openai_api_completions.ipynb 18 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
7
    "# OpenAI APIs - Completions\n",
Chayenne's avatar
Chayenne committed
8
    "\n",
9
10
    "SGLang provides OpenAI-compatible APIs to enable a smooth transition from OpenAI services to self-hosted local models.\n",
    "A complete reference for the API is available in the [OpenAI API Reference](https://platform.openai.com/docs/api-reference).\n",
11
    "\n",
12
    "This tutorial covers the following popular APIs:\n",
Chayenne's avatar
Chayenne committed
13
14
15
16
    "\n",
    "- `chat/completions`\n",
    "- `completions`\n",
    "- `batches`\n",
17
18
    "\n",
    "Check out other tutorials to learn about vision APIs for vision-language models and embedding APIs for embedding models."
Chayenne's avatar
Chayenne committed
19
20
21
22
23
24
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
25
    "## Launch A Server\n",
Chayenne's avatar
Chayenne committed
26
    "\n",
27
    "Launch the server in your terminal and wait for it to initialize."
Chayenne's avatar
Chayenne committed
28
29
30
31
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
32
   "execution_count": null,
33
   "metadata": {},
Chayenne's avatar
Chayenne committed
34
   "outputs": [],
Chayenne's avatar
Chayenne committed
35
   "source": [
36
37
38
39
40
41
42
43
44
    "from sglang.test.test_utils import is_in_ci\n",
    "\n",
    "if is_in_ci():\n",
    "    from patch import launch_server_cmd\n",
    "else:\n",
    "    from sglang.utils import launch_server_cmd\n",
    "\n",
    "from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
    "\n",
Chayenne's avatar
Chayenne committed
45
    "\n",
46
47
    "server_process, port = launch_server_cmd(\n",
    "    \"python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --host 0.0.0.0\"\n",
Chayenne's avatar
Chayenne committed
48
49
    ")\n",
    "\n",
50
51
    "wait_for_server(f\"http://localhost:{port}\")\n",
    "print(f\"Server started on http://localhost:{port}\")"
Chayenne's avatar
Chayenne committed
52
53
   ]
  },
54
55
56
57
58
59
60
61
62
63
64
65
66
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Chat Completions\n",
    "\n",
    "### Usage\n",
    "\n",
    "The server fully implements the OpenAI API.\n",
    "It will automatically apply the chat template specified in the Hugging Face tokenizer, if one is available.\n",
    "You can also specify a custom chat template with `--chat-template` when launching the server."
   ]
  },
Chayenne's avatar
Chayenne committed
67
68
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
69
   "execution_count": null,
70
   "metadata": {},
Chayenne's avatar
Chayenne committed
71
   "outputs": [],
Chayenne's avatar
Chayenne committed
72
73
74
   "source": [
    "import openai\n",
    "\n",
75
    "client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
Chayenne's avatar
Chayenne committed
76
77
78
79
80
81
82
83
84
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
85
86
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
87
88
89
90
91
92
93
94
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
95
    "The chat completions API accepts OpenAI Chat Completions API's parameters. Refer to [OpenAI Chat Completions API](https://platform.openai.com/docs/api-reference/chat/create) for more details.\n",
Chayenne's avatar
Chayenne committed
96
97
98
99
100
101
    "\n",
    "Here is an example of a detailed chat completion request:"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
102
   "execution_count": null,
103
   "metadata": {},
Chayenne's avatar
Chayenne committed
104
   "outputs": [],
Chayenne's avatar
Chayenne committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
   "source": [
    "response = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"system\",\n",
    "            \"content\": \"You are a knowledgeable historian who provides concise responses.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"Tell me about ancient Rome\"},\n",
    "        {\n",
    "            \"role\": \"assistant\",\n",
    "            \"content\": \"Ancient Rome was a civilization centered in Italy.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"What were their major achievements?\"},\n",
    "    ],\n",
    "    temperature=0.3,  # Lower temperature for more focused responses\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
121
    "    max_tokens=128,  # Reasonable length for a concise response\n",
Chayenne's avatar
Chayenne committed
122
123
124
125
126
127
128
    "    top_p=0.95,  # Slightly higher for better fluency\n",
    "    presence_penalty=0.2,  # Mild penalty to avoid repetition\n",
    "    frequency_penalty=0.2,  # Mild penalty for more natural language\n",
    "    n=1,  # Single response is usually more stable\n",
    "    seed=42,  # Keep for reproducibility\n",
    ")\n",
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
129
130
131
132
133
134
135
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
136
    "Streaming mode is also supported."
