port=self.server_args.disaggregation_bootstrap_port,
575
                transfer_backend=self.transfer_backend,
Byron Hsu's avatar
Byron Hsu committed
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
            )
        elif self.disaggregation_mode == DisaggregationMode.PREFILL:
            # *2 for the headroom.
            buffer_size = self.max_running_requests * 2
            req_to_metadata_buffer_idx_allocator = ReqToMetadataIdxAllocator(
                buffer_size
            )
            aux_dtype = torch.int32
            # A list of metadata buffers. The shape is (b, metadata_size) where
            # b corresponds to a max running requests. The last shape * dtype.itemsize
            # should be larger than 64 bytes to work with RDMA, so we pad it.
            output_id_buffer = torch.zeros(
                (buffer_size, 16), dtype=aux_dtype, device="cpu"
            )
            metadata_buffers = [output_id_buffer]

            self.disagg_prefill_pending_queue = PrefillBootstrapQueue(
                token_to_kv_pool=self.token_to_kv_pool_allocator.get_kvcache(),
                req_to_metadata_buffer_idx_allocator=req_to_metadata_buffer_idx_allocator,
                metadata_buffers=metadata_buffers,
                aux_dtype=aux_dtype,
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
                bootstrap_port=self.server_args.disaggregation_bootstrap_port,
                gloo_group=self.tp_worker.get_attention_tp_cpu_group(),
601
                transfer_backend=self.transfer_backend,
602
                scheduler=self,
Byron Hsu's avatar
Byron Hsu committed
603
604
            )
            # The prefill requests that are in the middle of kv sending
605
            self.disagg_prefill_inflight_queue: List[Req] = []
Byron Hsu's avatar
Byron Hsu committed
606

607
    @DynamicGradMode()
608
    def event_loop_normal(self):
609
        """A normal scheduler loop."""
610
        while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
611
612
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
613

614
            batch = self.get_next_batch_to_run()
Lianmin Zheng's avatar
Lianmin Zheng committed
615
            self.cur_batch = batch
616
617
618
619

            if batch:
                result = self.run_batch(batch)
                self.process_batch_result(batch, result)
Lianmin Zheng's avatar
Lianmin Zheng committed
620
            else:
Lianmin Zheng's avatar
Lianmin Zheng committed
621
                # When the server is idle, do self-check and re-init some states
Lianmin Zheng's avatar
Lianmin Zheng committed
622
                self.check_memory()
623
                self.new_token_ratio = self.init_new_token_ratio
624
625

            self.last_batch = batch
626

627
    @DynamicGradMode()
Lianmin Zheng's avatar
Lianmin Zheng committed
628
    def event_loop_overlap(self):
629
        """A scheduler loop that overlaps the CPU processing and GPU computation."""
630
        self.result_queue = deque()
Lianmin Zheng's avatar
Lianmin Zheng committed
631
632
633
634
635
636
637

        while True:
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)

            batch = self.get_next_batch_to_run()
            self.cur_batch = batch
638

Lianmin Zheng's avatar
Lianmin Zheng committed
639
640
            if batch:
                result = self.run_batch(batch)
641
                self.result_queue.append((batch.copy(), result))
Lianmin Zheng's avatar
Lianmin Zheng committed
642

643
                if self.last_batch is None:
644
                    # Create a dummy first batch to start the pipeline for overlap schedule.
645
646
647
648
649
650
651
652
                    # It is now used for triggering the sampling_info_done event.
                    tmp_batch = ScheduleBatch(
                        reqs=None,
                        forward_mode=ForwardMode.DUMMY_FIRST,
                        next_batch_sampling_info=self.tp_worker.cur_sampling_info,
                    )
                    self.process_batch_result(tmp_batch, None)

Lianmin Zheng's avatar
Lianmin Zheng committed
653
            if self.last_batch:
654
                # Process the results of the last batch
655
                tmp_batch, tmp_result = self.result_queue.popleft()
656
657
658
                tmp_batch.next_batch_sampling_info = (
                    self.tp_worker.cur_sampling_info if batch else None
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
659
660
                self.process_batch_result(tmp_batch, tmp_result)
            elif batch is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
661
                # When the server is idle, do self-check and re-init some states
Lianmin Zheng's avatar
Lianmin Zheng committed
662
                self.check_memory()
663
                self.new_token_ratio = self.init_new_token_ratio
Lianmin Zheng's avatar
Lianmin Zheng committed
664
665
666

            self.last_batch = batch

Byron Hsu's avatar
Byron Hsu committed
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
    @torch.no_grad()
    def event_loop_normal_disagg_prefill(self):
        """A normal scheduler loop for prefill worker in disaggregation mode."""

        while True:
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
            self.waiting_queue.extend(
                self.disagg_prefill_pending_queue.pop_bootstrapped()
            )
            self.process_prefill_chunk()
            batch = self.get_new_batch_prefill()
            self.cur_batch = batch

            if batch:
                result = self.run_batch(batch)
                self.process_batch_result_disagg_prefill(batch, result)

685
686
            if len(self.disagg_prefill_inflight_queue) > 0:
                self.process_disagg_prefill_inflight_queue()
Byron Hsu's avatar
Byron Hsu committed
687

688
            if batch is None and len(self.disagg_prefill_inflight_queue) == 0:
Byron Hsu's avatar
Byron Hsu committed
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
                self.check_memory()
                self.new_token_ratio = self.init_new_token_ratio

            self.last_batch = batch
            # HACK (byronhsu): reset the batch_is_full flag because we never enter update_running_batch which resets it
            # Otherwise, it hangs under high concurrency
            self.running_batch.batch_is_full = False

    @torch.no_grad()
    def event_loop_normal_disagg_decode(self):
        """A normal scheduler loop for decode worker in disaggregation mode."""

        while True:
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
            # polling and allocating kv cache
            self.process_decode_queue()
            batch = self.get_next_disagg_decode_batch_to_run()
            self.cur_batch = batch

            if batch:
                # Generate fake extend output.
                if batch.forward_mode.is_extend():
                    # Note: Logprobs should be handled on the prefill engine.
                    self.stream_output(
                        batch.reqs, [False for _ in range(len(batch.reqs))]
                    )
                else:
                    result = self.run_batch(batch)
                    self.process_batch_result(batch, result)

            if batch is None and (
                len(self.disagg_decode_transfer_queue.queue)
                + len(self.disagg_decode_prealloc_queue.queue)
                == 0
            ):
                # When the server is idle, do self-check and re-init some states
                self.check_memory()
                self.new_token_ratio = self.init_new_token_ratio

            self.last_batch = batch

731
732
    def recv_requests(self) -> List[Req]:
        """Receive results at tp_rank = 0 and broadcast it to all other TP ranks."""
733
        if self.attn_tp_rank == 0:
Lianmin Zheng's avatar
Lianmin Zheng committed
734
735
            recv_reqs = []

736
737
738
739
740
            while True:
                try:
                    recv_req = self.recv_from_tokenizer.recv_pyobj(zmq.NOBLOCK)
                except zmq.ZMQError:
                    break
Lianmin Zheng's avatar
Lianmin Zheng committed
741
                recv_reqs.append(recv_req)
742
743
744
745
746
747
748

            while True:
                try:
                    recv_rpc = self.recv_from_rpc.recv_pyobj(zmq.NOBLOCK)
                except zmq.ZMQError:
                    break
                recv_reqs.append(recv_rpc)
Lianmin Zheng's avatar
Lianmin Zheng committed
749
750
        else:
            recv_reqs = None
751

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
        if self.server_args.enable_dp_attention:
            if self.attn_tp_rank == 0:
                work_reqs = [
                    req
                    for req in recv_reqs
                    if isinstance(
                        req, (TokenizedGenerateReqInput, TokenizedEmbeddingReqInput)
                    )
                ]
                control_reqs = [
                    req
                    for req in recv_reqs
                    if not isinstance(
                        req, (TokenizedGenerateReqInput, TokenizedEmbeddingReqInput)
                    )
                ]
            else:
                work_reqs = None
                control_reqs = None

            if self.attn_tp_size != 1:
                attn_tp_rank_0 = self.dp_rank * self.attn_tp_size
                work_reqs = broadcast_pyobj(
                    work_reqs,
                    self.attn_tp_rank,
                    self.attn_tp_cpu_group,
                    src=attn_tp_rank_0,
                )
            if self.tp_size != 1:
                control_reqs = broadcast_pyobj(
                    control_reqs, self.tp_rank, self.tp_cpu_group
                )
            recv_reqs = work_reqs + control_reqs
        elif self.tp_size != 1:
786
            recv_reqs = broadcast_pyobj(recv_reqs, self.tp_rank, self.tp_cpu_group)
787
788
        return recv_reqs

