test_vision_openai_server.py 18 KB
Newer Older
1
2
3
"""
Usage:
python3 -m unittest test_vision_openai_server.TestOpenAIVisionServer.test_mixed_batch
4
python3 -m unittest test_vision_openai_server.TestOpenAIVisionServer.test_multi_images_chat_completion
5
6
"""

7
8
import base64
import io
Ying Sheng's avatar
Ying Sheng committed
9
import json
10
import os
Ying Sheng's avatar
Ying Sheng committed
11
import unittest
12
from concurrent.futures import ThreadPoolExecutor
Ying Sheng's avatar
Ying Sheng committed
13

14
import numpy as np
Ying Sheng's avatar
Ying Sheng committed
15
import openai
16
17
import requests
from PIL import Image
Ying Sheng's avatar
Ying Sheng committed
18

19
from sglang.srt.utils import kill_process_tree
20
21
22
23
24
from sglang.test.test_utils import (
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
    popen_launch_server,
)
Ying Sheng's avatar
Ying Sheng committed
25
26
27
28
29


class TestOpenAIVisionServer(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
30
        cls.model = "lmms-lab/llava-onevision-qwen2-0.5b-ov"
31
        cls.base_url = DEFAULT_URL_FOR_TEST
Ying Sheng's avatar
Ying Sheng committed
32
33
34
35
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
36
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
Ying Sheng's avatar
Ying Sheng committed
37
38
39
            api_key=cls.api_key,
            other_args=[
                "--chat-template",
40
                "chatml-llava",
41
                # "--log-requests",
Ying Sheng's avatar
Ying Sheng committed
42
43
44
45
46
47
            ],
        )
        cls.base_url += "/v1"

    @classmethod
    def tearDownClass(cls):
48
        kill_process_tree(cls.process.pid)
Ying Sheng's avatar
Ying Sheng committed
49

50
    def test_single_image_chat_completion(self):
Ying Sheng's avatar
Ying Sheng committed
51
52
53
54
55
56
57
58
59
60
61
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
                            "image_url": {
Ying Sheng's avatar
Ying Sheng committed
62
                                "url": "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
Ying Sheng's avatar
Ying Sheng committed
63
64
                            },
                        },
Ying Sheng's avatar
Ying Sheng committed
65
66
67
68
                        {
                            "type": "text",
                            "text": "Describe this image in a very short sentence.",
                        },
Ying Sheng's avatar
Ying Sheng committed
69
70
71
72
73
74
75
                    ],
                },
            ],
            temperature=0,
        )

        assert response.choices[0].message.role == "assistant"
Ying Sheng's avatar
Ying Sheng committed
76
77
        text = response.choices[0].message.content
        assert isinstance(text, str)
78
79
80
        assert "man" in text or "person" in text, text
        assert "cab" in text or "taxi" in text or "SUV" in text, text
        assert "iron" in text, text
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens > 0

    def test_multi_turn_chat_completion(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
                            },
                        },
                        {
                            "type": "text",
                            "text": "Describe this image in a very short sentence.",
                        },
                    ],
                },
                {
                    "role": "assistant",
                    "content": [
                        {
                            "type": "text",
                            "text": "There is a man at the back of a yellow cab ironing his clothes.",
                        }
                    ],
                },
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": "Repeat your previous answer."}
                    ],
                },
            ],
            temperature=0,
        )

        assert response.choices[0].message.role == "assistant"
        text = response.choices[0].message.content
        assert isinstance(text, str)
130
        assert "man" in text or "cab" in text, text
Ying Sheng's avatar
Ying Sheng committed
131
132
133
134
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
135
136
        assert response.usage.total_tokens > 0

137
    def test_multi_images_chat_completion(self):
138
139
140
141
142
143
144
145
146
147
148
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
                            "image_url": {
149
                                "url": "https://raw.githubusercontent.com/sgl-project/sglang/main/test/lang/example_image.png"
150
                            },
151
                            "modalities": "multi-images",
152
153
154
155
                        },
                        {
                            "type": "image_url",
                            "image_url": {
156
                                "url": "https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png"
157
                            },
158
                            "modalities": "multi-images",
159
160
161
                        },
                        {
                            "type": "text",
162
163
                            "text": "I have two very different images. They are not related at all. "
                            "Please describe the first image in one sentence, and then describe the second image in another sentence.",
164
165
166
167
168
169
170
171
172
173
                        },
                    ],
                },
            ],
            temperature=0,
        )

        assert response.choices[0].message.role == "assistant"
        text = response.choices[0].message.content
        assert isinstance(text, str)
174
        print(f"LLM response: {text}")
Mick's avatar
Mick committed
175
        assert "man" in text or "cab" in text or "SUV" in text or "taxi" in text, text
176
        assert "logo" in text or '"S"' in text or "SG" in text, text
177
178
179
180
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
Ying Sheng's avatar
Ying Sheng committed
181
182
        assert response.usage.total_tokens > 0

