runners.py 32.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14

15
import multiprocessing as mp
16
import os
17
from dataclasses import dataclass
18
from typing import List, Optional, Tuple, Union
19
20
21

import torch
import torch.nn.functional as F
Kiv Chen's avatar
Kiv Chen committed
22
import transformers
uylnap's avatar
uylnap committed
23
from transformers import (
Kiv Chen's avatar
Kiv Chen committed
24
    AutoConfig,
uylnap's avatar
uylnap committed
25
26
27
28
    AutoModel,
    AutoModelForCausalLM,
    AutoModelForVision2Seq,
    AutoProcessor,
29
    GenerationConfig,
uylnap's avatar
uylnap committed
30
)
31

Lianmin Zheng's avatar
Lianmin Zheng committed
32
from sglang.srt.entrypoints.engine import Engine
33
from sglang.srt.hf_transformers_utils import get_tokenizer
uylnap's avatar
uylnap committed
34
from sglang.srt.utils import load_image
35
from sglang.test.test_utils import DEFAULT_PORT_FOR_SRT_TEST_RUNNER, calculate_rouge_l
36
37

DEFAULT_PROMPTS = [
38
    "Apple is red. Banana is Yellow. " * 800 + "Apple is",
39
    "The capital of the United Kingdom is",
40
    "Today is a sunny day and I like",
41
    "AI is a field of computer science focused on",
42
43
    # the output of gemma-2-2b from SRT is unstable on the commented prompt
    # "The capital of France is",
44
]
woodx's avatar
woodx committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
TEST_RERANK_QUERY_DOCS = [
    {
        "query": "How many people live in Berlin?",
        "documents": [
            "Berlin is well known for its museums.",
        ],
    },
    {
        "query": "How many people live in Berlin?",
        "documents": [
            "Berlin had a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.",
            "Berlin is well known for its museums.",
        ],
    },
]
60

61
dirpath = os.path.dirname(__file__)
62
with open(os.path.join(dirpath, "long_prompt.txt"), "r") as f:
63
64
65
    long_prompt = f.read()
DEFAULT_PROMPTS.append(long_prompt)

66
67
68
69
70
71
NUM_TOP_LOGPROBS = 5


def get_dtype_str(torch_dtype):
    if torch_dtype is torch.float16:
        return "float16"
72
73
    if torch_dtype is torch.float32:
        return "float32"
74
75
76
77
    else:
        raise NotImplementedError()


78
79
def get_top_logprobs(logits, k):
    logprobs = F.log_softmax(logits, dim=-1, dtype=torch.float32)
80
    del logits
81
82
83
84
    logprobs, top_indices = torch.topk(logprobs, k=k, dim=-1)
    return logprobs


85
86
87
88
89
90
91
def get_token_ids_logprobs(logits, token_ids):
    logprobs = F.log_softmax(logits, dim=-1, dtype=torch.float32)
    del logits
    logprobs = logprobs[..., token_ids]
    return logprobs


92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
def _get_sentence_transformer_embedding_model(model_path, torch_dtype):
    from sentence_transformers import SentenceTransformer
    from sentence_transformers.util import is_sentence_transformer_model

    if is_sentence_transformer_model(model_path):
        model = SentenceTransformer(
            model_path,
            model_kwargs={"torch_dtype": torch_dtype},
        )
    else:  # if no pre-trained sentence-transformers model
        from sentence_transformers import models

        word_embedding_model = models.Transformer(model_path).to(dtype=torch_dtype)
        pooling_model = models.Pooling(
            word_embedding_model.get_word_embedding_dimension(),
            pooling_mode="lasttoken",
        )
        model = SentenceTransformer(modules=[word_embedding_model, pooling_model])

    return model.cuda()