Lianmin Zheng's avatar
Lianmin Zheng committed
789
    def process_input_requests(self, recv_reqs: List):
790
        for recv_req in recv_reqs:
791
792
            # If it is a health check generation request and there are running requests, ignore it.
            if is_health_check_generate_req(recv_req) and (
Lianmin Zheng's avatar
Lianmin Zheng committed
793
                self.chunked_req is not None or not self.running_batch.is_empty()
794
795
796
797
            ):
                self.return_health_check_ct += 1
                continue

798
            output = self._request_dispatcher(recv_req)
799
            if output is not None:
800
801
802
803
804
                if isinstance(output, RpcReqOutput):
                    if self.recv_from_rpc is not None:
                        self.recv_from_rpc.send_pyobj(output)
                else:
                    self.send_to_tokenizer.send_pyobj(output)
805
806
807
808
809

    def handle_generate_request(
        self,
        recv_req: TokenizedGenerateReqInput,
    ):
810
        # Create a new request
811
812
813
814
815
        if (
            recv_req.session_params is None
            or recv_req.session_params.id is None
            or recv_req.session_params.id not in self.sessions
        ):
Rin Intachuen's avatar
Rin Intachuen committed
816
817
818
819
820
821
            if recv_req.input_embeds is not None:
                # Generate fake input_ids based on the length of input_embeds
                seq_length = len(recv_req.input_embeds)
                fake_input_ids = [1] * seq_length
                recv_req.input_ids = fake_input_ids

822
823
824
825
826
827
828
829
830
831
832
833
834
            # Handle custom logit processor passed to the request
            custom_logit_processor = recv_req.custom_logit_processor
            if (
                not self.server_args.enable_custom_logit_processor
                and custom_logit_processor is not None
            ):
                logger.warning(
                    "The SGLang server is not configured to enable custom logit processor."
                    "The custom logit processor passed in will be ignored."
                    "Please set --enable-custom-logits-processor to enable this feature."
                )
                custom_logit_processor = None

835
836
837
838
839
            req = Req(
                recv_req.rid,
                recv_req.input_text,
                recv_req.input_ids,
                recv_req.sampling_params,
Lianmin Zheng's avatar
Lianmin Zheng committed
840
841
                return_logprob=recv_req.return_logprob,
                top_logprobs_num=recv_req.top_logprobs_num,
842
                token_ids_logprob=recv_req.token_ids_logprob,
Lianmin Zheng's avatar
Lianmin Zheng committed
843
                stream=recv_req.stream,
844
                lora_path=recv_req.lora_path,
Rin Intachuen's avatar
Rin Intachuen committed
845
                input_embeds=recv_req.input_embeds,
846
                custom_logit_processor=custom_logit_processor,
847
                return_hidden_states=recv_req.return_hidden_states,
848
                eos_token_ids=self.model_config.hf_eos_token_id,
849
850
                bootstrap_host=recv_req.bootstrap_host,
                bootstrap_room=recv_req.bootstrap_room,
851
852
            )
            req.tokenizer = self.tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
853

854
855
856
857
            if (
                recv_req.session_params is not None
                and recv_req.session_params.id is not None
            ):
858
                req.finished_reason = FINISH_ABORT(
859
                    f"Invalid request: session id {recv_req.session_params.id} does not exist"
860
                )
861
                self._add_request_to_queue(req)
862
863
                return
        else:
864
865
            # Create a new request from a previous session
            session = self.sessions[recv_req.session_params.id]
866
            req = session.create_req(recv_req, self.tokenizer)
867
            if isinstance(req.finished_reason, FINISH_ABORT):
868
                self._add_request_to_queue(req)
869
                return
870

871
        # Handle multimodal inputs
Mick's avatar
Mick committed
872
873
        if recv_req.mm_inputs is not None:
            image_inputs = MultimodalInputs.from_dict(recv_req.mm_inputs)
874
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
875
            req.origin_input_ids = self.pad_input_ids_func(
876
                req.origin_input_ids, image_inputs
877
            )
878
            req.extend_image_inputs(image_inputs)
879

880
            if len(req.origin_input_ids) >= self.max_req_input_len:
881
                error_msg = (
882
                    "Multimodal prompt is too long after expanding multimodal tokens. "
883
                    f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
884
                )
885
                logger.error(error_msg)
886
                req.origin_input_ids = [0]
Mick's avatar
Mick committed
887
                req.multimodal_inputs = None
888
                req.sampling_params.max_new_tokens = 0
889
                req.finished_reason = FINISH_ABORT(
890
                    error_msg, HTTPStatus.BAD_REQUEST, "BadRequestError"
891
                )
892
                self._add_request_to_queue(req)
893
894
                return

895
896
897
898
899
900
901
        # Validate prompts length
        error_msg = validate_input_length(
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
        if error_msg:
902
903
            req.origin_input_ids = [0]
            req.sampling_params.max_new_tokens = 0
904
            self._add_request_to_queue(req)
905
            return
906

907
        # Copy more attributes
908
        if recv_req.logprob_start_len == -1 or not recv_req.return_logprob:
909
910
911
912
913
            # By default, only return the logprobs for output tokens
            req.logprob_start_len = len(req.origin_input_ids) - 1
        else:
            req.logprob_start_len = recv_req.logprob_start_len

914
915
916
917
918
919
920
921
922
923
        if req.logprob_start_len >= len(req.origin_input_ids):
            req.finished_reason = FINISH_ABORT(
                f"logprob_start_len, ({req.logprob_start_len}) is higher than the number of input tokens ({len(req.origin_input_ids)}). Request with a lower logprob_start_len.",
                HTTPStatus.BAD_REQUEST,
                "BadRequestError",
            )
            req.logprob_start_len = len(req.origin_input_ids) - 1
            self._add_request_to_queue(req)
            return

924
925
926
927
928
929
        req.sampling_params.max_new_tokens = min(
            (
                req.sampling_params.max_new_tokens
                if req.sampling_params.max_new_tokens is not None
                else 1 << 30
            ),
930
            self.max_req_len - len(req.origin_input_ids) - 1,
931
932
        )

933
934
935
936
937
        # Init grammar cache for this request
        add_to_grammar_queue = False
        if (
            req.sampling_params.json_schema is not None
            or req.sampling_params.regex is not None
938
            or req.sampling_params.ebnf is not None
939
            or req.sampling_params.structural_tag is not None
940
941
942
943
944
945
        ):
            assert self.grammar_backend is not None
            if req.sampling_params.json_schema is not None:
                key = ("json", req.sampling_params.json_schema)
            elif req.sampling_params.regex is not None:
                key = ("regex", req.sampling_params.regex)
946
947
            elif req.sampling_params.ebnf is not None:
                key = ("ebnf", req.sampling_params.ebnf)
948
949
            elif req.sampling_params.structural_tag:
                key = ("structural_tag", req.sampling_params.structural_tag)
950
951
952
953
954
955
956

            req.grammar = self.grammar_backend.get_cached_value(key)
            if not req.grammar:
                req.grammar = self.grammar_backend.get_future_value(key)
                add_to_grammar_queue = True

        if add_to_grammar_queue:
957
958
            self.grammar_queue.append(req)
        else:
959
960
961
            self._add_request_to_queue(req)

    def _add_request_to_queue(self, req: Req):
962
        req.queue_time_start = time.time()
Byron Hsu's avatar
Byron Hsu committed
963
964
965
966
967
968
969
970
971
972
973
974
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
            self.disagg_prefill_pending_queue.add(req)
        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            self.disagg_decode_prealloc_queue.add(req)
        else:
            self.waiting_queue.append(req)

    def _extend_requests_to_queue(self, reqs: List[Req], is_retracted: bool = False):
        if self.disaggregation_mode == DisaggregationMode.DECODE:
            self.disagg_decode_prealloc_queue.extend(reqs)
        else:
            self.waiting_queue.extend(reqs)
975
976
977

    def handle_embedding_request(
        self,
978
        recv_req: TokenizedEmbeddingReqInput,
979
980
981
982
983
984
985
986
987
    ):
        req = Req(
            recv_req.rid,
            recv_req.input_text,
            recv_req.input_ids,
            recv_req.sampling_params,
        )
        req.tokenizer = self.tokenizer

