test_vision_openai_server.py 16.9 KB
Newer Older
1
2
3
"""
Usage:
python3 -m unittest test_vision_openai_server.TestOpenAIVisionServer.test_mixed_batch
4
python3 -m unittest test_vision_openai_server.TestOpenAIVisionServer.test_multi_images_chat_completion
5
6
"""

7
8
import base64
import io
Ying Sheng's avatar
Ying Sheng committed
9
import json
10
import os
Ying Sheng's avatar
Ying Sheng committed
11
import unittest
12
from concurrent.futures import ThreadPoolExecutor
Ying Sheng's avatar
Ying Sheng committed
13

14
import numpy as np
Ying Sheng's avatar
Ying Sheng committed
15
import openai
16
17
import requests
from PIL import Image
Ying Sheng's avatar
Ying Sheng committed
18

19
from sglang.srt.utils import kill_process_tree
20
21
22
23
24
from sglang.test.test_utils import (
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
    popen_launch_server,
)
Ying Sheng's avatar
Ying Sheng committed
25
26
27
28
29


class TestOpenAIVisionServer(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
30
        cls.model = "lmms-lab/llava-onevision-qwen2-0.5b-ov"
31
        cls.base_url = DEFAULT_URL_FOR_TEST
Ying Sheng's avatar
Ying Sheng committed
32
33
34
35
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
36
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
Ying Sheng's avatar
Ying Sheng committed
37
38
39
            api_key=cls.api_key,
            other_args=[
                "--chat-template",
40
                "chatml-llava",
41
                # "--log-requests",
Ying Sheng's avatar
Ying Sheng committed
42
43
44
45
46
47
            ],
        )
        cls.base_url += "/v1"

    @classmethod
    def tearDownClass(cls):
48
        kill_process_tree(cls.process.pid)
Ying Sheng's avatar
Ying Sheng committed
49
50
51
52
53
54
55
56
57
58
59
60
61

    def test_chat_completion(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
                            "image_url": {
Ying Sheng's avatar
Ying Sheng committed
62
                                "url": "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
Ying Sheng's avatar
Ying Sheng committed
63
64
                            },
                        },
Ying Sheng's avatar
Ying Sheng committed
65
66
67
68
                        {
                            "type": "text",
                            "text": "Describe this image in a very short sentence.",
                        },
Ying Sheng's avatar
Ying Sheng committed
69
70
71
72
73
74
75
                    ],
                },
            ],
            temperature=0,
        )

        assert response.choices[0].message.role == "assistant"
Ying Sheng's avatar
Ying Sheng committed
76
77
        text = response.choices[0].message.content
        assert isinstance(text, str)
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        assert "man" in text or "cab" in text, text
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens > 0

    def test_multi_turn_chat_completion(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
                            },
                        },
                        {
                            "type": "text",
                            "text": "Describe this image in a very short sentence.",
                        },
                    ],
                },
                {
                    "role": "assistant",
                    "content": [
                        {
                            "type": "text",
                            "text": "There is a man at the back of a yellow cab ironing his clothes.",
                        }
                    ],
                },
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": "Repeat your previous answer."}
                    ],
                },
            ],
            temperature=0,
        )

        assert response.choices[0].message.role == "assistant"
        text = response.choices[0].message.content
        assert isinstance(text, str)
128
        assert "man" in text or "cab" in text, text
Ying Sheng's avatar
Ying Sheng committed
129
130
131
132
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
133
134
        assert response.usage.total_tokens > 0

135
    def test_multi_images_chat_completion(self):
136
137
138
139
140
141
142
143
144
145
146
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
                            "image_url": {
147
                                "url": "https://raw.githubusercontent.com/sgl-project/sglang/main/test/lang/example_image.png"
148
                            },
149
                            "modalities": "multi-images",
150
151
152
153
                        },
                        {
                            "type": "image_url",
                            "image_url": {
154
                                "url": "https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png"
155
                            },
156
                            "modalities": "multi-images",
157
158
159
                        },
                        {
                            "type": "text",
160
161
                            "text": "I have two very different images. They are not related at all. "
                            "Please describe the first image in one sentence, and then describe the second image in another sentence.",
162
163
164
165
166
167
168
169
170
171
                        },
                    ],
                },
            ],
            temperature=0,
        )

        assert response.choices[0].message.role == "assistant"
        text = response.choices[0].message.content
        assert isinstance(text, str)
172
        print(text)
Mick's avatar
Mick committed
173
        assert "man" in text or "cab" in text or "SUV" in text or "taxi" in text, text
174
        assert "logo" in text or '"S"' in text or "SG" in text, text
175
176
177
178
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
Ying Sheng's avatar
Ying Sheng committed
179
180
        assert response.usage.total_tokens > 0

