openai_api_completions.ipynb 10.6 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
7
    "# OpenAI APIs - Completions\n",
Chayenne's avatar
Chayenne committed
8
    "\n",
9
10
    "SGLang provides OpenAI-compatible APIs to enable a smooth transition from OpenAI services to self-hosted local models.\n",
    "A complete reference for the API is available in the [OpenAI API Reference](https://platform.openai.com/docs/api-reference).\n",
11
    "\n",
12
    "This tutorial covers the following popular APIs:\n",
Chayenne's avatar
Chayenne committed
13
14
15
    "\n",
    "- `chat/completions`\n",
    "- `completions`\n",
16
    "\n",
simveit's avatar
simveit committed
17
    "Check out other tutorials to learn about [vision APIs](https://docs.sglang.ai/backend/openai_api_vision.html) for vision-language models and [embedding APIs](https://docs.sglang.ai/backend/openai_api_embeddings.html) for embedding models."
Chayenne's avatar
Chayenne committed
18
19
20
21
22
23
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
24
    "## Launch A Server\n",
Chayenne's avatar
Chayenne committed
25
    "\n",
26
    "Launch the server in your terminal and wait for it to initialize."
Chayenne's avatar
Chayenne committed
27
28
29
30
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
31
   "execution_count": null,
32
   "metadata": {},
Chayenne's avatar
Chayenne committed
33
   "outputs": [],
Chayenne's avatar
Chayenne committed
34
   "source": [
35
36
37
38
39
40
41
42
43
    "from sglang.test.test_utils import is_in_ci\n",
    "\n",
    "if is_in_ci():\n",
    "    from patch import launch_server_cmd\n",
    "else:\n",
    "    from sglang.utils import launch_server_cmd\n",
    "\n",
    "from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
    "\n",
Chayenne's avatar
Chayenne committed
44
    "\n",
45
    "server_process, port = launch_server_cmd(\n",
46
    "    \"python3 -m sglang.launch_server --model-path qwen/qwen2.5-0.5b-instruct --host 0.0.0.0 --mem-fraction-static 0.8\"\n",
Chayenne's avatar
Chayenne committed
47
48
    ")\n",
    "\n",
49
50
    "wait_for_server(f\"http://localhost:{port}\")\n",
    "print(f\"Server started on http://localhost:{port}\")"
Chayenne's avatar
Chayenne committed
51
52
   ]
  },
53
54
55
56
57
58
59
60
61
62
63
64
65
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Chat Completions\n",
    "\n",
    "### Usage\n",
    "\n",
    "The server fully implements the OpenAI API.\n",
    "It will automatically apply the chat template specified in the Hugging Face tokenizer, if one is available.\n",
    "You can also specify a custom chat template with `--chat-template` when launching the server."
   ]
  },
Chayenne's avatar
Chayenne committed
66
67
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
68
   "execution_count": null,
69
   "metadata": {},
Chayenne's avatar
Chayenne committed
70
   "outputs": [],
Chayenne's avatar
Chayenne committed
71
72
73
   "source": [
    "import openai\n",
    "\n",
74
    "client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
Chayenne's avatar
Chayenne committed
75
76
    "\n",
    "response = client.chat.completions.create(\n",
77
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
Chayenne's avatar
Chayenne committed
78
79
80
81
82
83
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
84
85
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
86
87
88
89
90
91
92
93
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
94
    "The chat completions API accepts OpenAI Chat Completions API's parameters. Refer to [OpenAI Chat Completions API](https://platform.openai.com/docs/api-reference/chat/create) for more details.\n",
Chayenne's avatar
Chayenne committed
95
    "\n",
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    "SGLang extends the standard API with the `extra_body` parameter, allowing for additional customization. One key option within `extra_body` is `chat_template_kwargs`, which can be used to pass arguments to the chat template processor.\n",
    "\n",
    "#### Enabling Model Thinking/Reasoning\n",
    "\n",
    "You can use `chat_template_kwargs` to enable or disable the model's internal thinking or reasoning process output. Set `\"enable_thinking\": True` within `chat_template_kwargs` to include the reasoning steps in the response. This requires launching the server with a compatible reasoning parser (e.g., `--reasoning-parser qwen3` for Qwen3 models).\n",