988
989
        # Handle multimodal inputs
        if recv_req.image_inputs is not None:
Mick's avatar
Mick committed
990
            image_inputs = MultimodalInputs.from_dict(recv_req.image_inputs)
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
            req.origin_input_ids = self.pad_input_ids_func(
                req.origin_input_ids, image_inputs
            )
            req.extend_image_inputs(image_inputs)

            if len(req.origin_input_ids) >= self.max_req_input_len:
                error_msg = (
                    "Multimodal prompt is too long after expanding multimodal tokens. "
                    f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
                )
                logger.error(error_msg)
                req.origin_input_ids = [0]
Mick's avatar
Mick committed
1004
                req.multimodal_inputs = None
1005
1006
1007
1008
                req.sampling_params.max_new_tokens = 0
                req.finished_reason = FINISH_ABORT(
                    error_msg, HTTPStatus.BAD_REQUEST, "BadRequestError"
                )
1009
                req.queue_time_start = time.time()
1010
1011
1012
                self.waiting_queue.append(req)
                return

1013
        # Validate prompts length
1014
        error_msg = validate_input_length(
1015
1016
1017
1018
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
1019
        if error_msg:
1020
            self._add_request_to_queue(req)
1021
            return
1022

1023
1024
        # Copy more attributes
        req.logprob_start_len = len(req.origin_input_ids) - 1
1025
        self._add_request_to_queue(req)
1026

1027
1028
1029
1030
    def log_prefill_stats(
        self,
        adder: PrefillAdder,
        can_run_list: List[Req],
1031
        running_bs: int,
1032
    ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1033
1034
1035
1036
1037
        gap_latency = time.time() - self.last_prefill_stats_tic
        self.last_prefill_stats_tic = time.time()
        self.last_input_throughput = self.num_prefill_tokens / gap_latency
        self.num_prefill_tokens = 0

1038
        num_used = self.max_total_num_tokens - (
1039
1040
            self.token_to_kv_pool_allocator.available_size()
            + self.tree_cache.evictable_size()
1041
        )
1042
1043
1044
        self._largest_prefill_len = max(
            self._largest_prefill_len, adder.log_input_tokens
        )
1045

1046
        num_new_seq = len(can_run_list)
1047
        f = (
1048
            f"Prefill batch. "
1049
            f"#new-seq: {num_new_seq}, "
1050
1051
1052
1053
            f"#new-token: {adder.log_input_tokens}, "
            f"#cached-token: {adder.log_hit_tokens}, "
            f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
            f"#running-req: {running_bs}, "
1054
            f"#queue-req: {len(self.waiting_queue)}, "
1055
        )
1056
        logger.info(f)
1057
1058

        if self.enable_metrics:
1059
1060
1061
            cache_hit_rate = adder.log_hit_tokens / (
                adder.log_input_tokens + adder.log_hit_tokens
            )
1062
1063
1064
            self.stats.num_running_reqs = running_bs
            self.stats.num_used_tokens = num_used
            self.stats.token_usage = round(num_used / self.max_total_num_tokens, 2)
1065
1066
            self.stats.num_queue_reqs = len(self.waiting_queue)
            self.stats.cache_hit_rate = cache_hit_rate
1067
1068
1069
1070
1071
1072

            total_queue_latency = 0
            for req in can_run_list:
                total_queue_latency += req.queue_time_end - req.queue_time_start
            self.stats.avg_request_queue_latency = total_queue_latency / num_new_seq

1073
1074
1075
            self.metrics_collector.log_stats(self.stats)

    def log_decode_stats(self):
1076
1077
1078
1079
        gap_latency = time.time() - self.last_decode_stats_tic
        self.last_decode_stats_tic = time.time()
        self.last_gen_throughput = self.num_generated_tokens / gap_latency
        self.num_generated_tokens = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
1080
        num_running_reqs = len(self.running_batch.reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
1081
        num_used = self.max_total_num_tokens - (
1082
1083
            self.token_to_kv_pool_allocator.available_size()
            + self.tree_cache.evictable_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1084
        )
1085
1086
1087
1088
1089

        if RECORD_STEP_TIME:
            self.step_time_dict[num_running_reqs].append(
                gap_latency / self.server_args.decode_log_interval
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1090

1091
1092
1093
1094
1095
1096
        if self.spec_algorithm.is_none():
            msg = (
                f"Decode batch. "
                f"#running-req: {num_running_reqs}, "
                f"#token: {num_used}, "
                f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
1097
1098
                f"gen throughput (token/s): {self.last_gen_throughput:.2f}, "
                f"#queue-req: {len(self.waiting_queue)}, "
1099
            )
1100
            spec_accept_length = 0
1101
        else:
1102
            spec_accept_length = (
1103
1104
                self.spec_num_total_accepted_tokens / self.spec_num_total_forward_ct
            )
1105
1106
            self.cum_spec_accept_length += self.spec_num_total_accepted_tokens
            self.cum_spec_accept_count += self.spec_num_total_forward_ct
1107
1108
1109
1110
1111
1112
            self.spec_num_total_accepted_tokens = self.spec_num_total_forward_ct = 0
            msg = (
                f"Decode batch. "
                f"#running-req: {num_running_reqs}, "
                f"#token: {num_used}, "
                f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
1113
                f"accept len: {spec_accept_length:.2f}, "
1114
1115
                f"gen throughput (token/s): {self.last_gen_throughput:.2f}, "
                f"#queue-req: {len(self.waiting_queue)}, "
1116
1117
1118
            )

        logger.info(msg)
1119
1120
1121
1122
        if self.enable_metrics:
            self.stats.num_running_reqs = num_running_reqs
            self.stats.num_used_tokens = num_used
            self.stats.token_usage = num_used / self.max_total_num_tokens
1123
1124
            self.stats.cache_hit_rate = 0.0
            self.stats.gen_throughput = self.last_gen_throughput
1125
            self.stats.num_queue_reqs = len(self.waiting_queue)
1126
            self.stats.spec_accept_length = spec_accept_length
1127
1128
            self.metrics_collector.log_stats(self.stats)

Lianmin Zheng's avatar
Lianmin Zheng committed
1129
1130
    def check_memory(self):
        available_size = (
1131
1132
            self.token_to_kv_pool_allocator.available_size()
            + self.tree_cache.evictable_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1133
        )
1134
1135
1136
1137
1138
1139
1140
        protected_size = self.tree_cache.protected_size()
        memory_leak = available_size != (
            self.max_total_num_tokens
            if not self.enable_hierarchical_cache
            else self.max_total_num_tokens - protected_size
        )
        if memory_leak:
1141
            msg = (
1142
                "token_to_kv_pool_allocator memory leak detected! "
1143
                f"{available_size=}, {protected_size=}, {self.max_total_num_tokens=}\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1144
1145
                f"{self.token_to_kv_pool_allocator.available_size()=}\n"
                f"{self.tree_cache.evictable_size()=}\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1146
            )
1147
1148
1149
            warnings.warn(msg)
            if crash_on_warnings():
                raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
1150
1151

        if len(self.req_to_token_pool.free_slots) != self.req_to_token_pool.size:
1152
            msg = (
1153
                "req_to_token_pool memory leak detected!"
1154
1155
                f"available_size={len(self.req_to_token_pool.free_slots)}, "
                f"total_size={self.req_to_token_pool.size}\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1156
            )
1157
1158
1159
            warnings.warn(msg)
            if crash_on_warnings():
                raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
1160

