native_api.ipynb 12.8 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
7
    "# SGLang Native APIs\n",
Chayenne's avatar
Chayenne committed
8
    "\n",
Chayenne's avatar
Chayenne committed
9
    "Apart from the OpenAI compatible APIs, the SGLang Runtime also provides its native server APIs. We introduce these following APIs:\n",
Chayenne's avatar
Chayenne committed
10
    "\n",
Chayenne's avatar
Chayenne committed
11
    "- `/generate` (text generation model)\n",
Chayenne's avatar
Chayenne committed
12
    "- `/get_model_info`\n",
13
    "- `/get_server_info`\n",
Chayenne's avatar
Chayenne committed
14
15
16
    "- `/health`\n",
    "- `/health_generate`\n",
    "- `/flush_cache`\n",
Chayenne's avatar
Chayenne committed
17
    "- `/update_weights`\n",
Chayenne's avatar
Chayenne committed
18
    "- `/encode`(embedding model)\n",
19
    "- `/classify`(reward model)\n",
Chayenne's avatar
Chayenne committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
    "\n",
    "We mainly use `requests` to test these APIs in the following examples. You can also use `curl`."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Launch A Server"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
34
   "metadata": {},
Chayenne's avatar
Chayenne committed
35
36
   "outputs": [],
   "source": [
Chayenne's avatar
Chayenne committed
37
    "import requests\n",
38
    "from sglang.test.test_utils import is_in_ci\n",
Chayenne's avatar
Chayenne committed
39
    "\n",
40
41
42
43
44
45
46
47
48
49
    "if is_in_ci():\n",
    "    from patch import launch_server_cmd\n",
    "else:\n",
    "    from sglang.utils import launch_server_cmd\n",
    "\n",
    "from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
    "\n",
    "\n",
    "server_process, port = launch_server_cmd(\n",
    "    \"python -m sglang.launch_server --model-path meta-llama/Llama-3.2-1B-Instruct --host 0.0.0.0\"\n",
Chayenne's avatar
Chayenne committed
50
51
    ")\n",
    "\n",
52
    "wait_for_server(f\"http://localhost:{port}\")"
Chayenne's avatar
Chayenne committed
53
54
55
56
57
58
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
59
    "## Generate (text generation model)\n",
60
    "Generate completions. This is similar to the `/v1/completions` in OpenAI API. Detailed parameters can be found in the [sampling parameters](https://docs.sglang.ai/backend/sampling_params.html)."
Chayenne's avatar
Chayenne committed
61
62
63
64
65
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
66
   "metadata": {},
Chayenne's avatar
Chayenne committed
67
68
   "outputs": [],
   "source": [
69
    "url = f\"http://localhost:{port}/generate\"\n",
Chayenne's avatar
Chayenne committed
70
    "data = {\"text\": \"What is the capital of France?\"}\n",
Chayenne's avatar
Chayenne committed
71
72
    "\n",
    "response = requests.post(url, json=data)\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
73
    "print_highlight(response.json())"
Chayenne's avatar
Chayenne committed
74
75
76
77
78
79
80
81
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Get Model Info\n",
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
82
    "Get the information of the model.\n",
Chayenne's avatar
Chayenne committed
83
84
    "\n",
    "- `model_path`: The path/name of the model.\n",
Chayenne's avatar
Chayenne committed
85
86
    "- `is_generation`: Whether the model is used as generation model or embedding model.\n",
    "- `tokenizer_path`: The path/name of the tokenizer."