183
    def prepare_video_messages(self, video_path):
184
185
        # the memory consumed by the Vision Attention varies a lot, e.g. blocked qkv vs full-sequence sdpa
        # the size of the video embeds differs from the `modality` argument when preprocessed
186
187
188
189
190
191
192

        # We import decord here to avoid a strange Segmentation fault (core dumped) issue.
        # The following import order will cause Segmentation fault.
        # import decord
        # from transformers import AutoTokenizer
        from decord import VideoReader, cpu

193
        max_frames_num = 12
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
        vr = VideoReader(video_path, ctx=cpu(0))
        total_frame_num = len(vr)
        uniform_sampled_frames = np.linspace(
            0, total_frame_num - 1, max_frames_num, dtype=int
        )
        frame_idx = uniform_sampled_frames.tolist()
        frames = vr.get_batch(frame_idx).asnumpy()

        base64_frames = []
        for frame in frames:
            pil_img = Image.fromarray(frame)
            buff = io.BytesIO()
            pil_img.save(buff, format="JPEG")
            base64_str = base64.b64encode(buff.getvalue()).decode("utf-8")
            base64_frames.append(base64_str)

        messages = [{"role": "user", "content": []}]
        frame_format = {
            "type": "image_url",
            "image_url": {"url": "data:image/jpeg;base64,{}"},
214
            "modalities": "video",
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        }

        for base64_frame in base64_frames:
            frame_format["image_url"]["url"] = "data:image/jpeg;base64,{}".format(
                base64_frame
            )
            messages[0]["content"].append(frame_format.copy())

        prompt = {"type": "text", "text": "Please describe the video in detail."}
        messages[0]["content"].append(prompt)

        return messages

    def test_video_chat_completion(self):
        url = "https://raw.githubusercontent.com/EvolvingLMMs-Lab/sglang/dev/onevision_local/assets/jobs.mp4"
        cache_dir = os.path.expanduser("~/.cache")
        file_path = os.path.join(cache_dir, "jobs.mp4")
        os.makedirs(cache_dir, exist_ok=True)

        if not os.path.exists(file_path):
            response = requests.get(url)
            response.raise_for_status()

            with open(file_path, "wb") as f:
                f.write(response.content)

        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        messages = self.prepare_video_messages(file_path)

        video_request = client.chat.completions.create(
            model="default",
            messages=messages,
            temperature=0,
            max_tokens=1024,
            stream=True,
        )
252

253
254
255
256
257
258
        print("-" * 30)
        video_response = ""
        for chunk in video_request:
            if chunk.choices[0].delta.content is not None:
                content = chunk.choices[0].delta.content
                video_response += content
259
                print(content, end="", flush=True)
260
261
262
        print("-" * 30)

        # Add assertions to validate the video response
Mick's avatar
Mick committed
263
264
265
266
267
268
269
270
271
272
273
274
        assert "iPod" in video_response or "device" in video_response, video_response
        assert (
            "man" in video_response
            or "person" in video_response
            or "individual" in video_response
        ), video_response
        assert (
            "present" in video_response
            or "examine" in video_response
            or "display" in video_response
        )
        assert "black" in video_response or "dark" in video_response
275
276
277
        self.assertIsNotNone(video_response)
        self.assertGreater(len(video_response), 0)

Ying Sheng's avatar
Ying Sheng committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    def test_regex(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        regex = (
            r"""\{\n"""
            + r"""   "color": "[\w]+",\n"""
            + r"""   "number_of_cars": [\d]+\n"""
            + r"""\}"""
        )

        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
                            },
                        },
                        {
                            "type": "text",
                            "text": "Describe this image in the JSON format.",
                        },
                    ],
                },
            ],
            temperature=0,
            extra_body={"regex": regex},
        )
        text = response.choices[0].message.content

        try:
            js_obj = json.loads(text)
        except (TypeError, json.decoder.JSONDecodeError):
            print("JSONDecodeError", text)
            raise
        assert isinstance(js_obj["color"], str)
        assert isinstance(js_obj["number_of_cars"], int)

