openai_api_completions.ipynb 17.8 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
7
    "# OpenAI APIs - Completions\n",
Chayenne's avatar
Chayenne committed
8
    "\n",
9
10
    "SGLang provides OpenAI-compatible APIs to enable a smooth transition from OpenAI services to self-hosted local models.\n",
    "A complete reference for the API is available in the [OpenAI API Reference](https://platform.openai.com/docs/api-reference).\n",
11
    "\n",
12
    "This tutorial covers the following popular APIs:\n",
Chayenne's avatar
Chayenne committed
13
14
15
16
    "\n",
    "- `chat/completions`\n",
    "- `completions`\n",
    "- `batches`\n",
17
18
    "\n",
    "Check out other tutorials to learn about vision APIs for vision-language models and embedding APIs for embedding models."
Chayenne's avatar
Chayenne committed
19
20
21
22
23
24
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
25
    "## Launch A Server\n",
Chayenne's avatar
Chayenne committed
26
    "\n",
27
    "Launch the server in your terminal and wait for it to initialize."
Chayenne's avatar
Chayenne committed
28
29
30
31
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
32
   "execution_count": null,
33
   "metadata": {},
Chayenne's avatar
Chayenne committed
34
   "outputs": [],
Chayenne's avatar
Chayenne committed
35
   "source": [
36
37
38
39
40
41
    "from sglang.utils import (\n",
    "    execute_shell_command,\n",
    "    wait_for_server,\n",
    "    terminate_process,\n",
    "    print_highlight,\n",
    ")\n",
Chayenne's avatar
Chayenne committed
42
43
    "\n",
    "server_process = execute_shell_command(\n",
44
    "    \"python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --port 30020 --host 0.0.0.0\"\n",
Chayenne's avatar
Chayenne committed
45
46
    ")\n",
    "\n",
47
    "wait_for_server(\"http://localhost:30020\")"
Chayenne's avatar
Chayenne committed
48
49
   ]
  },
50
51
52
53
54
55
56
57
58
59
60
61
62
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Chat Completions\n",
    "\n",
    "### Usage\n",
    "\n",
    "The server fully implements the OpenAI API.\n",
    "It will automatically apply the chat template specified in the Hugging Face tokenizer, if one is available.\n",
    "You can also specify a custom chat template with `--chat-template` when launching the server."
   ]
  },
Chayenne's avatar
Chayenne committed
63
64
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
65
   "execution_count": null,
66
   "metadata": {},
Chayenne's avatar
Chayenne committed
67
   "outputs": [],
Chayenne's avatar
Chayenne committed
68
69
70
   "source": [
    "import openai\n",
    "\n",
71
    "client = openai.Client(base_url=\"http://127.0.0.1:30020/v1\", api_key=\"None\")\n",
Chayenne's avatar
Chayenne committed
72
73
74
75
76
77
78
79
80
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
81
82
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
83
84
85
86
87
88
89
90
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
91
    "The chat completions API accepts OpenAI Chat Completions API's parameters. Refer to [OpenAI Chat Completions API](https://platform.openai.com/docs/api-reference/chat/create) for more details.\n",
Chayenne's avatar
Chayenne committed
92
93
94
95
96
97
    "\n",
    "Here is an example of a detailed chat completion request:"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
98
   "execution_count": null,
99
   "metadata": {},
Chayenne's avatar
Chayenne committed
100
   "outputs": [],
Chayenne's avatar
Chayenne committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
   "source": [
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"system\",\n",
    "            \"content\": \"You are a knowledgeable historian who provides concise responses.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"Tell me about ancient Rome\"},\n",
    "        {\n",
    "            \"role\": \"assistant\",\n",
    "            \"content\": \"Ancient Rome was a civilization centered in Italy.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"What were their major achievements?\"},\n",
    "    ],\n",
    "    temperature=0.3,  # Lower temperature for more focused responses\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
117
    "    max_tokens=128,  # Reasonable length for a concise response\n",
Chayenne's avatar
Chayenne committed
118
119
120
121
122
123
124
    "    top_p=0.95,  # Slightly higher for better fluency\n",
    "    presence_penalty=0.2,  # Mild penalty to avoid repetition\n",
    "    frequency_penalty=0.2,  # Mild penalty for more natural language\n",
    "    n=1,  # Single response is usually more stable\n",
    "    seed=42,  # Keep for reproducibility\n",
    ")\n",
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
125
126
127
128
129
130
131
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
132
    "Streaming mode is also supported."