181
    def prepare_video_messages(self, video_path):
182
183
        # the memory consumed by the Vision Attention varies a lot, e.g. blocked qkv vs full-sequence sdpa
        # the size of the video embeds differs from the `modality` argument when preprocessed
184
185
186
187
188
189
190

        # We import decord here to avoid a strange Segmentation fault (core dumped) issue.
        # The following import order will cause Segmentation fault.
        # import decord
        # from transformers import AutoTokenizer
        from decord import VideoReader, cpu

191
        max_frames_num = 12
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
        vr = VideoReader(video_path, ctx=cpu(0))
        total_frame_num = len(vr)
        uniform_sampled_frames = np.linspace(
            0, total_frame_num - 1, max_frames_num, dtype=int
        )
        frame_idx = uniform_sampled_frames.tolist()
        frames = vr.get_batch(frame_idx).asnumpy()

        base64_frames = []
        for frame in frames:
            pil_img = Image.fromarray(frame)
            buff = io.BytesIO()
            pil_img.save(buff, format="JPEG")
            base64_str = base64.b64encode(buff.getvalue()).decode("utf-8")
            base64_frames.append(base64_str)

        messages = [{"role": "user", "content": []}]
        frame_format = {
            "type": "image_url",
            "image_url": {"url": "data:image/jpeg;base64,{}"},
212
            "modalities": "video",
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
        }

        for base64_frame in base64_frames:
            frame_format["image_url"]["url"] = "data:image/jpeg;base64,{}".format(
                base64_frame
            )
            messages[0]["content"].append(frame_format.copy())

        prompt = {"type": "text", "text": "Please describe the video in detail."}
        messages[0]["content"].append(prompt)

        return messages

    def test_video_chat_completion(self):
        url = "https://raw.githubusercontent.com/EvolvingLMMs-Lab/sglang/dev/onevision_local/assets/jobs.mp4"
        cache_dir = os.path.expanduser("~/.cache")
        file_path = os.path.join(cache_dir, "jobs.mp4")
        os.makedirs(cache_dir, exist_ok=True)

        if not os.path.exists(file_path):
            response = requests.get(url)
            response.raise_for_status()

            with open(file_path, "wb") as f:
                f.write(response.content)

        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        messages = self.prepare_video_messages(file_path)

        video_request = client.chat.completions.create(
            model="default",
            messages=messages,
            temperature=0,
            max_tokens=1024,
            stream=True,
        )
250

251
252
253
254
255
256
        print("-" * 30)
        video_response = ""
        for chunk in video_request:
            if chunk.choices[0].delta.content is not None:
                content = chunk.choices[0].delta.content
                video_response += content
257
                print(content, end="", flush=True)
258
259
260
        print("-" * 30)

        # Add assertions to validate the video response
Mick's avatar
Mick committed
261
262
263
264
265
266
267
268
269
270
271
272
        assert "iPod" in video_response or "device" in video_response, video_response
        assert (
            "man" in video_response
            or "person" in video_response
            or "individual" in video_response
        ), video_response
        assert (
            "present" in video_response
            or "examine" in video_response
            or "display" in video_response
        )
        assert "black" in video_response or "dark" in video_response
273
274
275
        self.assertIsNotNone(video_response)
        self.assertGreater(len(video_response), 0)

Ying Sheng's avatar
Ying Sheng committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
    def test_regex(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        regex = (
            r"""\{\n"""
            + r"""   "color": "[\w]+",\n"""
            + r"""   "number_of_cars": [\d]+\n"""
            + r"""\}"""
        )