1161
1162
1163
1164
1165
1166
1167
        if (
            self.enable_metrics
            and self.attn_tp_rank == 0
            and time.time() > self.metrics_collector.last_log_time + 30
        ):
            # During idle time, also collect metrics every 30 seconds.
            num_used = self.max_total_num_tokens - (
1168
                self.token_to_kv_pool_allocator.available_size()
1169
1170
                + self.tree_cache.evictable_size()
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1171
            num_running_reqs = len(self.running_batch.reqs)
1172
1173
1174
1175
1176
1177
1178
            self.stats.num_running_reqs = num_running_reqs
            self.stats.num_used_tokens = num_used
            self.stats.token_usage = num_used / self.max_total_num_tokens
            self.stats.gen_throughput = 0
            self.stats.num_queue_reqs = len(self.waiting_queue)
            self.metrics_collector.log_stats(self.stats)

1179
    def get_next_batch_to_run(self) -> Optional[ScheduleBatch]:
1180
        # Merge the prefill batch into the running batch
Lianmin Zheng's avatar
Lianmin Zheng committed
1181
        if self.last_batch and self.last_batch.forward_mode.is_extend():
1182
1183
1184
1185
1186
1187
1188
            if self.chunked_req:
                # Move the chunked request out of the batch so that we can merge
                # only finished requests to running_batch.
                self.last_batch.filter_batch(chunked_req_to_exclude=self.chunked_req)
                self.tree_cache.cache_unfinished_req(self.chunked_req)
                # chunked request keeps its rid but will get a new req_pool_idx
                self.req_to_token_pool.free(self.chunked_req.req_pool_idx)
Lianmin Zheng's avatar
Lianmin Zheng committed
1189
                self.running_batch.batch_is_full = False
Lianmin Zheng's avatar
Lianmin Zheng committed
1190

1191
            # Filter batch
1192
            last_bs = self.last_batch.batch_size()
1193
            self.last_batch.filter_batch()
1194
            if self.last_batch.batch_size() < last_bs:
Lianmin Zheng's avatar
Lianmin Zheng committed
1195
                self.running_batch.batch_is_full = False
1196

1197
            # Merge the new batch into the running batch
1198
            if not self.last_batch.is_empty():
Lianmin Zheng's avatar
Lianmin Zheng committed
1199
                if self.running_batch.is_empty():
1200
1201
                    self.running_batch = self.last_batch
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1202
                    # Merge running_batch with prefill batch
1203
                    self.running_batch.merge_batch(self.last_batch)
1204

1205
1206
        new_batch = self.get_new_batch_prefill()
        if new_batch is not None:
1207
1208
1209
1210
            # Run prefill first if possible
            ret = new_batch
        else:
            # Run decode
Lianmin Zheng's avatar
Lianmin Zheng committed
1211
            if not self.running_batch.is_empty():
1212
                self.running_batch = self.update_running_batch(self.running_batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
1213
1214
1215
                ret = self.running_batch if not self.running_batch.is_empty() else None
            else:
                ret = None
1216

1217
        # Handle DP attention
1218
        if self.server_args.enable_dp_attention or self.server_args.enable_sp_layernorm:
Lianmin Zheng's avatar
Lianmin Zheng committed
1219
            ret, _ = self.prepare_dp_attn_batch(ret)
1220
1221

        return ret
1222

Lianmin Zheng's avatar
Lianmin Zheng committed
1223
    def get_new_batch_prefill(self) -> Optional[ScheduleBatch]:
Lianmin Zheng's avatar
Lianmin Zheng committed
1224
        # Check if the grammar is ready in the grammar queue
1225
        if self.grammar_queue:
1226
            self.move_ready_grammar_requests()
1227

Lianmin Zheng's avatar
Lianmin Zheng committed
1228
1229
        # Handle the cases where prefill is not allowed
        if (
Lianmin Zheng's avatar
Lianmin Zheng committed
1230
            self.running_batch.batch_is_full or len(self.waiting_queue) == 0
1231
        ) and self.chunked_req is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
1232
1233
            return None

Lianmin Zheng's avatar
Lianmin Zheng committed
1234
        running_bs = len(self.running_batch.reqs)
1235
        if running_bs >= self.max_running_requests:
Lianmin Zheng's avatar
Lianmin Zheng committed
1236
            self.running_batch.batch_is_full = True
1237
1238
            return None

1239
1240
1241
1242
1243
        if self.enable_hierarchical_cache:
            # check for completion of hierarchical cache activities to release memory
            self.tree_cache.writing_check()
            self.tree_cache.loading_check()

1244
1245
1246
        # Get priority queue
        prefix_computed = self.policy.calc_priority(self.waiting_queue)

Lianmin Zheng's avatar
Lianmin Zheng committed
1247
        # Prefill policy
1248
1249
        adder = PrefillAdder(
            self.tree_cache,
1250
            self.token_to_kv_pool_allocator,
1251
1252
1253
1254
            self.running_batch,
            self.new_token_ratio,
            self.max_prefill_tokens,
            self.chunked_prefill_size,
1255
            running_bs if self.is_mixed_chunk else 0,
1256
1257
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1258
        if self.chunked_req is not None:
1259
1260
            self.chunked_req.init_next_round_input()
            self.chunked_req = adder.add_chunked_req(self.chunked_req)
1261

Lianmin Zheng's avatar
Lianmin Zheng committed
1262
        if self.lora_paths:
Lianmin Zheng's avatar
Lianmin Zheng committed
1263
1264
            lora_set = set([req.lora_path for req in self.running_batch.reqs])

1265
        # Get requests from the waiting queue to a new prefill batch
1266
1267
        for req in self.waiting_queue:
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
1268
                self.lora_paths
1269
1270
1271
1272
1273
1274
1275
                and len(
                    lora_set
                    | set([req.lora_path for req in adder.can_run_list])
                    | set([req.lora_path])
                )
                > self.max_loras_per_batch
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1276
                self.running_batch.batch_is_full = True
1277
1278
                break

1279
            if running_bs + len(adder.can_run_list) >= self.max_running_requests:
Lianmin Zheng's avatar
Lianmin Zheng committed
1280
                self.running_batch.batch_is_full = True
1281
                break
1282

1283
1284
1285
1286
            req.init_next_round_input(
                None if prefix_computed else self.tree_cache,
                self.enable_hierarchical_cache,
            )
1287

1288
1289
1290
            res = adder.add_one_req(
                req, self.chunked_req, self.enable_hierarchical_cache
            )
1291
1292
            if res != AddReqResult.CONTINUE:
                if res == AddReqResult.NO_TOKEN:
1293
1294
                    if self.enable_hierarchical_cache:
                        # Set batch_is_full after making sure there are requests that can be served
Lianmin Zheng's avatar
Lianmin Zheng committed
1295
1296
1297
                        self.running_batch.batch_is_full = len(
                            adder.can_run_list
                        ) > 0 or (
1298
1299
1300
1301
                            self.running_batch is not None
                            and not self.running_batch.is_empty()
                        )
                    else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1302
                        self.running_batch.batch_is_full = True
1303
1304
                break

Lianmin Zheng's avatar
Lianmin Zheng committed
1305
        # Update waiting queue
1306
        can_run_list: List[Req] = adder.can_run_list
Lianmin Zheng's avatar
Lianmin Zheng committed
1307
1308
        if len(can_run_list) == 0:
            return None
1309
1310
1311
1312
1313
1314

        if self.enable_metrics:
            # only record queue time when enable_metrics is True to avoid overhead
            for req in can_run_list:
                req.queue_time_end = time.time()

Lianmin Zheng's avatar
Lianmin Zheng committed
1315
1316
1317
        self.waiting_queue = [
            x for x in self.waiting_queue if x not in set(can_run_list)
        ]
1318

1319
        if self.enable_hierarchical_cache:
1320
            self.tree_cache.ready_to_load_cache()
1321

1322
1323
1324
        if adder.new_chunked_req is not None:
            assert self.chunked_req is None
            self.chunked_req = adder.new_chunked_req
1325

1326
1327
        if self.chunked_req:
            self.chunked_req.is_chunked += 1
Lianmin Zheng's avatar
Lianmin Zheng committed
1328

