runners.py 33.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14

15
import multiprocessing as mp
16
import os
17
from dataclasses import dataclass
18
from typing import List, Optional, Tuple, Union
19
20
21

import torch
import torch.nn.functional as F
Kiv Chen's avatar
Kiv Chen committed
22
import transformers
uylnap's avatar
uylnap committed
23
from transformers import (
Kiv Chen's avatar
Kiv Chen committed
24
    AutoConfig,
uylnap's avatar
uylnap committed
25
26
27
28
    AutoModel,
    AutoModelForCausalLM,
    AutoModelForVision2Seq,
    AutoProcessor,
29
    GenerationConfig,
uylnap's avatar
uylnap committed
30
)
31

Lianmin Zheng's avatar
Lianmin Zheng committed
32
from sglang.srt.entrypoints.engine import Engine
uylnap's avatar
uylnap committed
33
from sglang.srt.utils import load_image
34
from sglang.srt.utils.hf_transformers_utils import get_tokenizer
35
from sglang.test.test_utils import DEFAULT_PORT_FOR_SRT_TEST_RUNNER, calculate_rouge_l
36
37

DEFAULT_PROMPTS = [
38
    "Apple is red. Banana is Yellow. " * 800 + "Apple is",
39
    "The capital of the United Kingdom is",
40
    "Today is a sunny day and I like",
41
    "AI is a field of computer science focused on",
42
43
    # the output of gemma-2-2b from SRT is unstable on the commented prompt
    # "The capital of France is",
44
]
woodx's avatar
woodx committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
TEST_RERANK_QUERY_DOCS = [
    {
        "query": "How many people live in Berlin?",
        "documents": [
            "Berlin is well known for its museums.",
        ],
    },
    {
        "query": "How many people live in Berlin?",
        "documents": [
            "Berlin had a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.",
            "Berlin is well known for its museums.",
        ],
    },
]
60

61
dirpath = os.path.dirname(__file__)
62
with open(os.path.join(dirpath, "long_prompt.txt"), "r") as f:
63
64
65
    long_prompt = f.read()
DEFAULT_PROMPTS.append(long_prompt)

66
67
68
69
70
71
NUM_TOP_LOGPROBS = 5


def get_dtype_str(torch_dtype):
    if torch_dtype is torch.float16:
        return "float16"
72
73
    if torch_dtype is torch.float32:
        return "float32"
74
75
76
77
    else:
        raise NotImplementedError()


78
79
def get_top_logprobs(logits, k):
    logprobs = F.log_softmax(logits, dim=-1, dtype=torch.float32)
80
    del logits
81
82
83
84
    logprobs, top_indices = torch.topk(logprobs, k=k, dim=-1)
    return logprobs


85
86
87
88
89
90
91
def get_token_ids_logprobs(logits, token_ids):
    logprobs = F.log_softmax(logits, dim=-1, dtype=torch.float32)
    del logits
    logprobs = logprobs[..., token_ids]
    return logprobs


92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
def _get_sentence_transformer_embedding_model(model_path, torch_dtype):
    from sentence_transformers import SentenceTransformer
    from sentence_transformers.util import is_sentence_transformer_model

    if is_sentence_transformer_model(model_path):
        model = SentenceTransformer(
            model_path,
            model_kwargs={"torch_dtype": torch_dtype},
        )
    else:  # if no pre-trained sentence-transformers model
        from sentence_transformers import models

        word_embedding_model = models.Transformer(model_path).to(dtype=torch_dtype)
        pooling_model = models.Pooling(
            word_embedding_model.get_word_embedding_dimension(),
            pooling_mode="lasttoken",
        )
        model = SentenceTransformer(modules=[word_embedding_model, pooling_model])

    return model.cuda()


