native_api.ipynb 13.1 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
7
    "# SGLang Native APIs\n",
Chayenne's avatar
Chayenne committed
8
    "\n",
Chayenne's avatar
Chayenne committed
9
    "Apart from the OpenAI compatible APIs, the SGLang Runtime also provides its native server APIs. We introduce these following APIs:\n",
Chayenne's avatar
Chayenne committed
10
    "\n",
Chayenne's avatar
Chayenne committed
11
    "- `/generate` (text generation model)\n",
Chayenne's avatar
Chayenne committed
12
    "- `/get_model_info`\n",
13
    "- `/get_server_info`\n",
Chayenne's avatar
Chayenne committed
14
15
16
    "- `/health`\n",
    "- `/health_generate`\n",
    "- `/flush_cache`\n",
Chayenne's avatar
Chayenne committed
17
    "- `/update_weights`\n",
Chayenne's avatar
Chayenne committed
18
    "- `/encode`(embedding model)\n",
19
    "- `/classify`(reward model)\n",
20
21
22
    "- `/start_expert_distribution_record`\n",
    "- `/stop_expert_distribution_record`\n",
    "- `/dump_expert_distribution_record`\n",
Chayenne's avatar
Chayenne committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
    "\n",
    "We mainly use `requests` to test these APIs in the following examples. You can also use `curl`."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Launch A Server"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
37
   "metadata": {},
Chayenne's avatar
Chayenne committed
38
39
   "outputs": [],
   "source": [
Chayenne's avatar
Chayenne committed
40
    "import requests\n",
41
    "from sglang.test.test_utils import is_in_ci\n",
Chayenne's avatar
Chayenne committed
42
    "\n",
43
44
45
46
47
48
49
50
51
    "if is_in_ci():\n",
    "    from patch import launch_server_cmd\n",
    "else:\n",
    "    from sglang.utils import launch_server_cmd\n",
    "\n",
    "from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
    "\n",
    "\n",
    "server_process, port = launch_server_cmd(\n",
52
    "    \"python3 -m sglang.launch_server --model-path qwen/qwen2.5-0.5b-instruct --host 0.0.0.0\"\n",
Chayenne's avatar
Chayenne committed
53
    ")\n",
54
55
56
57
    "## To run qwen2.5-0.5b-instruct model on the Ascend-Npu, you can execute the following command:\n",
    "# server_process, port = launch_server_cmd(\n",
    "#     \"python3 -m sglang.launch_server --model-path qwen/qwen2.5-0.5b-instruct --host 0.0.0.0 --device npu --tp 2 --attention-backend torch_native\"\n",
    "# )\n",
Chayenne's avatar
Chayenne committed
58
    "\n",
59
    "wait_for_server(f\"http://localhost:{port}\")"
Chayenne's avatar
Chayenne committed
60
61
62
63
64
65
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
66
    "## Generate (text generation model)\n",
67
    "Generate completions. This is similar to the `/v1/completions` in OpenAI API. Detailed parameters can be found in the [sampling parameters](./sampling_params.md)."
Chayenne's avatar
Chayenne committed
68
69
70
71
72
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
73
   "metadata": {},
Chayenne's avatar
Chayenne committed
74
75
   "outputs": [],
   "source": [
76
    "url = f\"http://localhost:{port}/generate\"\n",
Chayenne's avatar
Chayenne committed
77
    "data = {\"text\": \"What is the capital of France?\"}\n",
Chayenne's avatar
Chayenne committed
78
79
    "\n",
    "response = requests.post(url, json=data)\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
80
    "print_highlight(response.json())"
Chayenne's avatar
Chayenne committed
81
82
   ]
  },
83
84
85
86
87
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": []
  },
Chayenne's avatar
Chayenne committed
88
89
90
91
92
93
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Get Model Info\n",
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
94
    "Get the information of the model.\n",
Chayenne's avatar
Chayenne committed
95
96
    "\n",
    "- `model_path`: The path/name of the model.\n",
Chayenne's avatar
Chayenne committed
97
98
    "- `is_generation`: Whether the model is used as generation model or embedding model.\n",
    "- `tokenizer_path`: The path/name of the tokenizer."