1329
        # Print stats
1330
        if self.attn_tp_rank == 0:
1331
            self.log_prefill_stats(adder, can_run_list, running_bs)
1332

Lianmin Zheng's avatar
Lianmin Zheng committed
1333
        # Create a new batch
1334
1335
1336
        new_batch = ScheduleBatch.init_new(
            can_run_list,
            self.req_to_token_pool,
1337
            self.token_to_kv_pool_allocator,
1338
            self.tree_cache,
1339
            self.model_config,
1340
            self.enable_overlap,
1341
            self.spec_algorithm,
1342
            self.server_args.enable_custom_logit_processor,
1343
        )
1344
        new_batch.prepare_for_extend()
1345

Lianmin Zheng's avatar
Lianmin Zheng committed
1346
        # Mixed-style chunked prefill
1347
1348
        if (
            self.is_mixed_chunk
Lianmin Zheng's avatar
Lianmin Zheng committed
1349
            and not self.running_batch.is_empty()
1350
1351
1352
            and not (new_batch.return_logprob or self.running_batch.return_logprob)
        ):
            # TODO (lianmin): support return_logprob + mixed chunked prefill
1353
1354
            self.running_batch.filter_batch()
            if not self.running_batch.is_empty():
1355
                self.running_batch.prepare_for_decode()
1356
1357
                new_batch.mix_with_running(self.running_batch)
                new_batch.decoding_reqs = self.running_batch.reqs
Lianmin Zheng's avatar
Lianmin Zheng committed
1358
1359
1360
            self.running_batch = ScheduleBatch(
                reqs=[], batch_is_full=self.running_batch.batch_is_full
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1361
1362
        else:
            new_batch.decoding_reqs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1363
1364
1365

        return new_batch

Lianmin Zheng's avatar
Lianmin Zheng committed
1366
    def update_running_batch(self, batch: ScheduleBatch) -> Optional[ScheduleBatch]:
1367
        """Update the current running decoding batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1368
        initial_bs = batch.batch_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1369

1370
1371
        batch.filter_batch()
        if batch.is_empty():
Lianmin Zheng's avatar
Lianmin Zheng committed
1372
1373
            batch.batch_is_full = False
            return batch
1374

Lianmin Zheng's avatar
Lianmin Zheng committed
1375
        # Check if decode out of memory
1376
        if not batch.check_decode_mem(self.decode_mem_cache_buf_multiplier) or (
1377
            TEST_RETRACT and batch.batch_size() > 10
1378
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1379
1380
            old_ratio = self.new_token_ratio

1381
            retracted_reqs, new_token_ratio = batch.retract_decode(self.server_args)
Lianmin Zheng's avatar
Lianmin Zheng committed
1382
            self.new_token_ratio = new_token_ratio
1383

Lianmin Zheng's avatar
Lianmin Zheng committed
1384
1385
1386
1387
1388
            logger.info(
                "Decode out of memory happened. "
                f"#retracted_reqs: {len(retracted_reqs)}, "
                f"#new_token_ratio: {old_ratio:.4f} -> {self.new_token_ratio:.4f}"
            )
1389
            self._extend_requests_to_queue(retracted_reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
1390
1391
        else:
            self.new_token_ratio = max(
1392
                self.new_token_ratio - self.new_token_ratio_decay,
Lianmin Zheng's avatar
Lianmin Zheng committed
1393
1394
1395
                self.min_new_token_ratio,
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
1396
        if batch.batch_size() < initial_bs:
Lianmin Zheng's avatar
Lianmin Zheng committed
1397
            batch.batch_is_full = False
Lianmin Zheng's avatar
Lianmin Zheng committed
1398
1399

        # Update batch tensors
1400
        batch.prepare_for_decode()
Lianmin Zheng's avatar
Lianmin Zheng committed
1401
        return batch
Lianmin Zheng's avatar
Lianmin Zheng committed
1402

1403
1404
1405
    def run_batch(
        self, batch: ScheduleBatch
    ) -> Union[GenerationBatchResult, EmbeddingBatchResult]:
1406
        """Run a batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1407
1408
        self.forward_ct += 1

1409
1410
1411
1412
1413
1414
1415
        # Check profiler
        if (
            self.profiler_target_forward_ct
            and self.profiler_target_forward_ct <= self.forward_ct
        ):
            self.stop_profile()

1416
        # Run forward
1417
        if self.is_generation:
1418
1419
1420
1421
1422
            if self.spec_algorithm.is_none():
                model_worker_batch = batch.get_model_worker_batch()
                logits_output, next_token_ids = self.tp_worker.forward_batch_generation(
                    model_worker_batch
                )
1423
                bid = model_worker_batch.bid
Lianmin Zheng's avatar
Lianmin Zheng committed
1424
            else:
1425
1426
1427
                (
                    logits_output,
                    next_token_ids,
1428
                    bid,
1429
1430
1431
1432
1433
1434
1435
                    num_accepted_tokens,
                ) = self.draft_worker.forward_batch_speculative_generation(batch)
                self.spec_num_total_accepted_tokens += (
                    num_accepted_tokens + batch.batch_size()
                )
                self.spec_num_total_forward_ct += batch.batch_size()
                self.num_generated_tokens += num_accepted_tokens
1436
            batch.output_ids = next_token_ids
1437

1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
            # These 2 values are needed for processing the output, but the values can be
            # modified by overlap schedule. So we have to copy them here so that
            # we can use the correct values in output processing.
            if batch.return_logprob:
                extend_input_len_per_req = [req.extend_input_len for req in batch.reqs]
                extend_logprob_start_len_per_req = [
                    req.extend_logprob_start_len for req in batch.reqs
                ]
            else:
                extend_input_len_per_req = None
                extend_logprob_start_len_per_req = None

1450
1451
1452
            ret = GenerationBatchResult(
                logits_output=logits_output,
                next_token_ids=next_token_ids,
1453
1454
                extend_input_len_per_req=extend_input_len_per_req,
                extend_logprob_start_len_per_req=extend_logprob_start_len_per_req,
1455
                bid=bid,
1456
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1457
1458
1459
        else:  # embedding or reward model
            model_worker_batch = batch.get_model_worker_batch()
            embeddings = self.tp_worker.forward_batch_embedding(model_worker_batch)
1460
1461
1462
            ret = EmbeddingBatchResult(
                embeddings=embeddings, bid=model_worker_batch.bid
            )
1463
        return ret
Chayenne's avatar
Chayenne committed
1464

1465
1466
1467
1468
1469
    def process_batch_result(
        self,
        batch: ScheduleBatch,
        result: Union[GenerationBatchResult, EmbeddingBatchResult],
    ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1470
1471
        if batch.forward_mode.is_decode():
            self.process_batch_result_decode(batch, result)
1472
        elif batch.forward_mode.is_extend():
Lianmin Zheng's avatar
Lianmin Zheng committed
1473
            self.process_batch_result_prefill(batch, result)
1474
1475
        elif batch.forward_mode.is_idle():
            if self.enable_overlap:
1476
                self.tp_worker.resolve_batch_result(result.bid)
1477
1478
1479
1480
                if batch.next_batch_sampling_info:
                    batch.next_batch_sampling_info.update_regex_vocab_mask()
                    self.current_stream.synchronize()
                    batch.next_batch_sampling_info.sampling_info_done.set()
1481
1482
        elif batch.forward_mode.is_dummy_first():
            batch.next_batch_sampling_info.update_regex_vocab_mask()
1483
            self.current_stream.synchronize()
1484
            batch.next_batch_sampling_info.sampling_info_done.set()
Lianmin Zheng's avatar
Lianmin Zheng committed
1485

1486
1487
1488
1489
1490
1491
1492
        if self.return_health_check_ct:
            # Return some signal for the health check.
            # This is used to prevent the health check signal being blocked by long context prefill.
            # However, one minor issue is that this code path does not check the status of detokenizer manager.
            self.return_health_check_ct -= 1
            self.send_to_tokenizer.send_pyobj(HealthCheckOutput())

