native_api.ipynb 10.4 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
7
    "# Native APIs\n",
Chayenne's avatar
Chayenne committed
8
    "\n",
Chayenne's avatar
Chayenne committed
9
    "Apart from the OpenAI compatible APIs, the SGLang Runtime also provides its native server APIs. We introduce these following APIs:\n",
Chayenne's avatar
Chayenne committed
10
    "\n",
Chayenne's avatar
Chayenne committed
11
    "- `/generate` (text generation model)\n",
Chayenne's avatar
Chayenne committed
12
13
14
15
16
17
    "- `/get_server_args`\n",
    "- `/get_model_info`\n",
    "- `/health`\n",
    "- `/health_generate`\n",
    "- `/flush_cache`\n",
    "- `/get_memory_pool_size`\n",
Chayenne's avatar
Chayenne committed
18
    "- `/update_weights`\n",
Chayenne's avatar
Chayenne committed
19
    "- `/encode`(embedding model)\n",
20
    "- `/classify`(reward model)\n",
Chayenne's avatar
Chayenne committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
    "\n",
    "We mainly use `requests` to test these APIs in the following examples. You can also use `curl`."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Launch A Server"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
35
   "metadata": {},
Chayenne's avatar
Chayenne committed
36
37
38
39
40
41
42
43
44
   "outputs": [],
   "source": [
    "from sglang.utils import (\n",
    "    execute_shell_command,\n",
    "    wait_for_server,\n",
    "    terminate_process,\n",
    "    print_highlight,\n",
    ")\n",
    "\n",
Chayenne's avatar
Chayenne committed
45
46
    "import requests\n",
    "\n",
Chayenne's avatar
Chayenne committed
47
    "server_process = execute_shell_command(\n",
Chayenne's avatar
Chayenne committed
48
    "    \"\"\"\n",
Chayenne's avatar
Chayenne committed
49
50
51
52
53
54
55
56
57
58
59
    "python3 -m sglang.launch_server --model-path meta-llama/Llama-3.2-1B-Instruct --port=30010\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(\"http://localhost:30010\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
60
    "## Generate (text generation model)\n",
61
    "Generate completions. This is similar to the `/v1/completions` in OpenAI API. Detailed parameters can be found in the [sampling parameters](../references/sampling_params.md)."
Chayenne's avatar
Chayenne committed
62
63
64
65
66
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
67
   "metadata": {},
Chayenne's avatar
Chayenne committed
68
69
70
   "outputs": [],
   "source": [
    "url = \"http://localhost:30010/generate\"\n",
Chayenne's avatar
Chayenne committed
71
    "data = {\"text\": \"What is the capital of France?\"}\n",
Chayenne's avatar
Chayenne committed
72
73
    "\n",
    "response = requests.post(url, json=data)\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
74
    "print_highlight(response.json())"
Chayenne's avatar
Chayenne committed
75
76
77
78
79
80
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
81
    "## Get Server Args\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
82
    "Get the arguments of a server."
Chayenne's avatar
Chayenne committed
83
84
85
86
87
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
88
   "metadata": {},
Chayenne's avatar
Chayenne committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
   "outputs": [],
   "source": [
    "url = \"http://localhost:30010/get_server_args\"\n",
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.json())"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Get Model Info\n",
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
103
    "Get the information of the model.\n",
Chayenne's avatar
Chayenne committed
104
105
106
107
108
109
110
111
    "\n",
    "- `model_path`: The path/name of the model.\n",
    "- `is_generation`: Whether the model is used as generation model or embedding model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
112
   "metadata": {},
Chayenne's avatar
Chayenne committed
113
114
115
116
117
118
119
120
   "outputs": [],
   "source": [
    "url = \"http://localhost:30010/get_model_info\"\n",
    "\n",
    "response = requests.get(url)\n",
    "response_json = response.json()\n",
    "print_highlight(response_json)\n",
    "assert response_json[\"model_path\"] == \"meta-llama/Llama-3.2-1B-Instruct\"\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
121
    "assert response_json[\"is_generation\"] is True\n",
Chayenne's avatar
Chayenne committed
122
123
124
125
126
127
128
    "assert response_json.keys() == {\"model_path\", \"is_generation\"}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
129
    "## Health Check\n",
Chayenne's avatar
Chayenne committed
130
131
132
133
134
135
136
    "- `/health`: Check the health of the server.\n",
    "- `/health_generate`: Check the health of the server by generating one token."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
137
   "metadata": {},
Chayenne's avatar
Chayenne committed
138
139
140
141
142
143
144
145
146
147
148
   "outputs": [],
   "source": [
    "url = \"http://localhost:30010/health_generate\"\n",
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
149
   "metadata": {},
Chayenne's avatar
Chayenne committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163
   "outputs": [],
   "source": [
    "url = \"http://localhost:30010/health\"\n",
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Flush Cache\n",
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
164
    "Flush the radix cache. It will be automatically triggered when the model weights are updated by the `/update_weights` API."