Lianmin Zheng's avatar
Lianmin Zheng committed
137
138
139
140
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
141
   "execution_count": null,
142
   "metadata": {},
Chayenne's avatar
Chayenne committed
143
   "outputs": [],
Lianmin Zheng's avatar
Lianmin Zheng committed
144
145
146
147
148
149
150
151
152
   "source": [
    "stream = client.chat.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    messages=[{\"role\": \"user\", \"content\": \"Say this is a test\"}],\n",
    "    stream=True,\n",
    ")\n",
    "for chunk in stream:\n",
    "    if chunk.choices[0].delta.content is not None:\n",
    "        print(chunk.choices[0].delta.content, end=\"\")"
Chayenne's avatar
Chayenne committed
153
154
155
156
157
158
159
160
161
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Completions\n",
    "\n",
    "### Usage\n",
162
    "Completions API is similar to Chat Completions API, but without the `messages` parameter or chat templates."
Chayenne's avatar
Chayenne committed
163
164
165
166
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
167
   "execution_count": null,
168
   "metadata": {},
Chayenne's avatar
Chayenne committed
169
   "outputs": [],
Chayenne's avatar
Chayenne committed
170
171
172
173
174
175
176
177
178
   "source": [
    "response = client.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    prompt=\"List 3 countries and their capitals.\",\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    "    n=1,\n",
    "    stop=None,\n",
    ")\n",
179
180
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
181
182
183
184
185
186
187
188
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
189
    "The completions API accepts OpenAI Completions API's parameters.  Refer to [OpenAI Completions API](https://platform.openai.com/docs/api-reference/completions/create) for more details.\n",
Chayenne's avatar
Chayenne committed
190
191
192
193
194
195
    "\n",
    "Here is an example of a detailed completions request:"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
196
   "execution_count": null,
197
   "metadata": {},
Chayenne's avatar
Chayenne committed
198
   "outputs": [],
Chayenne's avatar
Chayenne committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
   "source": [
    "response = client.completions.create(\n",
    "    model=\"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "    prompt=\"Write a short story about a space explorer.\",\n",
    "    temperature=0.7,  # Moderate temperature for creative writing\n",
    "    max_tokens=150,  # Longer response for a story\n",
    "    top_p=0.9,  # Balanced diversity in word choice\n",
    "    stop=[\"\\n\\n\", \"THE END\"],  # Multiple stop sequences\n",
    "    presence_penalty=0.3,  # Encourage novel elements\n",
    "    frequency_penalty=0.3,  # Reduce repetitive phrases\n",
    "    n=1,  # Generate one completion\n",
    "    seed=123,  # For reproducible results\n",
    ")\n",
    "\n",
213
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
214
215
   ]
  },
Lianmin Zheng's avatar
Lianmin Zheng committed
216
217
218
219
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
220
    "## Structured Outputs (JSON, Regex, EBNF)\n",
221
    "\n",
222
    "For OpenAI compatible structed outputs API, refer to [Structured Outputs](https://docs.sglang.ai/backend/structured_outputs.html#OpenAI-Compatible-API) for more details.\n"
223
224
   ]
  },
Chayenne's avatar
Chayenne committed
225
226
227
228
229
230
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Batches\n",
    "\n",
231
    "Batches API for chat completions and completions are also supported. You can upload your requests in `jsonl` files, create a batch job, and retrieve the results when the batch job is completed (which takes longer but costs less).\n",
Chayenne's avatar
Chayenne committed
232
233
234
235
236
237
238
239
240
241
242
243
    "\n",
    "The batches APIs are:\n",
    "\n",
    "- `batches`\n",
    "- `batches/{batch_id}/cancel`\n",
    "- `batches/{batch_id}`\n",
    "\n",
    "Here is an example of a batch job for chat completions, completions are similar.\n"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
244
   "execution_count": null,
245
   "metadata": {},
Chayenne's avatar
Chayenne committed