1493
    def prepare_dp_attn_batch(self, local_batch: ScheduleBatch):
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
        return self.prepare_dp_attn_batch_raw(
            local_batch,
            dp_size=self.server_args.dp_size,
            attn_tp_size=self.attn_tp_size,
            tp_cpu_group=self.tp_cpu_group,
            get_idle_batch=self.get_idle_batch,
            disable_cuda_graph=self.server_args.disable_cuda_graph,
            spec_algorithm=self.spec_algorithm,
            speculative_num_draft_tokens=self.server_args.speculative_num_draft_tokens,
        )

    @staticmethod
    def prepare_dp_attn_batch_raw(
        local_batch: ScheduleBatch,
        dp_size,
        attn_tp_size: int,
        tp_cpu_group,
        get_idle_batch,
        disable_cuda_graph: bool,
        spec_algorithm,
        speculative_num_draft_tokens,
    ):
1516
1517
1518
        # Check if other DP workers have running batches
        if local_batch is None:
            num_tokens = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
1519
            global_num_tokens_for_logprob = 0
1520
1521
        elif local_batch.forward_mode.is_decode():
            num_tokens = local_batch.batch_size()
1522
1523
            if not spec_algorithm.is_none() and spec_algorithm.is_eagle():
                num_tokens = num_tokens * speculative_num_draft_tokens
Lianmin Zheng's avatar
Lianmin Zheng committed
1524
            global_num_tokens_for_logprob = num_tokens
1525
1526
        else:
            num_tokens = local_batch.extend_num_tokens
Lianmin Zheng's avatar
Lianmin Zheng committed
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
            global_num_tokens_for_logprob = sum(
                [
                    # We should have at least 1 token for sample in every case.
                    max(extend_len - logprob_start_len, 1)
                    for logprob_start_len, extend_len in zip(
                        local_batch.extend_logprob_start_lens, local_batch.extend_lens
                    )
                ]
            )

        if local_batch is None or local_batch.forward_mode.is_decode_or_idle():
            can_cuda_graph = 1
        else:
            can_cuda_graph = 0

1542
        if not spec_algorithm.is_none():
Lianmin Zheng's avatar
Lianmin Zheng committed
1543
1544
1545
            # TODO(sang): Support cuda graph when idle batch is there.
            if local_batch is None or local_batch.forward_mode.is_idle():
                can_cuda_graph = 0
1546

Lianmin Zheng's avatar
Lianmin Zheng committed
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
        is_extend_in_batch = (
            local_batch.forward_mode.is_extend() if local_batch else False
        )
        local_info = torch.tensor(
            [
                num_tokens,
                can_cuda_graph,
                global_num_tokens_for_logprob,
                is_extend_in_batch,
            ],
            dtype=torch.int64,
        )
        global_info = torch.empty(
1560
            (dp_size, attn_tp_size, 4),
Lianmin Zheng's avatar
Lianmin Zheng committed
1561
1562
            dtype=torch.int64,
        )
1563
        torch.distributed.all_gather_into_tensor(
Lianmin Zheng's avatar
Lianmin Zheng committed
1564
1565
            global_info.flatten(),
            local_info,
1566
            group=tp_cpu_group,
1567
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1568
1569
1570
1571
        global_num_tokens = global_info[:, 0, 0].tolist()
        can_cuda_graph = min(global_info[:, 0, 1].tolist())
        global_num_tokens_for_logprob = global_info[:, 0, 2].tolist()
        is_extend_in_batch = global_info[:, 0, 3].tolist()
1572

Lianmin Zheng's avatar
Lianmin Zheng committed
1573
        if local_batch is None and max(global_num_tokens) > 0:
1574
            local_batch = get_idle_batch()
1575
1576

        if local_batch is not None:
Lianmin Zheng's avatar
Lianmin Zheng committed
1577
1578
            local_batch.global_num_tokens = global_num_tokens
            local_batch.global_num_tokens_for_logprob = global_num_tokens_for_logprob
1579
1580

            # Check forward mode for cuda graph
1581
            if not disable_cuda_graph:
Lianmin Zheng's avatar
Lianmin Zheng committed
1582
                local_batch.can_run_dp_cuda_graph = can_cuda_graph
1583

Lianmin Zheng's avatar
Lianmin Zheng committed
1584
        return local_batch, any(is_extend_in_batch)
1585
1586
1587
1588
1589

    def get_idle_batch(self):
        idle_batch = ScheduleBatch.init_new(
            [],
            self.req_to_token_pool,
1590
            self.token_to_kv_pool_allocator,
1591
1592
1593
            self.tree_cache,
            self.model_config,
            self.enable_overlap,
1594
            self.spec_algorithm,
1595
            self.server_args.enable_custom_logit_processor,
1596
1597
1598
1599
        )
        idle_batch.prepare_for_idle()
        return idle_batch

1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
    def move_ready_grammar_requests(self):
        """Move requests whose grammar objects are ready from grammar_queue to waiting_queue."""
        num_ready_reqs = 0
        for req in self.grammar_queue:
            try:
                req.grammar = req.grammar.result(timeout=0.05)
                num_ready_reqs += 1
            except futures._base.TimeoutError:
                break

1610
        if self.server_args.enable_dp_attention:
1611
1612
            tp_size = self.attn_tp_size
            tp_group = self.attn_tp_cpu_group
1613
        else:
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
            tp_size = self.tp_size
            tp_group = self.tp_cpu_group

        if tp_size > 1:
            # Sync across TP ranks to make sure they have the same number of ready requests
            tensor = torch.tensor(num_ready_reqs, dtype=torch.int32)
            torch.distributed.all_reduce(
                tensor, op=torch.distributed.ReduceOp.MAX, group=tp_group
            )
            num_ready_reqs_max = tensor.item()
            for i in range(num_ready_reqs, num_ready_reqs_max):
                self.grammar_queue[i].grammar = self.grammar_queue[i].grammar.result()
            num_ready_reqs = num_ready_reqs_max
1627

1628
        self._extend_requests_to_queue(self.grammar_queue[:num_ready_reqs])
1629
1630
        self.grammar_queue = self.grammar_queue[num_ready_reqs:]

1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
    def watchdog_thread(self):
        """A watch dog thread that will try to kill the server itself if one forward batch takes too long."""
        self.watchdog_last_forward_ct = 0
        self.watchdog_last_time = time.time()

        while True:
            current = time.time()
            if self.cur_batch is not None:
                if self.watchdog_last_forward_ct == self.forward_ct:
                    if current > self.watchdog_last_time + self.watchdog_timeout:
                        logger.error(f"Watchdog timeout ({self.watchdog_timeout=})")
                        break
                else:
                    self.watchdog_last_forward_ct = self.forward_ct
                    self.watchdog_last_time = current
            time.sleep(self.watchdog_timeout // 2)

        # Print batch size and memory pool info to check whether there are de-sync issues.
        logger.error(
            f"{self.cur_batch.batch_size()=}, "
            f"{self.cur_batch.reqs=}, "
            f"{self.token_to_kv_pool_allocator.available_size()=}, "
            f"{self.tree_cache.evictable_size()=}, "
        )
        # Wait for some time so that the parent process can print the error.
        pyspy_dump_schedulers()
        print(file=sys.stderr, flush=True)
        print(file=sys.stdout, flush=True)
        time.sleep(5)
        self.parent_process.send_signal(signal.SIGQUIT)

1662
1663
1664
    def flush_cache_wrapped(self, recv_req: FlushCacheReq):
        self.flush_cache()