Chayenne's avatar
Chayenne committed
165
166
167
168
169
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
170
   "metadata": {},
Chayenne's avatar
Chayenne committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
   "outputs": [],
   "source": [
    "# flush cache\n",
    "\n",
    "url = \"http://localhost:30010/flush_cache\"\n",
    "\n",
    "response = requests.post(url)\n",
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Get Memory Pool Size\n",
    "\n",
    "Get the memory pool size in number of tokens.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
193
   "metadata": {},
Chayenne's avatar
Chayenne committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
   "outputs": [],
   "source": [
    "# get_memory_pool_size\n",
    "\n",
    "url = \"http://localhost:30010/get_memory_pool_size\"\n",
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Update Weights\n",
    "\n",
    "Update model weights without restarting the server. Use for continuous evaluation during training. Only applicable for models with the same architecture and parameter size."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
216
   "metadata": {},
Chayenne's avatar
Chayenne committed
217
218
219
220
221
222
223
224
225
   "outputs": [],
   "source": [
    "# successful update with same architecture and size\n",
    "\n",
    "url = \"http://localhost:30010/update_weights\"\n",
    "data = {\"model_path\": \"meta-llama/Llama-3.2-1B\"}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "print_highlight(response.text)\n",
226
    "assert response.json()[\"success\"] is True\n",
Chayenne's avatar
Chayenne committed
227
228
229
230
231
232
233
    "assert response.json()[\"message\"] == \"Succeeded to update model weights.\"\n",
    "assert response.json().keys() == {\"success\", \"message\"}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
234
   "metadata": {},
Chayenne's avatar
Chayenne committed
235
236
237
238
239
240
241
242
243
244
   "outputs": [],
   "source": [
    "# failed update with different parameter size\n",
    "\n",
    "url = \"http://localhost:30010/update_weights\"\n",
    "data = {\"model_path\": \"meta-llama/Llama-3.2-3B\"}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "response_json = response.json()\n",
    "print_highlight(response_json)\n",
245
    "assert response_json[\"success\"] is False\n",
Chayenne's avatar
Chayenne committed
246
247
248
249
250
251
252
    "assert response_json[\"message\"] == (\n",
    "    \"Failed to update weights: The size of tensor a (2048) must match \"\n",
    "    \"the size of tensor b (3072) at non-singleton dimension 1.\\n\"\n",
    "    \"Rolling back to original weights.\"\n",
    ")"
   ]
  },
Chayenne's avatar
Chayenne committed
253
254
255
256
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
257
    "## Encode (embedding model)\n",
Chayenne's avatar
Chayenne committed
258
    "\n",
Chayenne's avatar
Chayenne committed
259
260
    "Encode text into embeddings. Note that this API is only available for [embedding models](openai_api_embeddings.html#openai-apis-embedding) and will raise an error for generation models.\n",
    "Therefore, we launch a new server to server an embedding model."