Chayenne's avatar
Chayenne committed
99
100
101
102
103
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
104
   "metadata": {},
Chayenne's avatar
Chayenne committed
105
106
   "outputs": [],
   "source": [
107
    "url = f\"http://localhost:{port}/get_model_info\"\n",
Chayenne's avatar
Chayenne committed
108
109
110
111
    "\n",
    "response = requests.get(url)\n",
    "response_json = response.json()\n",
    "print_highlight(response_json)\n",
112
    "assert response_json[\"model_path\"] == \"qwen/qwen2.5-0.5b-instruct\"\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
113
    "assert response_json[\"is_generation\"] is True\n",
114
    "assert response_json[\"tokenizer_path\"] == \"qwen/qwen2.5-0.5b-instruct\"\n",
Chayenne's avatar
Chayenne committed
115
    "assert response_json.keys() == {\"model_path\", \"is_generation\", \"tokenizer_path\"}"
Chayenne's avatar
Chayenne committed
116
117
118
119
120
121
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
122
123
124
125
126
127
    "## Get Server Info\n",
    "Gets the server information including CLI arguments, token limits, and memory pool sizes.\n",
    "- Note: `get_server_info` merges the following deprecated endpoints:\n",
    "  - `get_server_args`\n",
    "  - `get_memory_pool_size` \n",
    "  - `get_max_total_num_tokens`"
Chayenne's avatar
Chayenne committed
128
129
130
131
132
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
133
   "metadata": {},
Chayenne's avatar
Chayenne committed
134
135
   "outputs": [],
   "source": [
136
    "# get_server_info\n",
Chayenne's avatar
Chayenne committed
137
    "\n",
138
    "url = f\"http://localhost:{port}/get_server_info\"\n",
Chayenne's avatar
Chayenne committed
139
140
141
142
143
144
145
146
147
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
148
149
150
    "## Health Check\n",
    "- `/health`: Check the health of the server.\n",
    "- `/health_generate`: Check the health of the server by generating one token."
Chayenne's avatar
Chayenne committed
151
152
153
154
155
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
156
   "metadata": {},
Chayenne's avatar
Chayenne committed
157
158
   "outputs": [],
   "source": [
159
    "url = f\"http://localhost:{port}/health_generate\"\n",
Chayenne's avatar
Chayenne committed
160
    "\n",
161
    "response = requests.get(url)\n",
Chayenne's avatar
Chayenne committed
162
163
164
165
166
167
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
168
   "metadata": {},
Chayenne's avatar
Chayenne committed
169
170
   "outputs": [],
   "source": [
171
    "url = f\"http://localhost:{port}/health\"\n",
Chayenne's avatar
Chayenne committed
172
173
174
175
176
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.text)"
   ]
  },
177
178
179
180
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
181
    "## Flush Cache\n",
182
    "\n",
183
    "Flush the radix cache. It will be automatically triggered when the model weights are updated by the `/update_weights` API."
184
185
186
187
188
189
190
191
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
192
    "# flush cache\n",
193
    "\n",
194
    "url = f\"http://localhost:{port}/flush_cache\"\n",
195
    "\n",
196
    "response = requests.post(url)\n",
197
198
199
    "print_highlight(response.text)"
   ]
  },
Chayenne's avatar
Chayenne committed
200
201
202
203
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
204
    "## Update Weights From Disk\n",
Chayenne's avatar
Chayenne committed
205
    "\n",
Chayenne's avatar
Chayenne committed
206
207
208
    "Update model weights from disk without restarting the server. Only applicable for models with the same architecture and parameter size.\n",
    "\n",
    "SGLang support `update_weights_from_disk` API for continuous evaluation during training (save checkpoint to disk and update weights from disk).\n"
Chayenne's avatar
Chayenne committed
209
210
211
212
213
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
214
   "metadata": {},
Chayenne's avatar