Lianmin Zheng's avatar
Lianmin Zheng committed
133
134
135
136
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
137
   "execution_count": null,
138
   "metadata": {},
Chayenne's avatar
Chayenne committed
139
   "outputs": [],
Lianmin Zheng's avatar
Lianmin Zheng committed
140
141
142
143
144
145
146
147
148
   "source": [
    "stream = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[{\"role\": \"user\", \"content\": \"Say this is a test\"}],\n",
    "    stream=True,\n",
    ")\n",
    "for chunk in stream:\n",
    "    if chunk.choices[0].delta.content is not None:\n",
    "        print(chunk.choices[0].delta.content, end=\"\")"
Chayenne's avatar
Chayenne committed
149
150
151
152
153
154
155
156
157
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Completions\n",
    "\n",
    "### Usage\n",
158
    "Completions API is similar to Chat Completions API, but without the `messages` parameter or chat templates."
Chayenne's avatar
Chayenne committed
159
160
161
162
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
163
   "execution_count": null,
164
   "metadata": {},
Chayenne's avatar
Chayenne committed
165
   "outputs": [],
Chayenne's avatar
Chayenne committed
166
167
168
169
170
171
172
173
174
   "source": [
    "response = client.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    prompt=\"List 3 countries and their capitals.\",\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    "    n=1,\n",
    "    stop=None,\n",
    ")\n",
175
176
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
177
178
179
180
181
182
183
184
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
185
    "The completions API accepts OpenAI Completions API's parameters.  Refer to [OpenAI Completions API](https://platform.openai.com/docs/api-reference/completions/create) for more details.\n",
Chayenne's avatar
Chayenne committed
186
187
188
189
190
191
    "\n",
    "Here is an example of a detailed completions request:"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
192
   "execution_count": null,
193
   "metadata": {},
Chayenne's avatar
Chayenne committed
194
   "outputs": [],
Chayenne's avatar
Chayenne committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
   "source": [
    "response = client.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    prompt=\"Write a short story about a space explorer.\",\n",
    "    temperature=0.7,  # Moderate temperature for creative writing\n",
    "    max_tokens=150,  # Longer response for a story\n",
    "    top_p=0.9,  # Balanced diversity in word choice\n",
    "    stop=[\"\\n\\n\", \"THE END\"],  # Multiple stop sequences\n",
    "    presence_penalty=0.3,  # Encourage novel elements\n",
    "    frequency_penalty=0.3,  # Reduce repetitive phrases\n",
    "    n=1,  # Generate one completion\n",
    "    seed=123,  # For reproducible results\n",
    ")\n",
    "\n",
209
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
210
211
   ]
  },
Lianmin Zheng's avatar
Lianmin Zheng committed
212
213
214
215
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
216
    "## Structured Outputs (JSON, Regex, EBNF)\n",
217
    "\n",
218
    "For OpenAI compatible structed outputs API, refer to [Structured Outputs](https://docs.sglang.ai/backend/structured_outputs.html#OpenAI-Compatible-API) for more details.\n"
219
220
   ]
  },
Chayenne's avatar
Chayenne committed
221
222
223
224
225
226
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Batches\n",
    "\n",
227
    "Batches API for chat completions and completions are also supported. You can upload your requests in `jsonl` files, create a batch job, and retrieve the results when the batch job is completed (which takes longer but costs less).\n",
Chayenne's avatar
Chayenne committed
228
229
230
231
232
233
234
235
236
237
238
239
    "\n",
    "The batches APIs are:\n",
    "\n",
    "- `batches`\n",
    "- `batches/{batch_id}/cancel`\n",
    "- `batches/{batch_id}`\n",
    "\n",
    "Here is an example of a batch job for chat completions, completions are similar.\n"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
240
   "execution_count": null,
241
   "metadata": {},
Chayenne's avatar
Chayenne committed
242
   "outputs": [],
Chayenne's avatar