114
115
@dataclass
class ModelOutput:
116
117
118
119
    output_strs: List[str] = None
    output_ids: List[int] = None
    top_input_logprobs: List[torch.Tensor] = None
    top_output_logprobs: List[torch.Tensor] = None
120
    top_output_logprob_idx: List[List[int]] = None
121
    embed_logits: List[torch.Tensor] = None
122
    scores: List[float] = None
123
124
125
126
    input_token_logprobs_lst: List[List[Tuple[float, int, None]]] = None
    output_token_logprobs_lst: List[List[Tuple[float, int, None]]] = None
    token_ids_input_logprobs: List[torch.Tensor] = None
    token_ids_output_logprobs: List[torch.Tensor] = None
127
128
129
130
131


class HFRunner:
    def __init__(
        self,
132
133
134
135
        model_path: str,
        torch_dtype: torch.dtype,
        model_type: str = "generation",
        output_str_only: bool = False,
136
        trust_remote_code: bool = False,
137
        patch_model_do_sample_false: bool = False,
138
    ):
139
        self.model_type = model_type
140
        self.output_str_only = output_str_only
141
        self.trust_remote_code = trust_remote_code
142
        self.patch_model_do_sample_false = patch_model_do_sample_false
143

144
145
146
147
        self.in_queue = mp.Queue()
        self.out_queue = mp.Queue()

        self.model_proc = mp.Process(
148
149
150
151
152
153
154
155
156
157
            target=self.start_model_process,
            args=(
                self.in_queue,
                self.out_queue,
                model_path,
                torch_dtype,
            ),
        )
        self.model_proc.start()

158
159
160
161
162
163
164
165
    def needs_trust_remote_code(self, model_path):
        models_needs_trust_remote = [
            "LxzGordon/URM-LLaMa-3.1-8B",
        ]
        if model_path in models_needs_trust_remote:
            return True
        return False

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    # copy from https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-2B-Instruct/blob/main/gme_inference.py

    def _get_gme_qwen2_vl_embeddings(
        self, prompts, image_data: Optional[List[str]] = None
    ):

        images = None
        if image_data is not None:
            images = [load_image(image)[0] for image in image_data]

        inputs = self.processor(
            text=prompts,
            images=images,
            padding=True,
            truncation=True,
            max_length=1800,
            return_tensors="pt",
        )
        inputs = {k: v.to(self.model.device) for k, v in inputs.items()}
        with torch.no_grad():
            embeddings = self._forward_gme_qwen2_vl(**inputs)
        return embeddings.tolist()

    def _forward_gme_qwen2_vl(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        pixel_values: Optional[torch.Tensor] = None,
        image_grid_thw: Optional[torch.LongTensor] = None,
        pooling_mask: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> torch.Tensor:
        if inputs_embeds is None:
            inputs_embeds = self.model.model.embed_tokens(input_ids)
            if pixel_values is not None:
                pixel_values = pixel_values.type(self.model.visual.get_dtype())
                image_embeds = self.model.visual(
                    pixel_values, grid_thw=image_grid_thw
                ).to(inputs_embeds.device)
                image_mask = input_ids == self.model.config.image_token_id
                inputs_embeds[image_mask] = image_embeds
            if attention_mask is not None:
                attention_mask = attention_mask.to(inputs_embeds.device)

213
214
        outputs = self.model(
            input_ids=input_ids,
215
216
217
            position_ids=position_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
218
219
            output_hidden_states=True,
            return_dict=True,
220
            inputs_embeds=inputs_embeds,
221
            image_grid_thw=image_grid_thw,
222
223
        )

224
        embeddings = outputs.hidden_states[-1][:, -1]
225
226
227
        embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
        return embeddings.contiguous()

228
    def start_model_process(self, in_queue, out_queue, model_path, torch_dtype):
229
230
        # Apply model-specific patches
        monkey_patch_gemma2_sdpa()
231