Chayenne's avatar
Chayenne committed
87
88
89
90
91
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
92
   "metadata": {},
Chayenne's avatar
Chayenne committed
93
94
   "outputs": [],
   "source": [
95
    "url = f\"http://localhost:{port}/get_model_info\"\n",
Chayenne's avatar
Chayenne committed
96
97
98
99
100
    "\n",
    "response = requests.get(url)\n",
    "response_json = response.json()\n",
    "print_highlight(response_json)\n",
    "assert response_json[\"model_path\"] == \"meta-llama/Llama-3.2-1B-Instruct\"\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
101
    "assert response_json[\"is_generation\"] is True\n",
Chayenne's avatar
Chayenne committed
102
103
    "assert response_json[\"tokenizer_path\"] == \"meta-llama/Llama-3.2-1B-Instruct\"\n",
    "assert response_json.keys() == {\"model_path\", \"is_generation\", \"tokenizer_path\"}"
Chayenne's avatar
Chayenne committed
104
105
106
107
108
109
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
110
111
112
113
114
115
    "## Get Server Info\n",
    "Gets the server information including CLI arguments, token limits, and memory pool sizes.\n",
    "- Note: `get_server_info` merges the following deprecated endpoints:\n",
    "  - `get_server_args`\n",
    "  - `get_memory_pool_size` \n",
    "  - `get_max_total_num_tokens`"
Chayenne's avatar
Chayenne committed
116
117
118
119
120
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
121
   "metadata": {},
Chayenne's avatar
Chayenne committed
122
123
   "outputs": [],
   "source": [
124
    "# get_server_info\n",
Chayenne's avatar
Chayenne committed
125
    "\n",
126
    "url = f\"http://localhost:{port}/get_server_info\"\n",
Chayenne's avatar
Chayenne committed
127
128
129
130
131
132
133
134
135
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
136
137
138
    "## Health Check\n",
    "- `/health`: Check the health of the server.\n",
    "- `/health_generate`: Check the health of the server by generating one token."
Chayenne's avatar
Chayenne committed
139
140
141
142
143
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
144
   "metadata": {},
Chayenne's avatar
Chayenne committed
145
146
   "outputs": [],
   "source": [
147
    "url = f\"http://localhost:{port}/health_generate\"\n",
Chayenne's avatar
Chayenne committed
148
    "\n",
149
    "response = requests.get(url)\n",
Chayenne's avatar
Chayenne committed
150
151
152
153
154
155
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
156
   "metadata": {},
Chayenne's avatar
Chayenne committed
157
158
   "outputs": [],
   "source": [
159
    "url = f\"http://localhost:{port}/health\"\n",
Chayenne's avatar
Chayenne committed
160
161
162
163
164
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.text)"
   ]
  },
165
166
167
168
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
169
    "## Flush Cache\n",
170
    "\n",
171
    "Flush the radix cache. It will be automatically triggered when the model weights are updated by the `/update_weights` API."
172
173
174
175
176
177
178
179
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
180
    "# flush cache\n",
181
    "\n",
182
    "url = f\"http://localhost:{port}/flush_cache\"\n",
183
    "\n",
184
    "response = requests.post(url)\n",
185
186
187
    "print_highlight(response.text)"
   ]
  },
Chayenne's avatar
Chayenne committed
188
189
190
191
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
192
    "## Update Weights From Disk\n",
Chayenne's avatar
Chayenne committed
193
    "\n",
Chayenne's avatar
Chayenne committed
194
195
196
    "Update model weights from disk without restarting the server. Only applicable for models with the same architecture and parameter size.\n",
    "\n",
    "SGLang support `update_weights_from_disk` API for continuous evaluation during training (save checkpoint to disk and update weights from disk).\n"
Chayenne's avatar
Chayenne committed
197
198
199
200
201
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
202
   "metadata": {},
Chayenne's avatar
Chayenne committed
203
204
205
206
   "outputs": [],
   "source": [
    "# successful update with same architecture and size\n",
    "\n",
207
    "url = f\"http://localhost:{port}/update_weights_from_disk\"\n",
Chayenne's avatar
Chayenne committed
208
209
210
211
    "data = {\"model_path\": \"meta-llama/Llama-3.2-1B\"}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "print_highlight(response.text)\n",
212
    "assert response.json()[\"success\"] is True\n",
213
    "assert response.json()[\"message\"] == \"Succeeded to update model weights.\""
Chayenne's avatar
Chayenne committed
214
215
216
217
218
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
219
   "metadata": {},
Chayenne's avatar
Chayenne committed
220
221
   "outputs": [],
   "source": [
222
    "# failed update with different parameter size or wrong name\n",
Chayenne's avatar
Chayenne committed
223
    "\n",
224
    "url = f\"http://localhost:{port}/update_weights_from_disk\"\n",
225
    "data = {\"model_path\": \"meta-llama/Llama-3.2-1B-wrong\"}\n",
Chayenne's avatar
Chayenne committed
226
227
228
229
    "\n",
    "response = requests.post(url, json=data)\n",
    "response_json = response.json()\n",
    "print_highlight(response_json)\n",
230
    "assert response_json[\"success\"] is False\n",
Chayenne's avatar
Chayenne committed
231
    "assert response_json[\"message\"] == (\n",
232
233
234
    "    \"Failed to get weights iterator: \"\n",
    "    \"meta-llama/Llama-3.2-1B-wrong\"\n",
    "    \" (repository not found).\"\n",
Chayenne's avatar
Chayenne committed
235
236
237
    ")"
   ]
  },
Chayenne's avatar
Chayenne committed
238
239
240
241
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
242
    "## Encode (embedding model)\n",
Chayenne's avatar
Chayenne committed
243
    "\n",
Chayenne's avatar
Chayenne committed
244
245
    "Encode text into embeddings. Note that this API is only available for [embedding models](openai_api_embeddings.html#openai-apis-embedding) and will raise an error for generation models.\n",
    "Therefore, we launch a new server to server an embedding model."