Chayenne committed
215
216
217
218
   "outputs": [],
   "source": [
    "# successful update with same architecture and size\n",
    "\n",
219
    "url = f\"http://localhost:{port}/update_weights_from_disk\"\n",
220
    "data = {\"model_path\": \"qwen/qwen2.5-0.5b-instruct\"}\n",
Chayenne's avatar
Chayenne committed
221
222
223
    "\n",
    "response = requests.post(url, json=data)\n",
    "print_highlight(response.text)\n",
224
    "assert response.json()[\"success\"] is True\n",
225
    "assert response.json()[\"message\"] == \"Succeeded to update model weights.\""
Chayenne's avatar
Chayenne committed
226
227
228
229
230
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
231
   "metadata": {},
Chayenne's avatar
Chayenne committed
232
233
   "outputs": [],
   "source": [
234
    "# failed update with different parameter size or wrong name\n",
Chayenne's avatar
Chayenne committed
235
    "\n",
236
    "url = f\"http://localhost:{port}/update_weights_from_disk\"\n",
237
    "data = {\"model_path\": \"qwen/qwen2.5-0.5b-instruct-wrong\"}\n",
Chayenne's avatar
Chayenne committed
238
239
240
241
    "\n",
    "response = requests.post(url, json=data)\n",
    "response_json = response.json()\n",
    "print_highlight(response_json)\n",
242
    "assert response_json[\"success\"] is False\n",
Chayenne's avatar
Chayenne committed
243
    "assert response_json[\"message\"] == (\n",
244
    "    \"Failed to get weights iterator: \"\n",
245
    "    \"qwen/qwen2.5-0.5b-instruct-wrong\"\n",
246
    "    \" (repository not found).\"\n",
Chayenne's avatar
Chayenne committed
247
248
249
    ")"
   ]
  },
250
251
252
253
254
255
256
257
258
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
Chayenne's avatar
Chayenne committed
259
260
261
262
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
263
    "## Encode (embedding model)\n",
Chayenne's avatar
Chayenne committed
264
    "\n",
Chayenne's avatar
Chayenne committed
265
266
    "Encode text into embeddings. Note that this API is only available for [embedding models](openai_api_embeddings.html#openai-apis-embedding) and will raise an error for generation models.\n",
    "Therefore, we launch a new server to server an embedding model."
Chayenne's avatar
Chayenne committed
267
268
269
270
271
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
272
   "metadata": {},
Chayenne's avatar
Chayenne committed
273
274
   "outputs": [],
   "source": [
275
    "embedding_process, port = launch_server_cmd(\n",
Chayenne's avatar
Chayenne committed
276
    "    \"\"\"\n",
277
    "python3 -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-1.5B-instruct \\\n",
278
    "    --host 0.0.0.0 --is-embedding\n",
Chayenne's avatar
Chayenne committed
279
280
281
    "\"\"\"\n",
    ")\n",
    "\n",
282
    "wait_for_server(f\"http://localhost:{port}\")"
Chayenne's avatar
Chayenne committed
283
284
285
286
287
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
288
   "metadata": {},
Chayenne's avatar
Chayenne committed
289
290
291
292
   "outputs": [],
   "source": [
    "# successful encode for embedding model\n",
    "\n",
293
    "url = f\"http://localhost:{port}/encode\"\n",
294
    "data = {\"model\": \"Alibaba-NLP/gte-Qwen2-1.5B-instruct\", \"text\": \"Once upon a time\"}\n",
Chayenne's avatar
Chayenne committed
295
296
297
298
299
300
    "\n",
    "response = requests.post(url, json=data)\n",
    "response_json = response.json()\n",
    "print_highlight(f\"Text embedding (first 10): {response_json['embedding'][:10]}\")"
   ]
  },
301
302
303
304
305
306
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
307
    "terminate_process(embedding_process)"
308
309
   ]
  },
Chayenne's avatar
Chayenne committed
310
311
312
313
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
314
    "## Classify (reward model)\n",
Chayenne's avatar
Chayenne committed
315
    "\n",
316
    "SGLang Runtime also supports reward models. Here we use a reward model to classify the quality of pairwise generations."