Chayenne committed
243
244
245
246
247
   "source": [
    "import json\n",
    "import time\n",
    "from openai import OpenAI\n",
    "\n",
248
    "client = OpenAI(base_url=\"http://127.0.0.1:30020/v1\", api_key=\"None\")\n",
Chayenne's avatar
Chayenne committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    "\n",
    "requests = [\n",
    "    {\n",
    "        \"custom_id\": \"request-1\",\n",
    "        \"method\": \"POST\",\n",
    "        \"url\": \"/chat/completions\",\n",
    "        \"body\": {\n",
    "            \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "            \"messages\": [\n",
    "                {\"role\": \"user\", \"content\": \"Tell me a joke about programming\"}\n",
    "            ],\n",
    "            \"max_tokens\": 50,\n",
    "        },\n",
    "    },\n",
    "    {\n",
    "        \"custom_id\": \"request-2\",\n",
    "        \"method\": \"POST\",\n",
    "        \"url\": \"/chat/completions\",\n",
    "        \"body\": {\n",
    "            \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "            \"messages\": [{\"role\": \"user\", \"content\": \"What is Python?\"}],\n",
    "            \"max_tokens\": 50,\n",
    "        },\n",
    "    },\n",
    "]\n",
    "\n",
    "input_file_path = \"batch_requests.jsonl\"\n",
    "\n",
    "with open(input_file_path, \"w\") as f:\n",
    "    for req in requests:\n",
    "        f.write(json.dumps(req) + \"\\n\")\n",
    "\n",
    "with open(input_file_path, \"rb\") as f:\n",
    "    file_response = client.files.create(file=f, purpose=\"batch\")\n",
    "\n",
    "batch_response = client.batches.create(\n",
    "    input_file_id=file_response.id,\n",
    "    endpoint=\"/v1/chat/completions\",\n",
    "    completion_window=\"24h\",\n",
    ")\n",
    "\n",
290
    "print_highlight(f\"Batch job created with ID: {batch_response.id}\")"
Chayenne's avatar
Chayenne committed
291
292
293
294
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
295
   "execution_count": null,
296
   "metadata": {},
Chayenne's avatar
Chayenne committed
297
   "outputs": [],
Chayenne's avatar
Chayenne committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
   "source": [
    "while batch_response.status not in [\"completed\", \"failed\", \"cancelled\"]:\n",
    "    time.sleep(3)\n",
    "    print(f\"Batch job status: {batch_response.status}...trying again in 3 seconds...\")\n",
    "    batch_response = client.batches.retrieve(batch_response.id)\n",
    "\n",
    "if batch_response.status == \"completed\":\n",
    "    print(\"Batch job completed successfully!\")\n",
    "    print(f\"Request counts: {batch_response.request_counts}\")\n",
    "\n",
    "    result_file_id = batch_response.output_file_id\n",
    "    file_response = client.files.content(result_file_id)\n",
    "    result_content = file_response.read().decode(\"utf-8\")\n",
    "\n",
    "    results = [\n",
    "        json.loads(line) for line in result_content.split(\"\\n\") if line.strip() != \"\"\n",
    "    ]\n",
    "\n",
    "    for result in results:\n",
317
318
    "        print_highlight(f\"Request {result['custom_id']}:\")\n",
    "        print_highlight(f\"Response: {result['response']}\")\n",
Chayenne's avatar
Chayenne committed
319
    "\n",
320
    "    print_highlight(\"Cleaning up files...\")\n",
Chayenne's avatar
Chayenne committed
321
322
323
    "    # Only delete the result file ID since file_response is just content\n",
    "    client.files.delete(result_file_id)\n",
    "else:\n",
324
    "    print_highlight(f\"Batch job failed with status: {batch_response.status}\")\n",
Chayenne's avatar
Chayenne committed
325
    "    if hasattr(batch_response, \"errors\"):\n",
326
    "        print_highlight(f\"Errors: {batch_response.errors}\")"
Chayenne's avatar
Chayenne committed
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It takes a while to complete the batch job. You can use these two APIs to retrieve the batch job status or cancel the batch job.\n",
    "\n",
    "1. `batches/{batch_id}`: Retrieve the batch job status.\n",
    "2. `batches/{batch_id}/cancel`: Cancel the batch job.\n",
    "\n",
    "Here is an example to check the batch job status."