Chayenne's avatar
Chayenne committed
246
247
248
249
250
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
251
   "metadata": {},
Chayenne's avatar
Chayenne committed
252
253
   "outputs": [],
   "source": [
254
    "terminate_process(server_process)\n",
Chayenne's avatar
Chayenne committed
255
    "\n",
256
    "embedding_process, port = launch_server_cmd(\n",
Chayenne's avatar
Chayenne committed
257
258
    "    \"\"\"\n",
    "python -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-7B-instruct \\\n",
259
    "    --host 0.0.0.0 --is-embedding\n",
Chayenne's avatar
Chayenne committed
260
261
262
    "\"\"\"\n",
    ")\n",
    "\n",
263
    "wait_for_server(f\"http://localhost:{port}\")"
Chayenne's avatar
Chayenne committed
264
265
266
267
268
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
269
   "metadata": {},
Chayenne's avatar
Chayenne committed
270
271
272
273
   "outputs": [],
   "source": [
    "# successful encode for embedding model\n",
    "\n",
274
    "url = f\"http://localhost:{port}/encode\"\n",
Chayenne's avatar
Chayenne committed
275
276
277
278
279
280
281
    "data = {\"model\": \"Alibaba-NLP/gte-Qwen2-7B-instruct\", \"text\": \"Once upon a time\"}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "response_json = response.json()\n",
    "print_highlight(f\"Text embedding (first 10): {response_json['embedding'][:10]}\")"
   ]
  },
282
283
284
285
286
287
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
288
    "terminate_process(embedding_process)"
289
290
   ]
  },
Chayenne's avatar
Chayenne committed
291
292
293
294
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
295
    "## Classify (reward model)\n",
Chayenne's avatar
Chayenne committed
296
    "\n",
297
    "SGLang Runtime also supports reward models. Here we use a reward model to classify the quality of pairwise generations."