114
115
@dataclass
class ModelOutput:
116
117
118
119
    output_strs: List[str] = None
    output_ids: List[int] = None
    top_input_logprobs: List[torch.Tensor] = None
    top_output_logprobs: List[torch.Tensor] = None
120
    top_output_logprob_idx: List[List[int]] = None
121
    embed_logits: List[torch.Tensor] = None
122
    scores: List[float] = None
123
124
125
126
    input_token_logprobs_lst: List[List[Tuple[float, int, None]]] = None
    output_token_logprobs_lst: List[List[Tuple[float, int, None]]] = None
    token_ids_input_logprobs: List[torch.Tensor] = None
    token_ids_output_logprobs: List[torch.Tensor] = None
127
128
129
130
131


class HFRunner:
    def __init__(
        self,
132
133
134
135
        model_path: str,
        torch_dtype: torch.dtype,
        model_type: str = "generation",
        output_str_only: bool = False,
136
        trust_remote_code: bool = False,
137
        patch_model_do_sample_false: bool = False,
138
    ):
139
        self.model_type = model_type
140
        self.output_str_only = output_str_only
141
        self.trust_remote_code = trust_remote_code
142
        self.patch_model_do_sample_false = patch_model_do_sample_false
143

144
145
146
147
        self.in_queue = mp.Queue()
        self.out_queue = mp.Queue()

        self.model_proc = mp.Process(
148
149
150
151
152
153
154
155
156
157
            target=self.start_model_process,
            args=(
                self.in_queue,
                self.out_queue,
                model_path,
                torch_dtype,
            ),
        )
        self.model_proc.start()

158
159
160
161
162
163
164
165
    def needs_trust_remote_code(self, model_path):
        models_needs_trust_remote = [
            "LxzGordon/URM-LLaMa-3.1-8B",
        ]
        if model_path in models_needs_trust_remote:
            return True
        return False

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    # copy from https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-2B-Instruct/blob/main/gme_inference.py

    def _get_gme_qwen2_vl_embeddings(
        self, prompts, image_data: Optional[List[str]] = None
    ):

        images = None
        if image_data is not None:
            images = [load_image(image)[0] for image in image_data]

        inputs = self.processor(
            text=prompts,
            images=images,
            padding=True,
            truncation=True,
            max_length=1800,
            return_tensors="pt",
        )
        inputs = {k: v.to(self.model.device) for k, v in inputs.items()}
        with torch.no_grad():
            embeddings = self._forward_gme_qwen2_vl(**inputs)
        return embeddings.tolist()

    def _forward_gme_qwen2_vl(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        pixel_values: Optional[torch.Tensor] = None,
        image_grid_thw: Optional[torch.LongTensor] = None,
        pooling_mask: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> torch.Tensor:
        if inputs_embeds is None:
            inputs_embeds = self.model.model.embed_tokens(input_ids)
            if pixel_values is not None:
                pixel_values = pixel_values.type(self.model.visual.get_dtype())
                image_embeds = self.model.visual(
                    pixel_values, grid_thw=image_grid_thw
                ).to(inputs_embeds.device)
                image_mask = input_ids == self.model.config.image_token_id
                inputs_embeds[image_mask] = image_embeds
            if attention_mask is not None:
                attention_mask = attention_mask.to(inputs_embeds.device)

213
214
        outputs = self.model(
            input_ids=input_ids,
215
216
217
            position_ids=position_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
218
219
            output_hidden_states=True,
            return_dict=True,
220
            inputs_embeds=inputs_embeds,
221
            image_grid_thw=image_grid_thw,
222
223
        )

224
        embeddings = outputs.hidden_states[-1][:, -1]
225
226
227
        embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
        return embeddings.contiguous()

228
    def start_model_process(self, in_queue, out_queue, model_path, torch_dtype):
229
230
        # Apply model-specific patches
        monkey_patch_gemma2_sdpa()
231