        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
                            },
                        },
                        {
                            "type": "text",
                            "text": "Describe this image in the JSON format.",
                        },
                    ],
                },
            ],
            temperature=0,
            extra_body={"regex": regex},
        )
        text = response.choices[0].message.content

        try:
            js_obj = json.loads(text)
        except (TypeError, json.decoder.JSONDecodeError):
            print("JSONDecodeError", text)
            raise
        assert isinstance(js_obj["color"], str)
        assert isinstance(js_obj["number_of_cars"], int)

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
    def run_decode_with_image(self, image_id):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        content = []
        if image_id == 0:
            content.append(
                {
                    "type": "image_url",
                    "image_url": {
                        "url": "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
                    },
                }
            )
        elif image_id == 1:
            content.append(
                {
                    "type": "image_url",
                    "image_url": {
                        "url": "https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png"
                    },
                }
            )
        else:
            pass

        content.append(
            {
                "type": "text",
                "text": "Describe this image in a very short sentence.",
            }
        )

        response = client.chat.completions.create(
            model="default",
            messages=[
                {"role": "user", "content": content},
            ],
            temperature=0,
        )

        assert response.choices[0].message.role == "assistant"
        text = response.choices[0].message.content
        assert isinstance(text, str)

    def test_mixed_batch(self):
        image_ids = [0, 1, 2] * 4
        with ThreadPoolExecutor(4) as executor:
            list(executor.map(self.run_decode_with_image, image_ids))

Ying Sheng's avatar
Ying Sheng committed
367

Yineng Zhang's avatar
Yineng Zhang committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
class TestQWen2VLServer(TestOpenAIVisionServer):
    @classmethod
    def setUpClass(cls):
        cls.model = "Qwen/Qwen2-VL-7B-Instruct"
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=[
                "--chat-template",
                "qwen2-vl",
            ],
        )
        cls.base_url += "/v1"


Mick's avatar
Mick committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
class TestQWen2_5_VLServer(TestOpenAIVisionServer):
    @classmethod
    def setUpClass(cls):
        cls.model = "Qwen/Qwen2.5-VL-7B-Instruct"
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=[
                "--chat-template",
                "qwen2-vl",
                # FIXME: workaround to chunked prefill within image embeds
                "--chunked-prefill-size",
                "10000",
                "--mem-fraction-static",
                "0.4",
            ],
        )
        cls.base_url += "/v1"


411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
class TestQWen2VLServerContextLengthIssue(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.model = "Qwen/Qwen2-VL-7B-Instruct"
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=[
                "--chat-template",
                "qwen2-vl",
                "--context-length",
                "300",
                "--mem-fraction-static=0.80",
            ],
        )
        cls.base_url += "/v1"

    @classmethod
    def tearDownClass(cls):
434
        kill_process_tree(cls.process.pid)
435
436
437
438

    def test_chat_completion(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

439
440
441
442
443
444
445
446
447
448
449
450
        with self.assertRaises(openai.BadRequestError) as cm:
            client.chat.completions.create(
                model="default",
                messages=[
                    {
                        "role": "user",
                        "content": [
                            {
                                "type": "image_url",
                                "image_url": {
                                    "url": "https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true"
                                },
451
                            },
452
453
454
455
456
457
458
459
460
                            {
                                "type": "text",
                                "text": "Give a lengthy description of this picture",
                            },
                        ],
                    },
                ],
                temperature=0,
            )
461

462
463
464
465
        self.assertIn(
            "Multimodal prompt is too long after expanding multimodal tokens.",
            str(cm.exception),
        )
466
467


468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
class TestMllamaServer(TestOpenAIVisionServer):
    @classmethod
    def setUpClass(cls):
        cls.model = "meta-llama/Llama-3.2-11B-Vision-Instruct"
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=[
                "--chat-template",
                "llama_3_vision",
            ],
        )
        cls.base_url += "/v1"

    def test_video_chat_completion(self):
        pass


Mick's avatar
Mick committed
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
class TestMinicpmvServer(TestOpenAIVisionServer):
    @classmethod
    def setUpClass(cls):
        cls.model = "openbmb/MiniCPM-V-2_6"
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--trust-remote-code",
                "--chat-template",
                "minicpmv",
            ],
        )
        cls.base_url += "/v1"


Ying Sheng's avatar
Ying Sheng committed
509
if __name__ == "__main__":
Lianmin Zheng's avatar
Lianmin Zheng committed
510
    unittest.main()