Chayenne's avatar
Chayenne committed
317
318
319
320
321
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
322
   "metadata": {},
Chayenne's avatar
Chayenne committed
323
324
   "outputs": [],
   "source": [
325
    "terminate_process(embedding_process)\n",
Chayenne's avatar
Chayenne committed
326
327
328
329
    "\n",
    "# Note that SGLang now treats embedding models and reward models as the same type of models.\n",
    "# This will be updated in the future.\n",
    "\n",
330
    "reward_process, port = launch_server_cmd(\n",
Chayenne's avatar
Chayenne committed
331
    "    \"\"\"\n",
332
    "python3 -m sglang.launch_server --model-path Skywork/Skywork-Reward-Llama-3.1-8B-v0.2 --host 0.0.0.0 --is-embedding\n",
Chayenne's avatar
Chayenne committed
333
334
335
    "\"\"\"\n",
    ")\n",
    "\n",
336
    "wait_for_server(f\"http://localhost:{port}\")"
Chayenne's avatar
Chayenne committed
337
338
339
340
341
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
342
   "metadata": {},
Chayenne's avatar
Chayenne committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
   "outputs": [],
   "source": [
    "from transformers import AutoTokenizer\n",
    "\n",
    "PROMPT = (\n",
    "    \"What is the range of the numeric output of a sigmoid node in a neural network?\"\n",
    ")\n",
    "\n",
    "RESPONSE1 = \"The output of a sigmoid node is bounded between -1 and 1.\"\n",
    "RESPONSE2 = \"The output of a sigmoid node is bounded between 0 and 1.\"\n",
    "\n",
    "CONVS = [\n",
    "    [{\"role\": \"user\", \"content\": PROMPT}, {\"role\": \"assistant\", \"content\": RESPONSE1}],\n",
    "    [{\"role\": \"user\", \"content\": PROMPT}, {\"role\": \"assistant\", \"content\": RESPONSE2}],\n",
    "]\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"Skywork/Skywork-Reward-Llama-3.1-8B-v0.2\")\n",
    "prompts = tokenizer.apply_chat_template(CONVS, tokenize=False)\n",
    "\n",
362
    "url = f\"http://localhost:{port}/classify\"\n",
Chayenne's avatar
Chayenne committed
363
    "data = {\"model\": \"Skywork/Skywork-Reward-Llama-3.1-8B-v0.2\", \"text\": prompts}\n",
Chayenne's avatar
Chayenne committed
364
365
366
367
368
369
    "\n",
    "responses = requests.post(url, json=data).json()\n",
    "for response in responses:\n",
    "    print_highlight(f\"reward: {response['embedding'][0]}\")"
   ]
  },
Chayenne's avatar
Chayenne committed
370
371
  {
   "cell_type": "code",
372
373
   "execution_count": null,
   "metadata": {},
Chayenne's avatar
Chayenne committed
374
375
   "outputs": [],
   "source": [
376
    "terminate_process(reward_process)"
Chayenne's avatar
Chayenne committed
377
   ]
378
  },
379
380
381
382
383
384
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Capture expert selection distribution in MoE models\n",
    "\n",
385
386
387
    "SGLang Runtime supports recording the number of times an expert is selected in a MoE model run for each expert in the model. This is useful when analyzing the throughput of the model and plan for optimization.\n",
    "\n",
    "*Note: We only print out the first 10 lines of the csv below for better readability. Please adjust accordingly if you want to analyze the results more deeply.*"
388
389
390
391
392
393
394
395
396
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "expert_record_server_process, port = launch_server_cmd(\n",
397
    "    \"python3 -m sglang.launch_server --model-path Qwen/Qwen1.5-MoE-A2.7B --host 0.0.0.0 --expert-distribution-recorder-mode stat\"\n",
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "response = requests.post(f\"http://localhost:{port}/start_expert_distribution_record\")\n",
    "print_highlight(response)\n",
    "\n",
    "url = f\"http://localhost:{port}/generate\"\n",
    "data = {\"text\": \"What is the capital of France?\"}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "print_highlight(response.json())\n",
    "\n",
    "response = requests.post(f\"http://localhost:{port}/stop_expert_distribution_record\")\n",
    "print_highlight(response)\n",
    "\n",
    "response = requests.post(f\"http://localhost:{port}/dump_expert_distribution_record\")\n",
422
    "print_highlight(response)"
423
424
425
426
427
428
429
430
431
432
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(expert_record_server_process)"
   ]
Chayenne's avatar
Chayenne committed
433
434
435
436
437
438
439
440
441
442
443
444
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
445
   "pygments_lexer": "ipython3"
Chayenne's avatar
Chayenne committed
446
447
448
449
450
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}