232
        # Load the model and tokenizer
233
        if self.model_type == "generation":
Kiv Chen's avatar
Kiv Chen committed
234
235
236
237
238
239
            config = AutoConfig.from_pretrained(model_path)
            if model_archs := getattr(config, "architectures"):
                model_cls = getattr(transformers, model_archs[0])
            else:
                model_cls = AutoModelForCausalLM
            self.base_model = model_cls.from_pretrained(
240
241
                model_path,
                torch_dtype=torch_dtype,
242
                trust_remote_code=self.trust_remote_code,
243
244
                low_cpu_mem_usage=True,
            ).cuda()
245
        elif self.model_type == "embedding":
246
247
248
249
250
251
252
253
            if "gme-qwen2-vl" in model_path.lower():
                self.model = AutoModelForVision2Seq.from_pretrained(
                    model_path,
                    torch_dtype=torch_dtype,
                    trust_remote_code=False,
                    low_cpu_mem_usage=True,
                ).cuda()
                self.processor = AutoProcessor.from_pretrained(model_path)
uylnap's avatar
uylnap committed
254
255
256
            elif "clip" in model_path.lower():
                self.model = AutoModel.from_pretrained(model_path).cuda()
                self.processor = AutoProcessor.from_pretrained(model_path)
257
258
259
260
            else:
                self.model = _get_sentence_transformer_embedding_model(
                    model_path, torch_dtype
                )
woodx's avatar
woodx committed
261
        elif self.model_type == "reward" or self.model_type == "cross_encoder":
262
263
264
265
266
267
268
269
270
            from transformers import AutoModelForSequenceClassification

            self.model = AutoModelForSequenceClassification.from_pretrained(
                model_path,
                torch_dtype=torch_dtype,
                trust_remote_code=self.needs_trust_remote_code(model_path),
            ).cuda()
        else:
            raise Exception(f"Unrecognized model type {self.model_type}")
271
272
273
274
275
        self.tokenizer = get_tokenizer(
            model_path,
            torch_dtype=torch.dtype,
            trust_remote_code=self.trust_remote_code,
        )
276

277
        # Run forward
278
        while True:
279
280
281
            prompts, image_data, max_new_tokens, lora_paths, token_ids_logprob = (
                in_queue.get()
            )
282
283
284
            if lora_paths is not None:
                assert len(prompts) == len(lora_paths)

285
            if prompts is not None:
286
                if self.model_type == "generation":
287
                    out_queue.put(
288
                        self.forward_generation_raw(
289
                            base_model=self.base_model,
290
291
292
293
294
295
                            prompts=prompts,
                            max_new_tokens=max_new_tokens,
                            tokenizer=self.tokenizer,
                            lora_paths=lora_paths,
                            torch_dtype=torch_dtype,
                            output_str_only=self.output_str_only,
296
                            token_ids_logprob=token_ids_logprob,
297
                            patch_model_do_sample_false=self.patch_model_do_sample_false,
298
299
                        )
                    )
300
                elif self.model_type == "embedding":
301
                    assert not self.output_str_only
302
303
                    if "gme-qwen2-vl" in model_path.lower():
                        logits = self._get_gme_qwen2_vl_embeddings(prompts, image_data)
uylnap's avatar
uylnap committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
                    elif "clip" in model_path.lower():
                        if image_data is not None:
                            image = load_image(image_data)
                            inputs = self.processor(
                                images=image[0], return_tensors="pt"
                            )
                            logits = self.model.get_image_features(
                                pixel_values=inputs.data["pixel_values"].cuda(),
                            ).tolist()
                        else:
                            inputs = self.tokenizer(
                                prompts, padding=True, return_tensors="pt"
                            )
                            logits = self.model.get_text_features(
                                input_ids=inputs.data["input_ids"].cuda(),
                                attention_mask=inputs.data["attention_mask"].cuda(),
                            ).tolist()
321
322
                    else:
                        logits = self.model.encode(prompts).tolist()
323
                    out_queue.put(ModelOutput(embed_logits=logits))
woodx's avatar
woodx committed
324
325
326
327
328
329
330
331
332
                elif self.model_type == "cross_encoder":
                    inputs = self.tokenizer(
                        prompts, padding=True, return_tensors="pt"
                    ).to("cuda")
                    scores = self.model(**inputs).logits
                    scores = scores.squeeze().tolist()
                    if not isinstance(scores, list):
                        scores = [scores]
                    out_queue.put(ModelOutput(scores=scores))
333