    "\n",
    "Here's an example demonstrating how to enable thinking and retrieve the reasoning content separately (using `separate_reasoning: True`):\n",
    "\n",
    "```python\n",
    "# Ensure the server is launched with a compatible reasoning parser, e.g.:\n",
    "# python3 -m sglang.launch_server --model-path QwQ/Qwen3-32B-250415 --reasoning-parser qwen3 ...\n",
    "\n",
    "from openai import OpenAI\n",
    "\n",
    "# Modify OpenAI's API key and API base to use SGLang's API server.\n",
    "openai_api_key = \"EMPTY\"\n",
    "openai_api_base = f\"http://127.0.0.1:{port}/v1\" # Use the correct port\n",
    "\n",
    "client = OpenAI(\n",
    "    api_key=openai_api_key,\n",
    "    base_url=openai_api_base,\n",
    ")\n",
    "\n",
    "model = \"QwQ/Qwen3-32B-250415\" # Use the model loaded by the server\n",
    "messages = [{\"role\": \"user\", \"content\": \"9.11 and 9.8, which is greater?\"}]\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=model,\n",
    "    messages=messages,\n",
    "    extra_body={\n",
    "        \"chat_template_kwargs\": {\"enable_thinking\": True},\n",
    "        \"separate_reasoning\": True\n",
    "    }\n",
    ")\n",
    "\n",
    "print(\"response.choices[0].message.reasoning_content: \\n\", response.choices[0].message.reasoning_content)\n",
    "print(\"response.choices[0].message.content: \\n\", response.choices[0].message.content)\n",
    "```\n",
    "\n",
    "**Example Output:**\n",
    "\n",
    "```\n",
    "response.choices[0].message.reasoning_content: \n",
    " Okay, so I need to figure out which number is greater between 9.11 and 9.8. Hmm, let me think. Both numbers start with 9, right? So the whole number part is the same. That means I need to look at the decimal parts to determine which one is bigger.\n",
    "...\n",
    "Therefore, after checking multiple methods—aligning decimals, subtracting, converting to fractions, and using a real-world analogy—it's clear that 9.8 is greater than 9.11.\n",
    "\n",
    "response.choices[0].message.content: \n",
    " To determine which number is greater between **9.11** and **9.8**, follow these steps:\n",
    "...\n",
    "**Answer**:  \n",
    "9.8 is greater than 9.11.\n",
    "```\n",
    "\n",
    "Setting `\"enable_thinking\": False` (or omitting it) will result in `reasoning_content` being `None`.\n",
    "\n",
    "Here is an example of a detailed chat completion request using standard OpenAI parameters:"
Chayenne's avatar
Chayenne committed
153
154
155
156
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
157
   "execution_count": null,
158
   "metadata": {},
Chayenne's avatar
Chayenne committed
159
   "outputs": [],
Chayenne's avatar
Chayenne committed
160
161
   "source": [
    "response = client.chat.completions.create(\n",
162
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
Chayenne's avatar
Chayenne committed
163
164
165
166
167
168
169
170
171
172
173
174
175
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"system\",\n",
    "            \"content\": \"You are a knowledgeable historian who provides concise responses.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"Tell me about ancient Rome\"},\n",
    "        {\n",
    "            \"role\": \"assistant\",\n",
    "            \"content\": \"Ancient Rome was a civilization centered in Italy.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"What were their major achievements?\"},\n",
    "    ],\n",
    "    temperature=0.3,  # Lower temperature for more focused responses\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
176
    "    max_tokens=128,  # Reasonable length for a concise response\n",
Chayenne's avatar
Chayenne committed
177
178
179
180
181
182
183
    "    top_p=0.95,  # Slightly higher for better fluency\n",
    "    presence_penalty=0.2,  # Mild penalty to avoid repetition\n",
    "    frequency_penalty=0.2,  # Mild penalty for more natural language\n",
    "    n=1,  # Single response is usually more stable\n",
    "    seed=42,  # Keep for reproducibility\n",
    ")\n",
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
184
185
186
187
188
189
190
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
191
    "Streaming mode is also supported."