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
    def run_decode_with_image(self, image_id):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        content = []
        if image_id == 0:
            content.append(
                {
                    "type": "image_url",
                    "image_url": {
                        "url": "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
                    },
                }
            )
        elif image_id == 1:
            content.append(
                {
                    "type": "image_url",
                    "image_url": {
                        "url": "https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png"
                    },
                }
            )
        else:
            pass

        content.append(
            {
                "type": "text",
                "text": "Describe this image in a very short sentence.",
            }
        )

        response = client.chat.completions.create(
            model="default",
            messages=[
                {"role": "user", "content": content},
            ],
            temperature=0,
        )

        assert response.choices[0].message.role == "assistant"
        text = response.choices[0].message.content
        assert isinstance(text, str)

    def test_mixed_batch(self):
        image_ids = [0, 1, 2] * 4
        with ThreadPoolExecutor(4) as executor:
            list(executor.map(self.run_decode_with_image, image_ids))

Ying Sheng's avatar
Ying Sheng committed
369

Yineng Zhang's avatar
Yineng Zhang committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
class TestQWen2VLServer(TestOpenAIVisionServer):
    @classmethod
    def setUpClass(cls):
        cls.model = "Qwen/Qwen2-VL-7B-Instruct"
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=[
                "--chat-template",
                "qwen2-vl",
384
385
                "--chunked-prefill-size",
                "10000",
Yineng Zhang's avatar
Yineng Zhang committed
386
387
388
389
390
            ],
        )
        cls.base_url += "/v1"


Mick's avatar
Mick committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
class TestQWen2_5_VLServer(TestOpenAIVisionServer):
    @classmethod
    def setUpClass(cls):
        cls.model = "Qwen/Qwen2.5-VL-7B-Instruct"
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=[
                "--chat-template",
                "qwen2-vl",
                # FIXME: workaround to chunked prefill within image embeds
                "--chunked-prefill-size",
                "10000",
                "--mem-fraction-static",
                "0.4",
            ],
        )
        cls.base_url += "/v1"


415
class TestVLMContextLengthIssue(unittest.TestCase):
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    @classmethod
    def setUpClass(cls):
        cls.model = "Qwen/Qwen2-VL-7B-Instruct"
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=[
                "--chat-template",
                "qwen2-vl",
                "--context-length",
                "300",
                "--mem-fraction-static=0.80",
            ],
        )
        cls.base_url += "/v1"

    @classmethod
    def tearDownClass(cls):
438
        kill_process_tree(cls.process.pid)
439

440
    def test_single_image_chat_completion(self):
441
442
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

443
444
445
446
447
448
449
450
451
452
453
454
        with self.assertRaises(openai.BadRequestError) as cm:
            client.chat.completions.create(
                model="default",
                messages=[
                    {
                        "role": "user",
                        "content": [
                            {
                                "type": "image_url",
                                "image_url": {
                                    "url": "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
                                },
455
                            },
456
457
458
459
460
461
462
463
464
                            {
                                "type": "text",
                                "text": "Give a lengthy description of this picture",
                            },
                        ],
                    },
                ],
                temperature=0,
            )
465

466
467
468
469
470
        # context length is checked first, then max_req_input_len, which is calculated from the former
        assert (
            "Multimodal prompt is too long after expanding multimodal tokens."
            in str(cm.exception)
            or "is longer than the model's context length" in str(cm.exception)
471
        )
472
473


474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
class TestMllamaServer(TestOpenAIVisionServer):
    @classmethod
    def setUpClass(cls):
        cls.model = "meta-llama/Llama-3.2-11B-Vision-Instruct"
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=[
                "--chat-template",
                "llama_3_vision",
            ],
        )
        cls.base_url += "/v1"

    def test_video_chat_completion(self):
        pass


Mick's avatar
Mick committed
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
class TestMinicpmvServer(TestOpenAIVisionServer):
    @classmethod
    def setUpClass(cls):
        cls.model = "openbmb/MiniCPM-V-2_6"
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--trust-remote-code",
                "--chat-template",
                "minicpmv",
            ],
        )
        cls.base_url += "/v1"


Mick's avatar
Mick committed
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
class TestJanusProServer(TestOpenAIVisionServer):
    @classmethod
    def setUpClass(cls):
        cls.model = "deepseek-ai/Janus-Pro-7B"
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--trust-remote-code",
                "--chat-template",
                "janus-pro",
                "--mem-fraction-static",
                "0.4",
            ],
        )
        cls.base_url += "/v1"

    def test_video_chat_completion(self):
        pass

538
539
540
541
    def test_single_image_chat_completion(self):
        # Skip this test because it is flaky
        pass

Mick's avatar
Mick committed
542

Ying Sheng's avatar
Ying Sheng committed
543
if __name__ == "__main__":
Lianmin Zheng's avatar
Lianmin Zheng committed
544
    unittest.main()