334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
                elif self.model_type == "reward":
                    scores = []
                    for conv in prompts:
                        conv_formatted = self.tokenizer.apply_chat_template(
                            conv, tokenize=False
                        )
                        conv_tokenized = self.tokenizer(
                            conv_formatted, return_tensors="pt"
                        ).to("cuda")
                        scores.append(
                            float(self.model(**conv_tokenized).logits[0][0].item())
                        )
                    out_queue.put(ModelOutput(scores=scores))
                else:
                    raise Exception(f"Unrecognized model type {self.model_type}")

350
351
    def forward(
        self,
woodx's avatar
woodx committed
352
353
354
        prompts: Union[
            List[List[str]], List[str], List[torch.Tensor]
        ] = DEFAULT_PROMPTS,
355
        image_data: Optional[List[str]] = None,
356
357
358
        max_new_tokens: int = 8,
        lora_paths: Optional[List[str]] = None,
        token_ids_logprob: Optional[int] = None,
359
    ):
360
361
362
        self.in_queue.put(
            (prompts, image_data, max_new_tokens, lora_paths, token_ids_logprob)
        )
363
364
365
366
367
368
369
370
371
372
373
374
375
        return self.out_queue.get()

    def terminate(self):
        self.model_proc.terminate()
        self.in_queue = self.out_queue = None

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.model_proc.terminate()
        self.in_queue = self.out_queue = None

376
377
378
    @staticmethod
    def forward_generation_raw(
        base_model,
379
380
        prompts: Union[List[str], List[torch.Tensor]],
        max_new_tokens: int,
381
382
        tokenizer,
        torch_dtype: torch.dtype,
383
384
385
        lora_paths: Optional[List[str]] = None,
        output_str_only: bool = False,
        token_ids_logprob: Optional[int] = None,
386
        patch_model_do_sample_false: Optional[bool] = False,
387
388
389
390
    ) -> ModelOutput:
        output_strs = []
        top_input_logprobs = []
        top_output_logprobs = []
391
392
393
394
395
396
        if token_ids_logprob is not None:
            token_ids_input_logprobs = []
            token_ids_output_logprobs = []
        else:
            token_ids_input_logprobs = token_ids_output_logprobs = None

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
        for i, p in enumerate(prompts):
            if isinstance(p, str):
                input_ids = tokenizer.encode(p, return_tensors="pt").cuda()
            else:
                input_ids = torch.tensor([p], device="cuda")

            if lora_paths is not None and lora_paths[i] is not None:
                from peft import PeftModel

                model = PeftModel.from_pretrained(
                    base_model,
                    lora_paths[i],
                    torch_dtype=torch_dtype,
                    is_trainable=False,
                )
            else:
                model = base_model
414
415
            if patch_model_do_sample_false:
                model.generation_config.do_sample = False
416
            outputs = model.generate(
417
418
419
420
421
422
423
424
425
426
427
                input_ids=input_ids,
                generation_config=GenerationConfig(
                    do_sample=False,
                    temperature=None,
                    top_p=None,
                    max_new_tokens=max_new_tokens,
                    return_dict_in_generate=True,
                    output_scores=(not output_str_only),
                    # make sure to disable compile
                    disable_compile=True,
                ),
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
            )

            text = tokenizer.decode(
                outputs[0][0][len(input_ids[0]) :], skip_special_tokens=True
            )
            # Check if the text is empty or only whitespace.
            if not text.strip():
                raise ValueError(
                    "Received an empty text response. Please verify your input or model configuration."
                )
            output_strs.append(text)

            if not output_str_only:
                # outputs.scores: (num_token, 1, vocab_size)
                top_output_logprobs.append(
                    [
                        get_top_logprobs(logits[0], NUM_TOP_LOGPROBS).tolist()
                        for logits in outputs.scores
                    ]
                )
448
449
450
451
452
453
454
455
456
                if token_ids_logprob is not None:
                    token_ids_output_logprobs.append(
                        [
                            get_token_ids_logprobs(
                                logits[0], token_ids_logprob
                            ).tolist()
                            for logits in outputs.scores
                        ]
                    )
457
458
459
460
461
462
                del outputs

                input_logits = model.forward(input_ids).logits[0]
                top_input_logprobs.append(
                    get_top_logprobs(input_logits, NUM_TOP_LOGPROBS).tolist()
                )
463
464
465
466
                if token_ids_logprob is not None:
                    token_ids_input_logprobs.append(
                        get_token_ids_logprobs(input_logits, token_ids_logprob).tolist()
                    )
467
468
                del input_logits