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
343
   "execution_count": null,
344
   "metadata": {},
Chayenne's avatar
Chayenne committed
345
   "outputs": [],
Chayenne's avatar
Chayenne committed
346
347
348
349
350
   "source": [
    "import json\n",
    "import time\n",
    "from openai import OpenAI\n",
    "\n",
351
    "client = OpenAI(base_url=\"http://127.0.0.1:30020/v1\", api_key=\"None\")\n",
Chayenne's avatar
Chayenne committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    "\n",
    "requests = []\n",
    "for i in range(100):\n",
    "    requests.append(\n",
    "        {\n",
    "            \"custom_id\": f\"request-{i}\",\n",
    "            \"method\": \"POST\",\n",
    "            \"url\": \"/chat/completions\",\n",
    "            \"body\": {\n",
    "                \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "                \"messages\": [\n",
    "                    {\n",
    "                        \"role\": \"system\",\n",
    "                        \"content\": f\"{i}: You are a helpful AI assistant\",\n",
    "                    },\n",
    "                    {\n",
    "                        \"role\": \"user\",\n",
    "                        \"content\": \"Write a detailed story about topic. Make it very long.\",\n",
    "                    },\n",
    "                ],\n",
    "                \"max_tokens\": 500,\n",
    "            },\n",
    "        }\n",
    "    )\n",
    "\n",
    "input_file_path = \"batch_requests.jsonl\"\n",
    "with open(input_file_path, \"w\") as f:\n",
    "    for req in requests:\n",
    "        f.write(json.dumps(req) + \"\\n\")\n",
    "\n",
    "with open(input_file_path, \"rb\") as f:\n",
    "    uploaded_file = client.files.create(file=f, purpose=\"batch\")\n",
    "\n",
    "batch_job = client.batches.create(\n",
    "    input_file_id=uploaded_file.id,\n",
    "    endpoint=\"/v1/chat/completions\",\n",
    "    completion_window=\"24h\",\n",
    ")\n",
    "\n",
391
392
    "print_highlight(f\"Created batch job with ID: {batch_job.id}\")\n",
    "print_highlight(f\"Initial status: {batch_job.status}\")\n",
Chayenne's avatar
Chayenne committed
393
394
395
396
397
398
    "\n",
    "time.sleep(10)\n",
    "\n",
    "max_checks = 5\n",
    "for i in range(max_checks):\n",
    "    batch_details = client.batches.retrieve(batch_id=batch_job.id)\n",
399
400
401
402
403
404
405
    "\n",
    "    print_highlight(\n",
    "        f\"Batch job details (check {i+1} / {max_checks}) // ID: {batch_details.id} // Status: {batch_details.status} // Created at: {batch_details.created_at} // Input file ID: {batch_details.input_file_id} // Output file ID: {batch_details.output_file_id}\"\n",
    "    )\n",
    "    print_highlight(\n",
    "        f\"<strong>Request counts: Total: {batch_details.request_counts.total} // Completed: {batch_details.request_counts.completed} // Failed: {batch_details.request_counts.failed}</strong>\"\n",
    "    )\n",
Chayenne's avatar
Chayenne committed
406
407
408
409
410
411
412
413
414
415
416
417
418
    "\n",
    "    time.sleep(3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here is an example to cancel a batch job."