232
        # Load the model and tokenizer
233
        if self.model_type == "generation":
234
235
236
237
            config = AutoConfig.from_pretrained(
                model_path, trust_remote_code=self.trust_remote_code
            )
            if self.trust_remote_code:
Kiv Chen's avatar
Kiv Chen committed
238
                model_cls = AutoModelForCausalLM
239
240
241
            else:
                model_arch = getattr(config, "architectures")[0]
                model_cls = getattr(transformers, model_arch)
Kiv Chen's avatar
Kiv Chen committed
242
            self.base_model = model_cls.from_pretrained(
243
244
                model_path,
                torch_dtype=torch_dtype,
245
                trust_remote_code=self.trust_remote_code,
246
247
                low_cpu_mem_usage=True,
            ).cuda()
248
        elif self.model_type == "embedding":
249
250
251
252
253
254
255
256
            if "gme-qwen2-vl" in model_path.lower():
                self.model = AutoModelForVision2Seq.from_pretrained(
                    model_path,
                    torch_dtype=torch_dtype,
                    trust_remote_code=False,
                    low_cpu_mem_usage=True,
                ).cuda()
                self.processor = AutoProcessor.from_pretrained(model_path)
uylnap's avatar
uylnap committed
257
258
259
            elif "clip" in model_path.lower():
                self.model = AutoModel.from_pretrained(model_path).cuda()
                self.processor = AutoProcessor.from_pretrained(model_path)
260
261
262
263
            else:
                self.model = _get_sentence_transformer_embedding_model(
                    model_path, torch_dtype
                )
woodx's avatar
woodx committed
264
        elif self.model_type == "reward" or self.model_type == "cross_encoder":
265
266
267
268
269
270
271
272
273
            from transformers import AutoModelForSequenceClassification

            self.model = AutoModelForSequenceClassification.from_pretrained(
                model_path,
                torch_dtype=torch_dtype,
                trust_remote_code=self.needs_trust_remote_code(model_path),
            ).cuda()
        else:
            raise Exception(f"Unrecognized model type {self.model_type}")
274
275
276
277
278
        self.tokenizer = get_tokenizer(
            model_path,
            torch_dtype=torch.dtype,
            trust_remote_code=self.trust_remote_code,
        )
279

280
        # Run forward
281
        while True:
282
283
284
            prompts, image_data, max_new_tokens, lora_paths, token_ids_logprob = (
                in_queue.get()
            )
285
286
287
            if lora_paths is not None:
                assert len(prompts) == len(lora_paths)

288
            if prompts is not None:
289
                if self.model_type == "generation":
290
                    out_queue.put(
291
                        self.forward_generation_raw(
292
                            base_model=self.base_model,
293
294
295
296
297
298
                            prompts=prompts,
                            max_new_tokens=max_new_tokens,
                            tokenizer=self.tokenizer,
                            lora_paths=lora_paths,
                            torch_dtype=torch_dtype,
                            output_str_only=self.output_str_only,
299
                            token_ids_logprob=token_ids_logprob,
300
                            patch_model_do_sample_false=self.patch_model_do_sample_false,
301
302
                        )
                    )
303
                elif self.model_type == "embedding":
304
                    assert not self.output_str_only
305
306
                    if "gme-qwen2-vl" in model_path.lower():
                        logits = self._get_gme_qwen2_vl_embeddings(prompts, image_data)
uylnap's avatar
uylnap committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
                    elif "clip" in model_path.lower():
                        if image_data is not None:
                            image = load_image(image_data)
                            inputs = self.processor(
                                images=image[0], return_tensors="pt"
                            )
                            logits = self.model.get_image_features(
                                pixel_values=inputs.data["pixel_values"].cuda(),
                            ).tolist()
                        else:
                            inputs = self.tokenizer(
                                prompts, padding=True, return_tensors="pt"
                            )
                            logits = self.model.get_text_features(
                                input_ids=inputs.data["input_ids"].cuda(),
                                attention_mask=inputs.data["attention_mask"].cuda(),
                            ).tolist()
324
325
                    else:
                        logits = self.model.encode(prompts).tolist()
326
                    out_queue.put(ModelOutput(embed_logits=logits))
woodx's avatar
woodx committed
327
328
329
330
331
332
333
334
335
                elif self.model_type == "cross_encoder":
                    inputs = self.tokenizer(
                        prompts, padding=True, return_tensors="pt"
                    ).to("cuda")
                    scores = self.model(**inputs).logits
                    scores = scores.squeeze().tolist()
                    if not isinstance(scores, list):
                        scores = [scores]
                    out_queue.put(ModelOutput(scores=scores))
336