469
470
471
            if lora_paths is not None and lora_paths[i] is not None:
                # Unload the LoRA adapter if it is used
                model.unload()
472

473
474
475
476
        return ModelOutput(
            output_strs=output_strs,
            top_input_logprobs=top_input_logprobs,
            top_output_logprobs=top_output_logprobs,
477
478
            token_ids_input_logprobs=token_ids_input_logprobs,
            token_ids_output_logprobs=token_ids_output_logprobs,
479
480
        )

481
482
483
484

class SRTRunner:
    def __init__(
        self,
485
486
487
488
        model_path: str,
        torch_dtype: torch.dtype,
        model_type: str,
        tp_size: int = 1,
Lianmin Zheng's avatar
Lianmin Zheng committed
489
        model_impl: str = "auto",
490
491
492
        port: int = DEFAULT_PORT_FOR_SRT_TEST_RUNNER,
        lora_paths: List[str] = None,
        max_loras_per_batch: int = 4,
493
        attention_backend: Optional[str] = None,
494
495
        prefill_attention_backend: Optional[str] = None,
        decode_attention_backend: Optional[str] = None,
496
        lora_backend: str = "triton",
497
498
        disable_cuda_graph: bool = False,
        disable_radix_cache: bool = False,
499
500
501
        chunked_prefill_size: Optional[int] = None,
        dp_size: int = 1,
        tokenizer_path: Optional[str] = None,
502
        mem_fraction_static: float = 0.65,
503
        trust_remote_code: bool = False,
504
505
506
507
508
509
        speculative_draft_model_path: Optional[str] = None,
        speculative_algorithm: Optional[str] = None,
        speculative_num_steps: Optional[int] = None,
        speculative_eagle_topk: Optional[int] = None,
        speculative_num_draft_tokens: Optional[int] = None,
        disable_overlap_schedule: bool = False,
510
        disable_custom_all_reduce: bool = False,
511
        torchao_config: Optional[str] = None,
512
        cuda_graph_max_bs: int = 4,
513
        sleep_on_idle=False,
514
515
        max_lora_rank: Optional[int] = None,
        lora_target_modules: Optional[List[str]] = None,
516
        enable_lora: Optional[bool] = None,
517
        max_loaded_loras: Optional[int] = None,
518
    ):
519
520
        self.model_type = model_type
        self.is_generation = model_type == "generation"
521
522
523
524
525
526
527
528
529
530
        enable_dp_attention = dp_size > 1

        spec_kwargs = {}
        if speculative_draft_model_path:
            spec_kwargs["speculative_draft_model_path"] = speculative_draft_model_path
            spec_kwargs["speculative_algorithm"] = speculative_algorithm
            spec_kwargs["speculative_num_steps"] = speculative_num_steps
            spec_kwargs["speculative_eagle_topk"] = speculative_eagle_topk
            spec_kwargs["speculative_num_draft_tokens"] = speculative_num_draft_tokens

531
        self.engine = Engine(
532
533
534
            model_path=model_path,
            tp_size=tp_size,
            dtype=get_dtype_str(torch_dtype),
535
            port=port,
Lianmin Zheng's avatar
Lianmin Zheng committed
536
            model_impl=model_impl,
537
            torchao_config=torchao_config,
538
            mem_fraction_static=mem_fraction_static,
539
            trust_remote_code=trust_remote_code,
540
            is_embedding=not self.is_generation,
541
542
            lora_paths=lora_paths,
            max_loras_per_batch=max_loras_per_batch,
543
            lora_backend=lora_backend,
544
            attention_backend=attention_backend,
545
546
            prefill_attention_backend=prefill_attention_backend,
            decode_attention_backend=decode_attention_backend,
547
548
            disable_cuda_graph=disable_cuda_graph,
            disable_radix_cache=disable_radix_cache,
549
550
551
552
553
            chunked_prefill_size=chunked_prefill_size,
            enable_dp_attention=enable_dp_attention,
            dp_size=dp_size,
            tokenizer_path=tokenizer_path,
            disable_overlap_schedule=disable_overlap_schedule,
554
            cuda_graph_max_bs=cuda_graph_max_bs,
555
            disable_custom_all_reduce=disable_custom_all_reduce,
556
            sleep_on_idle=sleep_on_idle,
557
558
            max_lora_rank=max_lora_rank,
            lora_target_modules=lora_target_modules,
559
            enable_lora=enable_lora,
560
            max_loaded_loras=max_loaded_loras,
561
            **spec_kwargs,
562
        )
563
564
565
566
567
568
569