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
419
   "execution_count": null,
420
   "metadata": {},
Chayenne's avatar
Chayenne committed
421
   "outputs": [],
Chayenne's avatar
Chayenne committed
422
423
424
425
   "source": [
    "import json\n",
    "import time\n",
    "from openai import OpenAI\n",
Chayenne's avatar
Chayenne committed
426
    "import os\n",
Chayenne's avatar
Chayenne committed
427
    "\n",
428
    "client = OpenAI(base_url=\"http://127.0.0.1:30020/v1\", api_key=\"None\")\n",
Chayenne's avatar
Chayenne committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
    "\n",
    "requests = []\n",
    "for i in range(500):\n",
    "    requests.append(\n",
    "        {\n",
    "            \"custom_id\": f\"request-{i}\",\n",
    "            \"method\": \"POST\",\n",
    "            \"url\": \"/chat/completions\",\n",
    "            \"body\": {\n",
    "                \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "                \"messages\": [\n",
    "                    {\n",
    "                        \"role\": \"system\",\n",
    "                        \"content\": f\"{i}: You are a helpful AI assistant\",\n",
    "                    },\n",
    "                    {\n",
    "                        \"role\": \"user\",\n",
    "                        \"content\": \"Write a detailed story about topic. Make it very long.\",\n",
    "                    },\n",
    "                ],\n",
    "                \"max_tokens\": 500,\n",
    "            },\n",
    "        }\n",
    "    )\n",
    "\n",
    "input_file_path = \"batch_requests.jsonl\"\n",
    "with open(input_file_path, \"w\") as f:\n",
    "    for req in requests:\n",
    "        f.write(json.dumps(req) + \"\\n\")\n",
    "\n",
    "with open(input_file_path, \"rb\") as f:\n",
    "    uploaded_file = client.files.create(file=f, purpose=\"batch\")\n",
    "\n",
    "batch_job = client.batches.create(\n",
    "    input_file_id=uploaded_file.id,\n",
    "    endpoint=\"/v1/chat/completions\",\n",
    "    completion_window=\"24h\",\n",
    ")\n",
    "\n",
468
469
    "print_highlight(f\"Created batch job with ID: {batch_job.id}\")\n",
    "print_highlight(f\"Initial status: {batch_job.status}\")\n",
Chayenne's avatar
Chayenne committed
470
471
472
473
474
    "\n",
    "time.sleep(10)\n",
    "\n",
    "try:\n",
    "    cancelled_job = client.batches.cancel(batch_id=batch_job.id)\n",
475
    "    print_highlight(f\"Cancellation initiated. Status: {cancelled_job.status}\")\n",
Chayenne's avatar
Chayenne committed
476
477
478
479
480
481
    "    assert cancelled_job.status == \"cancelling\"\n",
    "\n",
    "    # Monitor the cancellation process\n",
    "    while cancelled_job.status not in [\"failed\", \"cancelled\"]:\n",
    "        time.sleep(3)\n",
    "        cancelled_job = client.batches.retrieve(batch_job.id)\n",
482
    "        print_highlight(f\"Current status: {cancelled_job.status}\")\n",
Chayenne's avatar
Chayenne committed
483
484
485
    "\n",
    "    # Verify final status\n",
    "    assert cancelled_job.status == \"cancelled\"\n",
486
    "    print_highlight(\"Batch job successfully cancelled\")\n",
Chayenne's avatar
Chayenne committed
487
488
    "\n",
    "except Exception as e:\n",
489
    "    print_highlight(f\"Error during cancellation: {e}\")\n",
Chayenne's avatar
Chayenne committed
490
491
492
493
494
495
    "    raise e\n",
    "\n",
    "finally:\n",
    "    try:\n",
    "        del_response = client.files.delete(uploaded_file.id)\n",
    "        if del_response.deleted:\n",
496
    "            print_highlight(\"Successfully cleaned up input file\")\n",
Chayenne's avatar
Chayenne committed
497
498
499
    "        if os.path.exists(input_file_path):\n",
    "            os.remove(input_file_path)\n",
    "            print_highlight(\"Successfully deleted local batch_requests.jsonl file\")\n",
Chayenne's avatar
Chayenne committed
500
    "    except Exception as e:\n",
501
    "        print_highlight(f\"Error cleaning up: {e}\")\n",
Chayenne's avatar
Chayenne committed
502
503
504
505
506
    "        raise e"
   ]
  },
  {
   "cell_type": "code",
507
508
   "execution_count": null,
   "metadata": {},
Lianmin Zheng's avatar
Lianmin Zheng committed
509
   "outputs": [],
Chayenne's avatar
Chayenne committed
510
511
512
513
514
515
   "source": [
    "terminate_process(server_process)"
   ]
  }
 ],
 "metadata": {
Chayenne's avatar
Chayenne committed
516
517
518
519
520
521
522
523
524
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
525
   "pygments_lexer": "ipython3"
Chayenne's avatar
Chayenne committed
526
527
528
529
530
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}