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
                elif self.model_type == "reward":
                    scores = []
                    for conv in prompts:
                        conv_formatted = self.tokenizer.apply_chat_template(
                            conv, tokenize=False
                        )
                        conv_tokenized = self.tokenizer(
                            conv_formatted, return_tensors="pt"
                        ).to("cuda")
                        scores.append(
                            float(self.model(**conv_tokenized).logits[0][0].item())
                        )
                    out_queue.put(ModelOutput(scores=scores))
                else:
                    raise Exception(f"Unrecognized model type {self.model_type}")

353
354
    def forward(
        self,
woodx's avatar
woodx committed
355
356
357
        prompts: Union[
            List[List[str]], List[str], List[torch.Tensor]
        ] = DEFAULT_PROMPTS,
358
        image_data: Optional[List[str]] = None,
359
360
361
        max_new_tokens: int = 8,
        lora_paths: Optional[List[str]] = None,
        token_ids_logprob: Optional[int] = None,
362
    ):
363
364
365
        self.in_queue.put(
            (prompts, image_data, max_new_tokens, lora_paths, token_ids_logprob)
        )
366
367
368
369
370
371
372
373
374
375
376
377
378
        return self.out_queue.get()

    def terminate(self):
        self.model_proc.terminate()
        self.in_queue = self.out_queue = None

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.model_proc.terminate()
        self.in_queue = self.out_queue = None

379
380
381
    @staticmethod
    def forward_generation_raw(
        base_model,
382
383
        prompts: Union[List[str], List[torch.Tensor]],
        max_new_tokens: int,
384
385
        tokenizer,
        torch_dtype: torch.dtype,
386
387
388
        lora_paths: Optional[List[str]] = None,
        output_str_only: bool = False,
        token_ids_logprob: Optional[int] = None,
389
        patch_model_do_sample_false: Optional[bool] = False,
390
391
392
393
    ) -> ModelOutput:
        output_strs = []
        top_input_logprobs = []
        top_output_logprobs = []
394
395
396
397
398
399
        if token_ids_logprob is not None:
            token_ids_input_logprobs = []
            token_ids_output_logprobs = []
        else:
            token_ids_input_logprobs = token_ids_output_logprobs = None

400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
        for i, p in enumerate(prompts):
            if isinstance(p, str):
                input_ids = tokenizer.encode(p, return_tensors="pt").cuda()
            else:
                input_ids = torch.tensor([p], device="cuda")

            if lora_paths is not None and lora_paths[i] is not None:
                from peft import PeftModel

                model = PeftModel.from_pretrained(
                    base_model,
                    lora_paths[i],
                    torch_dtype=torch_dtype,
                    is_trainable=False,
                )
            else:
                model = base_model
417
418
            if patch_model_do_sample_false:
                model.generation_config.do_sample = False
419
            outputs = model.generate(
420
421
422
423
424
425
426
427
428
429
430
                input_ids=input_ids,
                generation_config=GenerationConfig(
                    do_sample=False,
                    temperature=None,
                    top_p=None,
                    max_new_tokens=max_new_tokens,
                    return_dict_in_generate=True,
                    output_scores=(not output_str_only),
                    # make sure to disable compile
                    disable_compile=True,
                ),
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
            )

            text = tokenizer.decode(
                outputs[0][0][len(input_ids[0]) :], skip_special_tokens=True
            )
            # Check if the text is empty or only whitespace.
            if not text.strip():
                raise ValueError(
                    "Received an empty text response. Please verify your input or model configuration."
                )
            output_strs.append(text)

            if not output_str_only:
                # outputs.scores: (num_token, 1, vocab_size)
                top_output_logprobs.append(
                    [
                        get_top_logprobs(logits[0], NUM_TOP_LOGPROBS).tolist()
                        for logits in outputs.scores
                    ]
                )
451
452
453
454
455
456
457
458
459
                if token_ids_logprob is not None:
                    token_ids_output_logprobs.append(
                        [
                            get_token_ids_logprobs(
                                logits[0], token_ids_logprob
                            ).tolist()
                            for logits in outputs.scores
                        ]
                    )
460
461
462
463
464
465
                del outputs

                input_logits = model.forward(input_ids).logits[0]
                top_input_logprobs.append(
                    get_top_logprobs(input_logits, NUM_TOP_LOGPROBS).tolist()
                )
466
467
468
469
                if token_ids_logprob is not None:
                    token_ids_input_logprobs.append(
                        get_token_ids_logprobs(input_logits, token_ids_logprob).tolist()
                    )
470
471
                del input_logits