1665
    def flush_cache(self):
1666
        """Flush the memory pool and cache."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1667
        if len(self.waiting_queue) == 0 and self.running_batch.is_empty():
1668
1669
            self.cur_batch = None
            self.last_batch = None
1670
            self.tree_cache.reset()
1671
            if self.grammar_backend:
Lianmin Zheng's avatar
Lianmin Zheng committed
1672
                self.grammar_backend.reset()
1673
            self.req_to_token_pool.clear()
1674
            self.token_to_kv_pool_allocator.clear()
1675
1676
1677

            if not self.spec_algorithm.is_none():
                self.draft_worker.model_runner.req_to_token_pool.clear()
1678
                self.draft_worker.model_runner.token_to_kv_pool_allocator.clear()
1679
1680
1681
1682
1683

            self.num_generated_tokens = 0
            self.forward_ct_decode = 0
            self.spec_num_total_accepted_tokens = 0
            self.spec_num_total_forward_ct = 0
1684
1685
            self.cum_spec_accept_length = 0
            self.cum_spec_accept_count = 0
1686
1687
1688
1689
1690
1691
1692
            torch.cuda.empty_cache()
            logger.info("Cache flushed successfully!")
            if_success = True
        else:
            logging.warning(
                f"Cache not flushed because there are pending requests. "
                f"#queue-req: {len(self.waiting_queue)}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
1693
                f"#running-req: {len(self.running_batch.reqs)}"
1694
1695
1696
1697
            )
            if_success = False
        return if_success

1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
    def get_internal_state(self, recv_req: GetInternalStateReq):
        ret = dict(global_server_args_dict)
        ret["last_gen_throughput"] = self.last_gen_throughput
        if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
            ret["avg_spec_accept_length"] = (
                self.cum_spec_accept_length / self.cum_spec_accept_count
            )

        if RECORD_STEP_TIME:
            ret["step_time_dict"] = self.step_time_dict
        return GetInternalStateReqOutput(
            internal_state=ret,
        )

    def set_internal_state(self, recv_req: SetInternalStateReq):
        server_args_dict = recv_req.server_args
        args_allow_update = set(
            [
                "speculative_accept_threshold_single",
                "speculative_accept_threshold_acc",
            ]
        )
        if_success = True
        for k, v in server_args_dict.items():
            if k not in args_allow_update:
                logging.warning(f"Updating {k} is not supported.")
                if_success = False
                break
        if if_success:
            if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
                avg_spec_accept_length = (
                    self.cum_spec_accept_length / self.cum_spec_accept_count
                )
                logger.info(f"{avg_spec_accept_length=}")
            self.cum_spec_accept_length = self.cum_spec_accept_count = 0
            for k, v in server_args_dict.items():
                global_server_args_dict[k] = v
            logger.info(f"Global server args updated! " f"{global_server_args_dict=}")
        return SetInternalStateReqOutput(
            updated=True,
            server_args=global_server_args_dict,
        )

1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
    def handle_rpc_request(self, recv_req: RpcReqInput):
        # Handle RPC requests
        logger.info(
            f"handle_rpc_request: {recv_req.method}, param: {recv_req.parameters}"
        )

        success = True
        exec = None
        try:
            func = getattr(self, recv_req.method)
            func(recv_req.parameters)
        except Exception as e:
            success = False
            exec = e
            logger.error(f"Failed to call rpc {recv_req.method}: {str(e)}")

        barrier()
        return RpcReqOutput(success, "" if not exec else str(exec))

    def save_remote_model(self, params):
        url = params["url"]

1763
        worker = self.tp_worker.worker
1764
1765
1766
1767

        worker.model_runner.save_remote_model(url)

    def save_sharded_model(self, params):
1768
        worker = self.tp_worker.worker
1769
1770
1771
1772
1773
1774
1775

        worker.model_runner.save_sharded_model(
            path=params["path"],
            pattern=params["pattern"],
            max_size=params["max_size"],
        )

1776
1777
    def abort_request(self, recv_req: AbortReq):
        # Delete requests in the waiting queue
Lianmin Zheng's avatar
Lianmin Zheng committed
1778
        to_del = []
1779
        for i, req in enumerate(self.waiting_queue):
Lianmin Zheng's avatar
Lianmin Zheng committed
1780
1781
            if req.rid.startswith(recv_req.rid):
                to_del.append(i)
1782
1783
                break

Lianmin Zheng's avatar
Lianmin Zheng committed
1784
1785
1786
        # Sort in reverse order to avoid index issues when deleting
        for i in sorted(to_del, reverse=True):
            req = self.waiting_queue.pop(i)
1787
1788
            logger.debug(f"Abort queued request. {req.rid=}")
            return
1789
1790

        # Delete requests in the running batch
Lianmin Zheng's avatar
Lianmin Zheng committed
1791
1792
1793
1794
1795
        for req in self.running_batch.reqs:
            if req.rid.startswith(recv_req.rid) and not req.finished():
                logger.debug(f"Abort running request. {req.rid=}")
                req.to_abort = True
                return
1796

1797
1798
1799
    def _pause_engine(self) -> Tuple[List[Req], int]:
        raise NotImplementedError()

Chayenne's avatar
Chayenne committed
1800
1801
1802
    def update_weights_from_disk(self, recv_req: UpdateWeightFromDiskReqInput):
        """In-place update of the weights from disk."""
        success, message = self.tp_worker.update_weights_from_disk(recv_req)
1803
1804
1805
1806
1807
        if success:
            flash_cache_success = self.flush_cache()
            assert flash_cache_success, "Cache flush failed after updating weights"
        else:
            logger.error(message)
1808
        return UpdateWeightFromDiskReqOutput(success, message, 0)
1809

1810
1811
1812
    def init_weights_update_group(self, recv_req: InitWeightsUpdateGroupReqInput):
        """Initialize the online model parameter update group."""
        success, message = self.tp_worker.init_weights_update_group(recv_req)
1813
        return InitWeightsUpdateGroupReqOutput(success, message)
1814
1815

    def update_weights_from_distributed(
1816
1817
1818
        self,
        recv_req: UpdateWeightsFromDistributedReqInput,
    ) -> Tuple[bool, str]:
1819
1820
1821
1822
1823
1824
1825
        """Update the online model parameter."""
        success, message = self.tp_worker.update_weights_from_distributed(recv_req)
        if success:
            flash_cache_success = self.flush_cache()
            assert flash_cache_success, "Cache flush failed after updating weights"
        else:
            logger.error(message)
1826
        return UpdateWeightsFromDistributedReqOutput(success, message)
1827

1828
1829
1830
1831
1832
    def update_weights_from_tensor(self, recv_req: UpdateWeightsFromTensorReqInput):
        """Update the online model parameter from tensors."""
        success, message = self.tp_worker.update_weights_from_tensor(recv_req)
        # TODO extract common code b/t update_weights_from_distributed and update_weights_from_tensor later
        if success:
1833
1834
1835
            if recv_req.flush_cache:
                flash_cache_success = self.flush_cache()
                assert flash_cache_success, "Cache flush failed after updating weights"
1836
1837
        else:
            logger.error(message)
1838
        return UpdateWeightsFromTensorReqOutput(success, message)
1839

1840
1841
    def get_weights_by_name(self, recv_req: GetWeightsByNameReqInput):
        parameter = self.tp_worker.get_weights_by_name(recv_req)
1842
        return GetWeightsByNameReqOutput(parameter)
1843

1844
    def release_memory_occupation(self, recv_req: ReleaseMemoryOccupationReqInput):
1845
1846
1847
        self.memory_saver_adapter.check_validity(
            caller_name="release_memory_occupation"
        )
1848
1849
1850
1851
1852
        self.stashed_model_static_state = _export_static_state(
            self.tp_worker.worker.model_runner.model
        )
        self.memory_saver_adapter.pause()
        self.flush_cache()
1853
        return ReleaseMemoryOccupationReqOutput()
1854