246
   "outputs": [],
Chayenne's avatar
Chayenne committed
247
248
249
250
251
   "source": [
    "import json\n",
    "import time\n",
    "from openai import OpenAI\n",
    "\n",
252
    "client = OpenAI(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
Chayenne's avatar
Chayenne committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    "\n",
    "requests = [\n",
    "    {\n",
    "        \"custom_id\": \"request-1\",\n",
    "        \"method\": \"POST\",\n",
    "        \"url\": \"/chat/completions\",\n",
    "        \"body\": {\n",
    "            \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "            \"messages\": [\n",
    "                {\"role\": \"user\", \"content\": \"Tell me a joke about programming\"}\n",
    "            ],\n",
    "            \"max_tokens\": 50,\n",
    "        },\n",
    "    },\n",
    "    {\n",
    "        \"custom_id\": \"request-2\",\n",
    "        \"method\": \"POST\",\n",
    "        \"url\": \"/chat/completions\",\n",
    "        \"body\": {\n",
    "            \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "            \"messages\": [{\"role\": \"user\", \"content\": \"What is Python?\"}],\n",
    "            \"max_tokens\": 50,\n",
    "        },\n",
    "    },\n",
    "]\n",
    "\n",
    "input_file_path = \"batch_requests.jsonl\"\n",
    "\n",
    "with open(input_file_path, \"w\") as f:\n",
    "    for req in requests:\n",
    "        f.write(json.dumps(req) + \"\\n\")\n",
    "\n",
    "with open(input_file_path, \"rb\") as f:\n",
    "    file_response = client.files.create(file=f, purpose=\"batch\")\n",
    "\n",
    "batch_response = client.batches.create(\n",
    "    input_file_id=file_response.id,\n",
    "    endpoint=\"/v1/chat/completions\",\n",
    "    completion_window=\"24h\",\n",
    ")\n",
    "\n",
294
    "print_highlight(f\"Batch job created with ID: {batch_response.id}\")"
Chayenne's avatar
Chayenne committed
295
296
297
298
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
299
   "execution_count": null,
300
   "metadata": {},
Chayenne's avatar
Chayenne committed
301
   "outputs": [],
Chayenne's avatar
Chayenne committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
   "source": [
    "while batch_response.status not in [\"completed\", \"failed\", \"cancelled\"]:\n",
    "    time.sleep(3)\n",
    "    print(f\"Batch job status: {batch_response.status}...trying again in 3 seconds...\")\n",
    "    batch_response = client.batches.retrieve(batch_response.id)\n",
    "\n",
    "if batch_response.status == \"completed\":\n",
    "    print(\"Batch job completed successfully!\")\n",
    "    print(f\"Request counts: {batch_response.request_counts}\")\n",
    "\n",
    "    result_file_id = batch_response.output_file_id\n",
    "    file_response = client.files.content(result_file_id)\n",
    "    result_content = file_response.read().decode(\"utf-8\")\n",
    "\n",
    "    results = [\n",
    "        json.loads(line) for line in result_content.split(\"\\n\") if line.strip() != \"\"\n",
    "    ]\n",
    "\n",
    "    for result in results:\n",
321
322
    "        print_highlight(f\"Request {result['custom_id']}:\")\n",
    "        print_highlight(f\"Response: {result['response']}\")\n",
Chayenne's avatar
Chayenne committed
323
    "\n",
324
    "    print_highlight(\"Cleaning up files...\")\n",
Chayenne's avatar
Chayenne committed
325
326
327
    "    # Only delete the result file ID since file_response is just content\n",
    "    client.files.delete(result_file_id)\n",
    "else:\n",
328
    "    print_highlight(f\"Batch job failed with status: {batch_response.status}\")\n",
Chayenne's avatar
Chayenne committed
329
    "    if hasattr(batch_response, \"errors\"):\n",
330
    "        print_highlight(f\"Errors: {batch_response.errors}\")"
Chayenne's avatar
Chayenne committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It takes a while to complete the batch job. You can use these two APIs to retrieve the batch job status or cancel the batch job.\n",
    "\n",
    "1. `batches/{batch_id}`: Retrieve the batch job status.\n",
    "2. `batches/{batch_id}/cancel`: Cancel the batch job.\n",
    "\n",
    "Here is an example to check the batch job status."