Chayenne's avatar
Chayenne committed
261
262
263
264
265
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
266
   "metadata": {},
Chayenne's avatar
Chayenne committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
   "outputs": [],
   "source": [
    "terminate_process(server_process)\n",
    "\n",
    "embedding_process = execute_shell_command(\n",
    "    \"\"\"\n",
    "python -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-7B-instruct \\\n",
    "    --port 30020 --host 0.0.0.0 --is-embedding\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(\"http://localhost:30020\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
284
   "metadata": {},
Chayenne's avatar
Chayenne committed
285
286
287
288
289
290
291
292
293
294
295
296
   "outputs": [],
   "source": [
    "# successful encode for embedding model\n",
    "\n",
    "url = \"http://localhost:30020/encode\"\n",
    "data = {\"model\": \"Alibaba-NLP/gte-Qwen2-7B-instruct\", \"text\": \"Once upon a time\"}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "response_json = response.json()\n",
    "print_highlight(f\"Text embedding (first 10): {response_json['embedding'][:10]}\")"
   ]
  },
Chayenne's avatar
Chayenne committed
297
298
299
300
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
301
    "## Classify (reward model)\n",
Chayenne's avatar
Chayenne committed
302
    "\n",
303
    "SGLang Runtime also supports reward models. Here we use a reward model to classify the quality of pairwise generations."
Chayenne's avatar
Chayenne committed
304
305
306
307
308
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
309
   "metadata": {},
Chayenne's avatar
Chayenne committed
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
   "outputs": [],
   "source": [
    "terminate_process(embedding_process)\n",
    "\n",
    "# Note that SGLang now treats embedding models and reward models as the same type of models.\n",
    "# This will be updated in the future.\n",
    "\n",
    "reward_process = execute_shell_command(\n",
    "    \"\"\"\n",
    "python -m sglang.launch_server --model-path Skywork/Skywork-Reward-Llama-3.1-8B-v0.2 --port 30030 --host 0.0.0.0 --is-embedding\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(\"http://localhost:30030\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
329
   "metadata": {},
Chayenne's avatar
Chayenne committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
   "outputs": [],
   "source": [
    "from transformers import AutoTokenizer\n",
    "\n",
    "PROMPT = (\n",
    "    \"What is the range of the numeric output of a sigmoid node in a neural network?\"\n",
    ")\n",
    "\n",
    "RESPONSE1 = \"The output of a sigmoid node is bounded between -1 and 1.\"\n",
    "RESPONSE2 = \"The output of a sigmoid node is bounded between 0 and 1.\"\n",
    "\n",
    "CONVS = [\n",
    "    [{\"role\": \"user\", \"content\": PROMPT}, {\"role\": \"assistant\", \"content\": RESPONSE1}],\n",
    "    [{\"role\": \"user\", \"content\": PROMPT}, {\"role\": \"assistant\", \"content\": RESPONSE2}],\n",
    "]\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"Skywork/Skywork-Reward-Llama-3.1-8B-v0.2\")\n",
    "prompts = tokenizer.apply_chat_template(CONVS, tokenize=False)\n",
    "\n",
349
    "url = \"http://localhost:30030/classify\"\n",
Chayenne's avatar
Chayenne committed
350
    "data = {\"model\": \"Skywork/Skywork-Reward-Llama-3.1-8B-v0.2\", \"text\": prompts}\n",
Chayenne's avatar
Chayenne committed
351
352
353
354
355
356
    "\n",
    "responses = requests.post(url, json=data).json()\n",
    "for response in responses:\n",
    "    print_highlight(f\"reward: {response['embedding'][0]}\")"
   ]
  },
Chayenne's avatar
Chayenne committed
357
358
  {
   "cell_type": "code",
359
360
   "execution_count": null,
   "metadata": {},
Chayenne's avatar
Chayenne committed
361
362
   "outputs": [],
   "source": [
Chayenne's avatar
Chayenne committed
363
    "terminate_process(reward_process)"
Chayenne's avatar
Chayenne committed
364
365
366
367
368
369
370
371
372
373
374
375
376
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
377
   "pygments_lexer": "ipython3"
Chayenne's avatar
Chayenne committed
378
379
380
381
382
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}