1855
    def resume_memory_occupation(self, recv_req: ResumeMemoryOccupationReqInput):
1856
        self.memory_saver_adapter.check_validity(caller_name="resume_memory_occupation")
1857
1858
1859
1860
1861
        self.memory_saver_adapter.resume()
        _import_static_state(
            self.tp_worker.worker.model_runner.model, self.stashed_model_static_state
        )
        del self.stashed_model_static_state
1862
1863
1864
        return ResumeMemoryOccupationReqOutput()

    def profile(self, recv_req: ProfileReq):
1865
1866
        if recv_req.type == ProfileReqType.START_PROFILE:
            return self.start_profile(
1867
1868
1869
1870
1871
                recv_req.output_dir,
                recv_req.num_steps,
                recv_req.activities,
                recv_req.with_stack,
                recv_req.record_shapes,
1872
            )
1873
        else:
1874
1875
1876
1877
1878
1879
1880
            return self.stop_profile()

    def start_profile(
        self,
        output_dir: Optional[str],
        num_steps: Optional[int],
        activities: Optional[List[str]],
1881
1882
        with_stack: Optional[bool],
        record_shapes: Optional[bool],
1883
    ) -> None:
1884
        if self.profiler_activities:
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
            return ProfileReqOutput(
                success=False,
                message="Profiling is already in progress. Call /stop_profile first.",
            )

        if output_dir is None:
            output_dir = os.getenv("SGLANG_TORCH_PROFILER_DIR", "/tmp")
        if activities is None:
            activities = ["CPU", "GPU"]

        self.torch_profiler_output_dir = output_dir
1896
        self.profiler_activities = activities
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
        logger.info(
            "Profiling starts. Traces will be saved to: %s",
            self.torch_profiler_output_dir,
        )

        activity_map = {
            "CPU": torch.profiler.ProfilerActivity.CPU,
            "GPU": torch.profiler.ProfilerActivity.CUDA,
        }
        torchprof_activities = [
            activity_map[a] for a in activities if a in activity_map
        ]

        if torchprof_activities:
            self.torch_profiler = torch.profiler.profile(
                activities=torchprof_activities,
1913
1914
                with_stack=with_stack if with_stack is not None else True,
                record_shapes=record_shapes if record_shapes is not None else False,
1915
1916
1917
1918
1919
            )
            self.torch_profiler.start()

        if "MEM" in activities:
            torch.cuda.memory._record_memory_history(max_entries=100000)
1920

1921
1922
1923
        if "CUDA_PROFILER" in activities:
            torch.cuda.cudart().cudaProfilerStart()

1924
1925
1926
1927
1928
1929
        if num_steps:
            self.profiler_target_forward_ct = self.forward_ct + num_steps
            # The caller will be notified when reaching profiler_target_forward_ct
        else:
            self.profiler_target_forward_ct = None
            return ProfileReqOutput(success=True, message="Succeeded")
1930
1931

    def stop_profile(self) -> None:
1932
        if self.profiler_activities is None:
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
            return

        logger.info("Stop profiling...")
        if self.torch_profiler is not None:
            self.torch_profiler.stop()
            self.torch_profiler.export_chrome_trace(
                os.path.join(
                    self.torch_profiler_output_dir,
                    str(time.time()) + f"-TP-{self.tp_rank}" + ".trace.json.gz",
                )
            )

1945
        if "MEM" in self.profiler_activities:
1946
            memory_profile_path = os.path.join(
1947
                self.torch_profiler_output_dir,
1948
1949
1950
1951
1952
                str(time.time()) + f"-TP-{self.tp_rank}-memory" + ".pickle",
            )
            torch.cuda.memory._dump_snapshot(memory_profile_path)
            torch.cuda.memory._record_memory_history(enabled=None)

1953
1954
1955
        if "CUDA_PROFILER" in self.profiler_activities:
            torch.cuda.cudart().cudaProfilerStop()

1956
1957
1958
        logger.info(
            "Profiling done. Traces are saved to: %s",
            self.torch_profiler_output_dir,
1959
        )
1960
1961
        self.torch_profiler = None
        self.torch_profiler_output_dir = None
1962
        self.profiler_activities = None
1963
1964
1965
1966
1967

        if self.profiler_target_forward_ct:
            self.send_to_tokenizer.send_pyobj(
                ProfileReqOutput(success=True, message="Succeeded.")
            )
1968

1969
1970
1971
1972
1973
1974
1975
1976
1977
    def expert_distribution_handle(self, recv_req: ExpertDistributionReq):
        if recv_req == ExpertDistributionReq.START_RECORD:
            expert_distribution_recorder.start_record()
        elif recv_req == ExpertDistributionReq.STOP_RECORD:
            expert_distribution_recorder.stop_record()
        elif recv_req == ExpertDistributionReq.DUMP_RECORD:
            expert_distribution_recorder.dump_record()
        else:
            raise ValueError("Unrecognized ExpertDistributionReq value")
1978
        return ExpertDistributionReqOutput()
1979

1980
    def open_session(self, recv_req: OpenSessionReqInput):
1981
1982
1983
1984
        # handle error
        session_id = recv_req.session_id
        if session_id in self.sessions:
            logger.warning(f"session id {session_id} already exist, cannot open.")
1985
            return OpenSessionReqOutput(session_id, False)
1986
        elif session_id is None:
1987
            logger.warning("session id is None, cannot open.")
1988
            return OpenSessionReqOutput(session_id, False)
1989
1990
1991
1992
        else:
            self.sessions[session_id] = Session(
                recv_req.capacity_of_str_len, session_id
            )
1993
            return OpenSessionReqOutput(session_id, True)
1994
1995
1996
1997
1998
1999
2000
2001
2002

    def close_session(self, recv_req: CloseSessionReqInput):
        # handle error
        session_id = recv_req.session_id
        if session_id not in self.sessions:
            logger.warning(f"session id {session_id} does not exist, cannot delete.")
        else:
            del self.sessions[session_id]

2003

2004
2005
2006
2007
def is_health_check_generate_req(recv_req):
    return getattr(recv_req, "rid", "").startswith("HEALTH_CHECK")


2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
def _export_static_state(model):
    return dict(
        buffers=[
            (name, buffer.detach().clone()) for name, buffer in model.named_buffers()
        ]
    )


def _import_static_state(model, static_params):
    self_named_buffers = dict(model.named_buffers())
    for name, tensor in static_params["buffers"]:
        self_named_buffers[name][...] = tensor


2022
2023
2024
2025
2026
def run_scheduler_process(
    server_args: ServerArgs,
    port_args: PortArgs,
    gpu_id: int,
    tp_rank: int,
2027
    dp_rank: Optional[int],
2028
    pipe_writer,
2029
):
2030
2031
2032
2033
2034
2035
    # Generate the prefix
    if dp_rank is None:
        prefix = f" TP{tp_rank}"
    else:
        prefix = f" DP{dp_rank} TP{tp_rank}"

2036
    # Config the process
2037
    kill_itself_when_parent_died()
2038
    setproctitle.setproctitle(f"sglang::scheduler{prefix.replace(' ', '_')}")
2039
    faulthandler.enable()
2040
    parent_process = psutil.Process().parent()
2041

2042
2043
2044
    # [For Router] if env var "SGLANG_DP_RANK" exist, set dp_rank to the value of the env var
    if dp_rank is None and "SGLANG_DP_RANK" in os.environ:
        dp_rank = int(os.environ["SGLANG_DP_RANK"])
2045

Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
2046
    # Configure the logger
2047
    configure_logger(server_args, prefix=prefix)
2048
    suppress_other_loggers()
2049

2050
    # Set cpu affinity to this gpu process
2051
2052
2053
    if get_bool_env_var("SGLANG_SET_CPU_AFFINITY"):
        set_gpu_proc_affinity(server_args.tp_size, server_args.nnodes, gpu_id)

2054
    # Create a scheduler and run the event loop
2055
    try:
2056
        scheduler = Scheduler(server_args, port_args, gpu_id, tp_rank, dp_rank)
2057
        pipe_writer.send(
Mick's avatar
Mick committed
2058
2059
2060
2061
2062
            {
                "status": "ready",
                "max_total_num_tokens": scheduler.max_total_num_tokens,
                "max_req_input_len": scheduler.max_req_input_len,
            }
2063
        )
Byron Hsu's avatar
Byron Hsu committed
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
        disaggregation_mode: DisaggregationMode = scheduler.disaggregation_mode

        if disaggregation_mode == DisaggregationMode.NULL:
            if scheduler.enable_overlap:
                scheduler.event_loop_overlap()
            else:
                scheduler.event_loop_normal()
        elif disaggregation_mode == DisaggregationMode.PREFILL:
            scheduler.event_loop_normal_disagg_prefill()
        elif disaggregation_mode == DisaggregationMode.DECODE:
            scheduler.event_loop_normal_disagg_decode()

2076
    except Exception:
2077
2078
2079
        traceback = get_exception_traceback()
        logger.error(f"Scheduler hit an exception: {traceback}")
        parent_process.send_signal(signal.SIGQUIT)