        if tokenizer_path is None:
            self.tokenizer = get_tokenizer(
                model_path, trust_remote_code=trust_remote_code
            )
        else:
            self.tokenizer = None
570

571
572
573
574
575
576
    def load_lora_adapter(self, lora_name: str, lora_path: str):
        return self.engine.load_lora_adapter(lora_name, lora_path)

    def unload_lora_adapter(self, lora_name: str):
        return self.engine.unload_lora_adapter(lora_name)

577
578
    def forward(
        self,
woodx's avatar
woodx committed
579
580
581
        prompts: Union[
            List[List[str]], List[str], List[torch.Tensor]
        ] = DEFAULT_PROMPTS,
582
        image_data: Optional[List[str]] = None,
583
584
585
586
587
        max_new_tokens: int = 8,
        lora_paths: Optional[List[str]] = None,
        logprob_start_len: int = 0,
        top_k: Optional[int] = None,
        token_ids_logprob: Optional[List[int]] = None,
588
    ):
589
        if self.is_generation:
590
            return self.forward_generation_raw(
591
                engine=self.engine,
592
593
594
                prompts=prompts,
                max_new_tokens=max_new_tokens,
                lora_paths=lora_paths,
595
596
597
                logprob_start_len=logprob_start_len,
                top_k=top_k,
                token_ids_logprob=token_ids_logprob,
598
599
            )
        else:
600
            if self.model_type == "embedding":
601
602
603
604
605
                response = self.engine.encode(prompt=prompts, image_data=image_data)
                if isinstance(response, list):
                    logits = [x["embedding"] for x in response]
                else:
                    logits = [response["embedding"]]
606
                return ModelOutput(embed_logits=logits)
woodx's avatar
woodx committed
607
608
609
610
611
612
613
            # cross encoder model
            elif self.model_type == "cross_encoder":
                response = self.engine.rerank(prompts)
                if not isinstance(response, list):
                    response = [response]
                scores = [x["embedding"] for x in response]
                return ModelOutput(scores=scores)
614
            # reward model
615
            else:
616
                response = self.engine.encode(prompts)
617
618
                scores = [x["embedding"][0] for x in response]
                return ModelOutput(scores=scores)
619

620
621
622
    def batch_forward(
        self,
        prompts: Union[List[str], List[torch.Tensor]] = DEFAULT_PROMPTS,
623
        image_data: Optional[List[str]] = None,
624
625
626
627
628
629
630
631
        max_new_tokens=8,
        lora_paths=None,
    ):
        """
        testing serving by sending all prompts once
        only return output strings and no logprobs
        """
        if self.is_generation:
632
            return self.batch_forward_generation_raw(
633
                engine=self.engine,
634
635
636
                prompts=prompts,
                max_new_tokens=max_new_tokens,
                lora_paths=lora_paths,
637
638
            )
        else:
639
            response = self.engine.encode(prompts, image_data)
640
641
642
643
644
            if self.model_type == "embedding":
                logits = [x["embedding"] for x in response]
                return ModelOutput(embed_logits=logits)
            else:
                scores = [x["embedding"][0] for x in response]
645
                return ModelOutput(scores=scores)
646

647
648
649
650
    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
651
652
        self.engine.shutdown()
        del self.engine
653