472
473
474
            if lora_paths is not None and lora_paths[i] is not None:
                # Unload the LoRA adapter if it is used
                model.unload()
475

476
477
478
479
        return ModelOutput(
            output_strs=output_strs,
            top_input_logprobs=top_input_logprobs,
            top_output_logprobs=top_output_logprobs,
480
481
            token_ids_input_logprobs=token_ids_input_logprobs,
            token_ids_output_logprobs=token_ids_output_logprobs,
482
483
        )

484
485
486
487

class SRTRunner:
    def __init__(
        self,
488
489
490
491
        model_path: str,
        torch_dtype: torch.dtype,
        model_type: str,
        tp_size: int = 1,
Lianmin Zheng's avatar
Lianmin Zheng committed
492
        model_impl: str = "auto",
493
        port: int = DEFAULT_PORT_FOR_SRT_TEST_RUNNER,
494
        lora_paths: Optional[Union[List[str], List[dict[str, str]]]] = None,
495
        max_loras_per_batch: int = 4,
496
        attention_backend: Optional[str] = None,
497
498
        prefill_attention_backend: Optional[str] = None,
        decode_attention_backend: Optional[str] = None,
499
        lora_backend: str = "csgmv",
500
501
        disable_cuda_graph: bool = False,
        disable_radix_cache: bool = False,
502
503
504
        chunked_prefill_size: Optional[int] = None,
        dp_size: int = 1,
        tokenizer_path: Optional[str] = None,
505
        mem_fraction_static: float = 0.65,
506
        trust_remote_code: bool = False,
507
        speculative_draft_model_path: Optional[str] = None,
508
        speculative_draft_model_revision: Optional[str] = None,
509
510
511
512
513
        speculative_algorithm: Optional[str] = None,
        speculative_num_steps: Optional[int] = None,
        speculative_eagle_topk: Optional[int] = None,
        speculative_num_draft_tokens: Optional[int] = None,
        disable_overlap_schedule: bool = False,
514
        disable_custom_all_reduce: bool = False,
515
        torchao_config: Optional[str] = None,
516
        cuda_graph_max_bs: int = 4,
517
        sleep_on_idle=False,
518
519
        max_lora_rank: Optional[int] = None,
        lora_target_modules: Optional[List[str]] = None,
520
        enable_lora: Optional[bool] = None,
521
        max_loaded_loras: Optional[int] = None,
522
        lora_eviction_policy: str = "lru",
523
    ):
524
525
        self.model_type = model_type
        self.is_generation = model_type == "generation"
526
527
528
529
530
        enable_dp_attention = dp_size > 1

        spec_kwargs = {}
        if speculative_draft_model_path:
            spec_kwargs["speculative_draft_model_path"] = speculative_draft_model_path
531
532
533
            spec_kwargs["speculative_draft_model_revision"] = (
                speculative_draft_model_revision
            )
534
535
536
537
538
            spec_kwargs["speculative_algorithm"] = speculative_algorithm
            spec_kwargs["speculative_num_steps"] = speculative_num_steps
            spec_kwargs["speculative_eagle_topk"] = speculative_eagle_topk
            spec_kwargs["speculative_num_draft_tokens"] = speculative_num_draft_tokens

539
        self.engine = Engine(
540
541
542
            model_path=model_path,
            tp_size=tp_size,
            dtype=get_dtype_str(torch_dtype),
543
            port=port,
Lianmin Zheng's avatar
Lianmin Zheng committed
544
            model_impl=model_impl,
545
            torchao_config=torchao_config,
546
            mem_fraction_static=mem_fraction_static,
547
            trust_remote_code=trust_remote_code,
548
            is_embedding=not self.is_generation,
549
550
            lora_paths=lora_paths,
            max_loras_per_batch=max_loras_per_batch,
551
            lora_backend=lora_backend,
552
            attention_backend=attention_backend,
553
554
            prefill_attention_backend=prefill_attention_backend,
            decode_attention_backend=decode_attention_backend,
555
556
            disable_cuda_graph=disable_cuda_graph,
            disable_radix_cache=disable_radix_cache,
557
558
559
560
561
            chunked_prefill_size=chunked_prefill_size,
            enable_dp_attention=enable_dp_attention,
            dp_size=dp_size,
            tokenizer_path=tokenizer_path,
            disable_overlap_schedule=disable_overlap_schedule,
562
            cuda_graph_max_bs=cuda_graph_max_bs,
563
            disable_custom_all_reduce=disable_custom_all_reduce,
564
            sleep_on_idle=sleep_on_idle,
565
566
            max_lora_rank=max_lora_rank,
            lora_target_modules=lora_target_modules,
567
            enable_lora=enable_lora,
568
            max_loaded_loras=max_loaded_loras,
569
            lora_eviction_policy=lora_eviction_policy,
570
            **spec_kwargs,
571
        )
572
573
574
575
576
577
578