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
347
   "execution_count": null,
348
   "metadata": {},
Chayenne's avatar
Chayenne committed
349
   "outputs": [],
Chayenne's avatar
Chayenne committed
350
351
352
353
354
   "source": [
    "import json\n",
    "import time\n",
    "from openai import OpenAI\n",
    "\n",
355
    "client = OpenAI(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
Chayenne's avatar
Chayenne committed
356
357
    "\n",
    "requests = []\n",
358
    "for i in range(20):\n",
Chayenne's avatar
Chayenne committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    "    requests.append(\n",
    "        {\n",
    "            \"custom_id\": f\"request-{i}\",\n",
    "            \"method\": \"POST\",\n",
    "            \"url\": \"/chat/completions\",\n",
    "            \"body\": {\n",
    "                \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "                \"messages\": [\n",
    "                    {\n",
    "                        \"role\": \"system\",\n",
    "                        \"content\": f\"{i}: You are a helpful AI assistant\",\n",
    "                    },\n",
    "                    {\n",
    "                        \"role\": \"user\",\n",
    "                        \"content\": \"Write a detailed story about topic. Make it very long.\",\n",
    "                    },\n",
    "                ],\n",
376
    "                \"max_tokens\": 64,\n",
Chayenne's avatar
Chayenne committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
    "            },\n",
    "        }\n",
    "    )\n",
    "\n",
    "input_file_path = \"batch_requests.jsonl\"\n",
    "with open(input_file_path, \"w\") as f:\n",
    "    for req in requests:\n",
    "        f.write(json.dumps(req) + \"\\n\")\n",
    "\n",
    "with open(input_file_path, \"rb\") as f:\n",
    "    uploaded_file = client.files.create(file=f, purpose=\"batch\")\n",
    "\n",
    "batch_job = client.batches.create(\n",
    "    input_file_id=uploaded_file.id,\n",
    "    endpoint=\"/v1/chat/completions\",\n",
    "    completion_window=\"24h\",\n",
    ")\n",
    "\n",
395
396
    "print_highlight(f\"Created batch job with ID: {batch_job.id}\")\n",
    "print_highlight(f\"Initial status: {batch_job.status}\")\n",
Chayenne's avatar
Chayenne committed
397
398
399
400
401
402
    "\n",
    "time.sleep(10)\n",
    "\n",
    "max_checks = 5\n",
    "for i in range(max_checks):\n",
    "    batch_details = client.batches.retrieve(batch_id=batch_job.id)\n",
403
404
405
406
407
408
409
    "\n",
    "    print_highlight(\n",
    "        f\"Batch job details (check {i+1} / {max_checks}) // ID: {batch_details.id} // Status: {batch_details.status} // Created at: {batch_details.created_at} // Input file ID: {batch_details.input_file_id} // Output file ID: {batch_details.output_file_id}\"\n",
    "    )\n",
    "    print_highlight(\n",
    "        f\"<strong>Request counts: Total: {batch_details.request_counts.total} // Completed: {batch_details.request_counts.completed} // Failed: {batch_details.request_counts.failed}</strong>\"\n",
    "    )\n",
Chayenne's avatar
Chayenne committed
410
411
412
413
414
415
416
417
418
419
420
421
422
    "\n",
    "    time.sleep(3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here is an example to cancel a batch job."