654
655
    @staticmethod
    def forward_generation_raw(
656
        engine: Engine,
657
        prompts: Union[List[str], List[torch.Tensor]],
658
659
660
661
662
        max_new_tokens: int = 8,
        lora_paths: Optional[List[str]] = None,
        logprob_start_len: int = 0,
        top_k: Optional[int] = None,
        token_ids_logprob: Optional[List[int]] = None,
663
664
665
    ):
        # the return value contains logprobs from prefill
        output_strs = []
666
667
668
        output_ids = []
        # Input logprobs. Note that the last item in input logprob is equivalent to
        # the first item in the output logprob.
669
        top_input_logprobs = []
670
        input_token_logprobs_lst = []
671
        top_output_logprobs = []
672
673
674
675
676
677
678
679
        output_token_logprobs_lst = []
        top_output_logprob_idx = []
        if token_ids_logprob is not None:
            token_ids_input_logprobs = []
            token_ids_output_logprobs = []
        else:
            token_ids_input_logprobs = token_ids_output_logprobs = None

680
        sampling_params = {"max_new_tokens": max_new_tokens, "temperature": 0}
681
682
683
        if top_k:
            sampling_params["top_k"] = top_k

684
685
686
687
688
689
        for i, prompt in enumerate(prompts):
            response = engine.generate(
                prompt,
                lora_path=lora_paths[i] if lora_paths else None,
                sampling_params=sampling_params,
                return_logprob=True,
690
                logprob_start_len=logprob_start_len,
691
                top_logprobs_num=NUM_TOP_LOGPROBS,
692
                token_ids_logprob=token_ids_logprob,
693
694
695
696
697
698
699
700
701
            )
            text = response["text"]

            # Check if the text is empty or only whitespace.
            if not text.strip():
                raise ValueError(
                    "Received an empty text response. Please verify your input or model configuration."
                )
            output_strs.append(text)
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
            # output_ids.append(response["output_ids"])

            input_token_logprobs = response["meta_info"]["input_token_logprobs"]
            output_token_logprobs = response["meta_info"]["output_token_logprobs"]
            # print(i, input_token_logprobs)
            # print(i, output_token_logprobs)
            logprobs = response["meta_info"]["input_top_logprobs"]
            if token_ids_logprob is not None:
                input_token_ids_logprobs = response["meta_info"][
                    "input_token_ids_logprobs"
                ][1:]
            else:
                input_token_ids_logprobs = None

            num_prompt_tokens = response["meta_info"]["prompt_tokens"]
            assert len(input_token_logprobs) == num_prompt_tokens - logprob_start_len
            assert len(logprobs) == num_prompt_tokens - logprob_start_len

            # The first token logprob has no meaning in sglang.
            input_token_logprobs = input_token_logprobs[1:]
            logprobs = logprobs[1:]
            assert len(input_token_logprobs) == len(logprobs)

            input_token_logprobs_lst.append(
                input_token_logprobs + [output_token_logprobs[0]]
            )
            output_token_logprobs_lst.append(output_token_logprobs)
729
730

            top_input_logprobs.append(
731
                [[tup[0] for tup in x[:NUM_TOP_LOGPROBS]] for x in logprobs]
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
                + [
                    [
                        tup[0]
                        for tup in response["meta_info"]["output_top_logprobs"][0][
                            :NUM_TOP_LOGPROBS
                        ]
                    ]
                ]
            )
            top_output_logprobs.append(
                [
                    [tup[0] for tup in x[:NUM_TOP_LOGPROBS]]
                    for x in response["meta_info"]["output_top_logprobs"]
                ]
            )
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
            top_output_logprob_idx.append(
                [
                    [tup[1] for tup in x[:NUM_TOP_LOGPROBS]]
                    for x in response["meta_info"]["output_top_logprobs"]
                ]
            )
            if token_ids_logprob is not None:
                token_ids_input_logprobs.append(
                    [[tup[0] for tup in x] for x in input_token_ids_logprobs]
                    + [
                        [
                            tup[0]
                            for tup in response["meta_info"][
                                "output_token_ids_logprobs"
                            ][0]
                        ]
                    ]
                )
                token_ids_output_logprobs.append(
                    [
                        [tup[0] for tup in x]
                        for x in response["meta_info"]["output_token_ids_logprobs"]
                    ]
                )
771
772
773

        return ModelOutput(
            output_strs=output_strs,
774
            output_ids=output_ids,
775
776
            top_input_logprobs=top_input_logprobs,
            top_output_logprobs=top_output_logprobs,
777
778
779
780
781
            input_token_logprobs_lst=input_token_logprobs_lst,
            output_token_logprobs_lst=output_token_logprobs_lst,
            top_output_logprob_idx=top_output_logprob_idx,
            token_ids_input_logprobs=token_ids_input_logprobs,
            token_ids_output_logprobs=token_ids_output_logprobs,
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
        )