        if tokenizer_path is None:
            self.tokenizer = get_tokenizer(
                model_path, trust_remote_code=trust_remote_code
            )
        else:
            self.tokenizer = None
579

580
581
    def load_lora_adapter(self, lora_name: str, lora_path: str, pinned: bool = False):
        return self.engine.load_lora_adapter(lora_name, lora_path, pinned)
582
583
584
585

    def unload_lora_adapter(self, lora_name: str):
        return self.engine.unload_lora_adapter(lora_name)

586
587
    def forward(
        self,
woodx's avatar
woodx committed
588
589
590
        prompts: Union[
            List[List[str]], List[str], List[torch.Tensor]
        ] = DEFAULT_PROMPTS,
591
        image_data: Optional[List[str]] = None,
592
593
594
595
596
        max_new_tokens: int = 8,
        lora_paths: Optional[List[str]] = None,
        logprob_start_len: int = 0,
        top_k: Optional[int] = None,
        token_ids_logprob: Optional[List[int]] = None,
597
    ):
598
        if self.is_generation:
599
            return self.forward_generation_raw(
600
                engine=self.engine,
601
602
603
                prompts=prompts,
                max_new_tokens=max_new_tokens,
                lora_paths=lora_paths,
604
605
606
                logprob_start_len=logprob_start_len,
                top_k=top_k,
                token_ids_logprob=token_ids_logprob,
607
608
            )
        else:
609
            if self.model_type == "embedding":
610
611
612
613
614
                response = self.engine.encode(prompt=prompts, image_data=image_data)
                if isinstance(response, list):
                    logits = [x["embedding"] for x in response]
                else:
                    logits = [response["embedding"]]
615
                return ModelOutput(embed_logits=logits)
woodx's avatar
woodx committed
616
617
618
619
620
621
622
            # cross encoder model
            elif self.model_type == "cross_encoder":
                response = self.engine.rerank(prompts)
                if not isinstance(response, list):
                    response = [response]
                scores = [x["embedding"] for x in response]
                return ModelOutput(scores=scores)
623
            # reward model
624
            else:
625
                response = self.engine.encode(prompts)
626
627
                scores = [x["embedding"][0] for x in response]
                return ModelOutput(scores=scores)
628

629
630
631
    def batch_forward(
        self,
        prompts: Union[List[str], List[torch.Tensor]] = DEFAULT_PROMPTS,
632
        image_data: Optional[List[str]] = None,
633
634
635
636
637
638
639
640
        max_new_tokens=8,
        lora_paths=None,
    ):
        """
        testing serving by sending all prompts once
        only return output strings and no logprobs
        """
        if self.is_generation:
641
            return self.batch_forward_generation_raw(
642
                engine=self.engine,
643
644
645
                prompts=prompts,
                max_new_tokens=max_new_tokens,
                lora_paths=lora_paths,
646
647
            )
        else:
648
            response = self.engine.encode(prompts, image_data)
649
650
651
652
653
            if self.model_type == "embedding":
                logits = [x["embedding"] for x in response]
                return ModelOutput(embed_logits=logits)
            else:
                scores = [x["embedding"][0] for x in response]
654
                return ModelOutput(scores=scores)
655

656
657
658
659
    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
660
661
        self.engine.shutdown()
        del self.engine
662