Lianmin Zheng's avatar
Lianmin Zheng committed
192
193
194
195
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
196
   "execution_count": null,
197
   "metadata": {},
Chayenne's avatar
Chayenne committed
198
   "outputs": [],
Lianmin Zheng's avatar
Lianmin Zheng committed
199
200
   "source": [
    "stream = client.chat.completions.create(\n",
201
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
202
203
204
205
206
207
    "    messages=[{\"role\": \"user\", \"content\": \"Say this is a test\"}],\n",
    "    stream=True,\n",
    ")\n",
    "for chunk in stream:\n",
    "    if chunk.choices[0].delta.content is not None:\n",
    "        print(chunk.choices[0].delta.content, end=\"\")"
Chayenne's avatar
Chayenne committed
208
209
210
211
212
213
214
215
216
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Completions\n",
    "\n",
    "### Usage\n",
217
    "Completions API is similar to Chat Completions API, but without the `messages` parameter or chat templates."
Chayenne's avatar
Chayenne committed
218
219
220
221
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
222
   "execution_count": null,
223
   "metadata": {},
Chayenne's avatar
Chayenne committed
224
   "outputs": [],
Chayenne's avatar
Chayenne committed
225
226
   "source": [
    "response = client.completions.create(\n",
227
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
Chayenne's avatar
Chayenne committed
228
229
230
231
232
233
    "    prompt=\"List 3 countries and their capitals.\",\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    "    n=1,\n",
    "    stop=None,\n",
    ")\n",
234
235
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
236
237
238
239
240
241
242
243
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
244
    "The completions API accepts OpenAI Completions API's parameters.  Refer to [OpenAI Completions API](https://platform.openai.com/docs/api-reference/completions/create) for more details.\n",
Chayenne's avatar
Chayenne committed
245
246
247
248
249
250
    "\n",
    "Here is an example of a detailed completions request:"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
251
   "execution_count": null,
252
   "metadata": {},
Chayenne's avatar
Chayenne committed
253
   "outputs": [],
Chayenne's avatar
Chayenne committed
254
255
   "source": [
    "response = client.completions.create(\n",
256
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
Chayenne's avatar
Chayenne committed
257
258
259
260
261
262
263
264
265
266
267
    "    prompt=\"Write a short story about a space explorer.\",\n",
    "    temperature=0.7,  # Moderate temperature for creative writing\n",
    "    max_tokens=150,  # Longer response for a story\n",
    "    top_p=0.9,  # Balanced diversity in word choice\n",
    "    stop=[\"\\n\\n\", \"THE END\"],  # Multiple stop sequences\n",
    "    presence_penalty=0.3,  # Encourage novel elements\n",
    "    frequency_penalty=0.3,  # Reduce repetitive phrases\n",
    "    n=1,  # Generate one completion\n",
    "    seed=123,  # For reproducible results\n",
    ")\n",
    "\n",
268
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
269
270
   ]
  },
Lianmin Zheng's avatar
Lianmin Zheng committed
271
272
273
274
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
275
    "## Structured Outputs (JSON, Regex, EBNF)\n",
276
    "\n",
277
    "For OpenAI compatible structured outputs API, refer to [Structured Outputs](https://docs.sglang.ai/backend/structured_outputs.html#OpenAI-Compatible-API) for more details.\n"
278
279
   ]
  },
Chayenne's avatar
Chayenne committed
280
281
  {
   "cell_type": "code",
282
283
   "execution_count": null,
   "metadata": {},
Lianmin Zheng's avatar
Lianmin Zheng committed
284
   "outputs": [],
Chayenne's avatar
Chayenne committed
285
   "source": [
286
    "terminate_process(server_process)"
Chayenne's avatar
Chayenne committed
287
288
289
290
   ]
  }
 ],
 "metadata": {
Chayenne's avatar
Chayenne committed
291
292
293
294
295
296
297
298
299
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
300
   "pygments_lexer": "ipython3"
Chayenne's avatar
Chayenne committed
301
302
303
304
305
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}