    @staticmethod
    def batch_forward_generation_raw(
        prompts: Union[List[str], List[torch.Tensor]],
        max_new_tokens,
        lora_paths,
        engine,
    ):
        # the return value contains logprobs from prefill
        output_strs = []
        sampling_params = {"max_new_tokens": max_new_tokens, "temperature": 0}
        response = engine.generate(
            prompts,
            lora_path=lora_paths if lora_paths else None,
            sampling_params=sampling_params,
        )
        output_strs = [r["text"] for r in response]

        return ModelOutput(
            output_strs=output_strs,
        )

805
806
807
808
809
810
811
812
813
814
815
816
817
818

def monkey_patch_gemma2_sdpa():
    """
    Use sdpa by default to fix the OOM issue.
    Revert this commit:
    https://github.com/huggingface/transformers/commit/975b988bfe6e7ebb47390cd9a1556c6888804883#diff-5f76eac6f18f4b491521314c318a9692318feb4d19228e9576cce7bde4240834R660
    """
    from transformers.models.gemma2.modeling_gemma2 import Gemma2PreTrainedModel

    def _check_and_enable_sdpa(config, hard_check_only: bool = False):
        config._attn_implementation = "sdpa"
        return config

    setattr(Gemma2PreTrainedModel, "_check_and_enable_sdpa", _check_and_enable_sdpa)
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867


def check_close_model_outputs(
    hf_outputs: ModelOutput,
    srt_outputs: ModelOutput,
    prefill_tolerance: float,
    decode_tolerance: float,
    rouge_l_tolerance: float,
    debug_text: str = "",
    check_logprobs: bool = True,
):
    # Compare output strings
    print(f"{hf_outputs.output_strs=}")
    print(f"{srt_outputs.output_strs=}")
    rouge_l_scores = calculate_rouge_l(hf_outputs.output_strs, srt_outputs.output_strs)
    print(f"{rouge_l_scores=}")
    assert all(
        score >= rouge_l_tolerance for score in rouge_l_scores
    ), f"Not all ROUGE-L scores are greater than rouge_l_tolerance={rouge_l_tolerance}"

    if check_logprobs:
        for i in range(len(hf_outputs.output_strs)):
            # Compare input logprobs
            hf_logprobs = torch.Tensor(hf_outputs.top_input_logprobs[i])
            srt_logprobs = torch.Tensor(srt_outputs.top_input_logprobs[i])
            input_len = hf_logprobs.shape[0]
            print(
                "prefill logprobs max_diff", torch.max(abs(hf_logprobs - srt_logprobs))
            )
            if input_len <= 100:
                assert torch.all(abs(hf_logprobs - srt_logprobs) < prefill_tolerance), (
                    f"prefill logprobs are not all close with {debug_text} "
                    f"prefill_tolerance={prefill_tolerance}."
                    f"{hf_logprobs=}, {srt_logprobs=}"
                )

            # Compare output logprobs
            hf_logprobs = torch.Tensor(hf_outputs.top_output_logprobs[i])
            srt_logprobs = torch.Tensor(srt_outputs.top_output_logprobs[i])

            print(
                "decode logprobs max_diff", torch.max(abs(hf_logprobs - srt_logprobs))
            )
            if input_len <= 100:
                assert torch.all(abs(hf_logprobs - srt_logprobs) < decode_tolerance), (
                    f"decode logprobs are not all close with {debug_text} "
                    f"decode_tolerance={decode_tolerance}."
                    f"{hf_logprobs=}, {srt_logprobs=}"
                )