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
423
   "execution_count": null,
424
   "metadata": {},
Chayenne's avatar
Chayenne committed
425
   "outputs": [],
Chayenne's avatar
Chayenne committed
426
427
428
429
   "source": [
    "import json\n",
    "import time\n",
    "from openai import OpenAI\n",
Chayenne's avatar
Chayenne committed
430
    "import os\n",
Chayenne's avatar
Chayenne committed
431
    "\n",
432
    "client = OpenAI(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
Chayenne's avatar
Chayenne committed
433
434
    "\n",
    "requests = []\n",
435
    "for i in range(5000):\n",
Chayenne's avatar
Chayenne committed
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
    "    requests.append(\n",
    "        {\n",
    "            \"custom_id\": f\"request-{i}\",\n",
    "            \"method\": \"POST\",\n",
    "            \"url\": \"/chat/completions\",\n",
    "            \"body\": {\n",
    "                \"model\": \"meta-llama/Meta-Llama-3.1-8B-Instruct\",\n",
    "                \"messages\": [\n",
    "                    {\n",
    "                        \"role\": \"system\",\n",
    "                        \"content\": f\"{i}: You are a helpful AI assistant\",\n",
    "                    },\n",
    "                    {\n",
    "                        \"role\": \"user\",\n",
    "                        \"content\": \"Write a detailed story about topic. Make it very long.\",\n",
    "                    },\n",
    "                ],\n",
453
    "                \"max_tokens\": 128,\n",
Chayenne's avatar
Chayenne committed
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
    "            },\n",
    "        }\n",
    "    )\n",
    "\n",
    "input_file_path = \"batch_requests.jsonl\"\n",
    "with open(input_file_path, \"w\") as f:\n",
    "    for req in requests:\n",
    "        f.write(json.dumps(req) + \"\\n\")\n",
    "\n",
    "with open(input_file_path, \"rb\") as f:\n",
    "    uploaded_file = client.files.create(file=f, purpose=\"batch\")\n",
    "\n",
    "batch_job = client.batches.create(\n",
    "    input_file_id=uploaded_file.id,\n",
    "    endpoint=\"/v1/chat/completions\",\n",
    "    completion_window=\"24h\",\n",
    ")\n",
    "\n",
472
473
    "print_highlight(f\"Created batch job with ID: {batch_job.id}\")\n",
    "print_highlight(f\"Initial status: {batch_job.status}\")\n",
Chayenne's avatar
Chayenne committed
474
475
476
477
478
    "\n",
    "time.sleep(10)\n",
    "\n",
    "try:\n",
    "    cancelled_job = client.batches.cancel(batch_id=batch_job.id)\n",
479
    "    print_highlight(f\"Cancellation initiated. Status: {cancelled_job.status}\")\n",
Chayenne's avatar
Chayenne committed
480
481
482
483
484
485
    "    assert cancelled_job.status == \"cancelling\"\n",
    "\n",
    "    # Monitor the cancellation process\n",
    "    while cancelled_job.status not in [\"failed\", \"cancelled\"]:\n",
    "        time.sleep(3)\n",
    "        cancelled_job = client.batches.retrieve(batch_job.id)\n",
486
    "        print_highlight(f\"Current status: {cancelled_job.status}\")\n",
Chayenne's avatar
Chayenne committed
487
488
489
    "\n",
    "    # Verify final status\n",
    "    assert cancelled_job.status == \"cancelled\"\n",
490
    "    print_highlight(\"Batch job successfully cancelled\")\n",
Chayenne's avatar
Chayenne committed
491
492
    "\n",
    "except Exception as e:\n",
493
    "    print_highlight(f\"Error during cancellation: {e}\")\n",
Chayenne's avatar
Chayenne committed
494
495
496
497
498
499
    "    raise e\n",
    "\n",
    "finally:\n",
    "    try:\n",
    "        del_response = client.files.delete(uploaded_file.id)\n",
    "        if del_response.deleted:\n",
500
    "            print_highlight(\"Successfully cleaned up input file\")\n",
Chayenne's avatar
Chayenne committed
501
502
503
    "        if os.path.exists(input_file_path):\n",
    "            os.remove(input_file_path)\n",
    "            print_highlight(\"Successfully deleted local batch_requests.jsonl file\")\n",
Chayenne's avatar
Chayenne committed
504
    "    except Exception as e:\n",
505
    "        print_highlight(f\"Error cleaning up: {e}\")\n",
Chayenne's avatar
Chayenne committed
506
507
508
509
510
    "        raise e"
   ]
  },
  {
   "cell_type": "code",
511
512
   "execution_count": null,
   "metadata": {},
Lianmin Zheng's avatar
Lianmin Zheng committed
513
   "outputs": [],
Chayenne's avatar
Chayenne committed
514
   "source": [
515
    "terminate_process(server_process)"
Chayenne's avatar
Chayenne committed
516
517
518
519
   ]
  }
 ],
 "metadata": {
Chayenne's avatar
Chayenne committed
520
521
522
523
524
525
526
527
528
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
529
   "pygments_lexer": "ipython3"
Chayenne's avatar
Chayenne committed
530
531
532
533
534
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}