663
664
    @staticmethod
    def forward_generation_raw(
665
        engine: Engine,
666
        prompts: Union[List[str], List[torch.Tensor]],
667
668
669
670
671
        max_new_tokens: int = 8,
        lora_paths: Optional[List[str]] = None,
        logprob_start_len: int = 0,
        top_k: Optional[int] = None,
        token_ids_logprob: Optional[List[int]] = None,
672
673
674
    ):
        # the return value contains logprobs from prefill
        output_strs = []
675
676
677
        output_ids = []
        # Input logprobs. Note that the last item in input logprob is equivalent to
        # the first item in the output logprob.
678
        top_input_logprobs = []
679
        input_token_logprobs_lst = []
680
        top_output_logprobs = []
681
682
683
684
685
686
687
688
        output_token_logprobs_lst = []
        top_output_logprob_idx = []
        if token_ids_logprob is not None:
            token_ids_input_logprobs = []
            token_ids_output_logprobs = []
        else:
            token_ids_input_logprobs = token_ids_output_logprobs = None

689
        sampling_params = {"max_new_tokens": max_new_tokens, "temperature": 0}
690
691
692
        if top_k:
            sampling_params["top_k"] = top_k

693
694
695
696
697
698
        for i, prompt in enumerate(prompts):
            response = engine.generate(
                prompt,
                lora_path=lora_paths[i] if lora_paths else None,
                sampling_params=sampling_params,
                return_logprob=True,
699
                logprob_start_len=logprob_start_len,
700
                top_logprobs_num=NUM_TOP_LOGPROBS,
701
                token_ids_logprob=token_ids_logprob,
702
703
704
705
706
707
708
709
710
            )
            text = response["text"]

            # Check if the text is empty or only whitespace.
            if not text.strip():
                raise ValueError(
                    "Received an empty text response. Please verify your input or model configuration."
                )
            output_strs.append(text)
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
            # output_ids.append(response["output_ids"])

            input_token_logprobs = response["meta_info"]["input_token_logprobs"]
            output_token_logprobs = response["meta_info"]["output_token_logprobs"]
            # print(i, input_token_logprobs)
            # print(i, output_token_logprobs)
            logprobs = response["meta_info"]["input_top_logprobs"]
            if token_ids_logprob is not None:
                input_token_ids_logprobs = response["meta_info"][
                    "input_token_ids_logprobs"
                ][1:]
            else:
                input_token_ids_logprobs = None

            num_prompt_tokens = response["meta_info"]["prompt_tokens"]
            assert len(input_token_logprobs) == num_prompt_tokens - logprob_start_len
            assert len(logprobs) == num_prompt_tokens - logprob_start_len

            # The first token logprob has no meaning in sglang.
            input_token_logprobs = input_token_logprobs[1:]
            logprobs = logprobs[1:]
            assert len(input_token_logprobs) == len(logprobs)

            input_token_logprobs_lst.append(
                input_token_logprobs + [output_token_logprobs[0]]
            )
            output_token_logprobs_lst.append(output_token_logprobs)
738
739

            top_input_logprobs.append(
740
                [[tup[0] for tup in x[:NUM_TOP_LOGPROBS]] for x in logprobs]
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
                + [
                    [
                        tup[0]
                        for tup in response["meta_info"]["output_top_logprobs"][0][
                            :NUM_TOP_LOGPROBS
                        ]
                    ]
                ]
            )
            top_output_logprobs.append(
                [
                    [tup[0] for tup in x[:NUM_TOP_LOGPROBS]]
                    for x in response["meta_info"]["output_top_logprobs"]
                ]
            )
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
            top_output_logprob_idx.append(
                [
                    [tup[1] for tup in x[:NUM_TOP_LOGPROBS]]
                    for x in response["meta_info"]["output_top_logprobs"]
                ]
            )
            if token_ids_logprob is not None:
                token_ids_input_logprobs.append(
                    [[tup[0] for tup in x] for x in input_token_ids_logprobs]
                    + [
                        [
                            tup[0]
                            for tup in response["meta_info"][
                                "output_token_ids_logprobs"
                            ][0]
                        ]
                    ]
                )
                token_ids_output_logprobs.append(
                    [
                        [tup[0] for tup in x]
                        for x in response["meta_info"]["output_token_ids_logprobs"]
                    ]
                )
780
781
782