Chayenne's avatar
Chayenne committed
298
299
300
301
302
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
303
   "metadata": {},
Chayenne's avatar
Chayenne committed
304
305
   "outputs": [],
   "source": [
306
    "terminate_process(embedding_process)\n",
Chayenne's avatar
Chayenne committed
307
308
309
310
    "\n",
    "# Note that SGLang now treats embedding models and reward models as the same type of models.\n",
    "# This will be updated in the future.\n",
    "\n",
311
    "reward_process, port = launch_server_cmd(\n",
Chayenne's avatar
Chayenne committed
312
    "    \"\"\"\n",
313
    "python -m sglang.launch_server --model-path Skywork/Skywork-Reward-Llama-3.1-8B-v0.2 --host 0.0.0.0 --is-embedding\n",
Chayenne's avatar
Chayenne committed
314
315
316
    "\"\"\"\n",
    ")\n",
    "\n",
317
    "wait_for_server(f\"http://localhost:{port}\")"
Chayenne's avatar
Chayenne committed
318
319
320
321
322
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
323
   "metadata": {},
Chayenne's avatar
Chayenne committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
   "outputs": [],
   "source": [
    "from transformers import AutoTokenizer\n",
    "\n",
    "PROMPT = (\n",
    "    \"What is the range of the numeric output of a sigmoid node in a neural network?\"\n",
    ")\n",
    "\n",
    "RESPONSE1 = \"The output of a sigmoid node is bounded between -1 and 1.\"\n",
    "RESPONSE2 = \"The output of a sigmoid node is bounded between 0 and 1.\"\n",
    "\n",
    "CONVS = [\n",
    "    [{\"role\": \"user\", \"content\": PROMPT}, {\"role\": \"assistant\", \"content\": RESPONSE1}],\n",
    "    [{\"role\": \"user\", \"content\": PROMPT}, {\"role\": \"assistant\", \"content\": RESPONSE2}],\n",
    "]\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"Skywork/Skywork-Reward-Llama-3.1-8B-v0.2\")\n",
    "prompts = tokenizer.apply_chat_template(CONVS, tokenize=False)\n",
    "\n",
343
    "url = f\"http://localhost:{port}/classify\"\n",
Chayenne's avatar
Chayenne committed
344
    "data = {\"model\": \"Skywork/Skywork-Reward-Llama-3.1-8B-v0.2\", \"text\": prompts}\n",
Chayenne's avatar
Chayenne committed
345
346
347
348
349
350
    "\n",
    "responses = requests.post(url, json=data).json()\n",
    "for response in responses:\n",
    "    print_highlight(f\"reward: {response['embedding'][0]}\")"
   ]
  },
Chayenne's avatar
Chayenne committed
351
352
  {
   "cell_type": "code",
353
354
   "execution_count": null,
   "metadata": {},
Chayenne's avatar
Chayenne committed
355
356
   "outputs": [],
   "source": [
357
    "terminate_process(reward_process)"
Chayenne's avatar
Chayenne committed
358
   ]
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Skip Tokenizer and Detokenizer\n",
    "\n",
    "SGLang Runtime also supports skip tokenizer and detokenizer. This is useful in cases like integrating with RLHF workflow."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
375
    "tokenizer_free_server_process, port = launch_server_cmd(\n",
376
    "    \"\"\"\n",
377
    "python3 -m sglang.launch_server --model-path meta-llama/Llama-3.2-1B-Instruct --skip-tokenizer-init\n",
378
379
380
    "\"\"\"\n",
    ")\n",
    "\n",
381
    "wait_for_server(f\"http://localhost:{port}\")"
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import AutoTokenizer\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"meta-llama/Llama-3.2-1B-Instruct\")\n",
    "\n",
    "input_text = \"What is the capital of France?\"\n",
    "\n",
    "input_tokens = tokenizer.encode(input_text)\n",
    "print_highlight(f\"Input Text: {input_text}\")\n",
    "print_highlight(f\"Tokenized Input: {input_tokens}\")\n",
    "\n",
    "response = requests.post(\n",
401
    "    f\"http://localhost:{port}/generate\",\n",
402
403
404
405
406
407
408
409
410
411
412
    "    json={\n",
    "        \"input_ids\": input_tokens,\n",
    "        \"sampling_params\": {\n",
    "            \"temperature\": 0,\n",
    "            \"max_new_tokens\": 256,\n",
    "            \"stop_token_ids\": [tokenizer.eos_token_id],\n",
    "        },\n",
    "        \"stream\": False,\n",
    "    },\n",
    ")\n",
    "output = response.json()\n",
413
    "output_tokens = output[\"output_ids\"]\n",
414
415
416
417
418
419
420
421
422
423
424
425
426
    "\n",
    "output_text = tokenizer.decode(output_tokens, skip_special_tokens=False)\n",
    "print_highlight(f\"Tokenized Output: {output_tokens}\")\n",
    "print_highlight(f\"Decoded Output: {output_text}\")\n",
    "print_highlight(f\"Output Text: {output['meta_info']['finish_reason']}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
427
    "terminate_process(tokenizer_free_server_process)"
428
   ]
Chayenne's avatar
Chayenne committed
429
430
431
432
433
434
435
436
437
438
439
440
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
441
   "pygments_lexer": "ipython3"
Chayenne's avatar
Chayenne committed
442
443
444
445
446
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}