        return ModelOutput(
            output_strs=output_strs,
783
            output_ids=output_ids,
784
785
            top_input_logprobs=top_input_logprobs,
            top_output_logprobs=top_output_logprobs,
786
787
788
789
790
            input_token_logprobs_lst=input_token_logprobs_lst,
            output_token_logprobs_lst=output_token_logprobs_lst,
            top_output_logprob_idx=top_output_logprob_idx,
            token_ids_input_logprobs=token_ids_input_logprobs,
            token_ids_output_logprobs=token_ids_output_logprobs,
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
        )

    @staticmethod
    def batch_forward_generation_raw(
        prompts: Union[List[str], List[torch.Tensor]],
        max_new_tokens,
        lora_paths,
        engine,
    ):
        # the return value contains logprobs from prefill
        output_strs = []
        sampling_params = {"max_new_tokens": max_new_tokens, "temperature": 0}
        response = engine.generate(
            prompts,
            lora_path=lora_paths if lora_paths else None,
            sampling_params=sampling_params,
        )
        output_strs = [r["text"] for r in response]

        return ModelOutput(
            output_strs=output_strs,
        )

814
815
816
817
818
819
820
821
822
823
824
825
826
827

def monkey_patch_gemma2_sdpa():
    """
    Use sdpa by default to fix the OOM issue.
    Revert this commit:
    https://github.com/huggingface/transformers/commit/975b988bfe6e7ebb47390cd9a1556c6888804883#diff-5f76eac6f18f4b491521314c318a9692318feb4d19228e9576cce7bde4240834R660
    """
    from transformers.models.gemma2.modeling_gemma2 import Gemma2PreTrainedModel

    def _check_and_enable_sdpa(config, hard_check_only: bool = False):
        config._attn_implementation = "sdpa"
        return config

    setattr(Gemma2PreTrainedModel, "_check_and_enable_sdpa", _check_and_enable_sdpa)
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876


def check_close_model_outputs(
    hf_outputs: ModelOutput,
    srt_outputs: ModelOutput,
    prefill_tolerance: float,
    decode_tolerance: float,
    rouge_l_tolerance: float,
    debug_text: str = "",
    check_logprobs: bool = True,
):
    # Compare output strings
    print(f"{hf_outputs.output_strs=}")
    print(f"{srt_outputs.output_strs=}")
    rouge_l_scores = calculate_rouge_l(hf_outputs.output_strs, srt_outputs.output_strs)
    print(f"{rouge_l_scores=}")
    assert all(
        score >= rouge_l_tolerance for score in rouge_l_scores
    ), f"Not all ROUGE-L scores are greater than rouge_l_tolerance={rouge_l_tolerance}"

    if check_logprobs:
        for i in range(len(hf_outputs.output_strs)):
            # Compare input logprobs
            hf_logprobs = torch.Tensor(hf_outputs.top_input_logprobs[i])
            srt_logprobs = torch.Tensor(srt_outputs.top_input_logprobs[i])
            input_len = hf_logprobs.shape[0]
            print(
                "prefill logprobs max_diff", torch.max(abs(hf_logprobs - srt_logprobs))
            )
            if input_len <= 100:
                assert torch.all(abs(hf_logprobs - srt_logprobs) < prefill_tolerance), (
                    f"prefill logprobs are not all close with {debug_text} "
                    f"prefill_tolerance={prefill_tolerance}."
                    f"{hf_logprobs=}, {srt_logprobs=}"
                )

            # Compare output logprobs
            hf_logprobs = torch.Tensor(hf_outputs.top_output_logprobs[i])
            srt_logprobs = torch.Tensor(srt_outputs.top_output_logprobs[i])

            print(
                "decode logprobs max_diff", torch.max(abs(hf_logprobs - srt_logprobs))
            )
            if input_len <= 100:
                assert torch.all(abs(hf_logprobs - srt_logprobs) < decode_tolerance), (
                    f"decode logprobs are not all close with {debug_text} "
                    f"decode_tolerance={decode_tolerance}."
                    f"{hf_logprobs=}, {srt_logprobs=}"
                )