test_generation_models.py 5.94 KB
Newer Older
1
2
3
4
5
6
7
8
"""
Usage:

To test a specific model:
1. Add it to ALL_OTHER_MODELS
2. Run `ONLY_RUN=Qwen/Qwen2-1.5B python3 -m unittest test_generation_models.TestGenerationModels.test_others`
"""

9
10
11
12
13
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
14

15
    http://www.apache.org/licenses/LICENSE-2.0
16

17
18
19
20
21
22
23
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

24
import dataclasses
25
import multiprocessing as mp
26
import os
27
import unittest
28
from typing import List
29
30
31
32

import torch

from sglang.test.runners import DEFAULT_PROMPTS, HFRunner, SRTRunner
33
from sglang.test.test_utils import calculate_rouge_l, is_in_ci
34

35

36
37
38
39
40
41
42
@dataclasses.dataclass
class ModelCase:
    model_path: str
    tp_size: int = 1
    prefill_tolerance: float = 5e-2
    decode_tolerance: float = 5e-2
    rouge_l_tolerance: float = 1
43
    skip_long_prompt: bool = False
44
45


46
# Popular models that run on the CI
47
CI_MODELS = [
48
    ModelCase("meta-llama/Llama-3.1-8B-Instruct"),
49
    ModelCase("google/gemma-2-2b"),
50
]
51

52
# All other models that do not run on the CI
53
54
ALL_OTHER_MODELS = [
    ModelCase("Qwen/Qwen2-1.5B"),
55
    ModelCase("Qwen/Qwen2.5-14B-Instruct"),
56
57
    ModelCase("HuggingFaceTB/SmolLM-135M-Instruct", skip_long_prompt=True),
    ModelCase("allenai/OLMo-1B-0724-hf", decode_tolerance=8e-2, skip_long_prompt=True),
58
    ModelCase("THUDM/glm-4-9b-chat"),
Chayenne's avatar
Chayenne committed
59
    ModelCase("openai-community/gpt2"),
Tanjiro's avatar
Tanjiro committed
60
    ModelCase("microsoft/Phi-3-small-8k-instruct"),
61
]
62

63
TORCH_DTYPES = [torch.float16]
64
65


66
class TestGenerationModels(unittest.TestCase):
67

68
69
    @classmethod
    def setUpClass(cls):
70
        mp.set_start_method("spawn", force=True)
71

72
    def assert_close_logits_and_output_strs(
73
        self,
74
75
76
        prompts: List[str],
        model_case: ModelCase,
        torch_dtype: torch.dtype,
77
    ) -> None:
78
79
80
81
82
83
84
        model_path = model_case.model_path
        prefill_tolerance, decode_tolerance, rouge_l_tolerance = (
            model_case.prefill_tolerance,
            model_case.decode_tolerance,
            model_case.rouge_l_tolerance,
        )
        max_new_tokens = 32
85

86
        with HFRunner(
87
88
89
            model_path,
            torch_dtype=torch_dtype,
            model_type="generation",
90
        ) as hf_runner:
91
            hf_outputs = hf_runner.forward(prompts, max_new_tokens=max_new_tokens)
92
93
94

        with SRTRunner(
            model_path,
95
            tp_size=model_case.tp_size,
96
            torch_dtype=torch_dtype,
97
            model_type="generation",
98
        ) as srt_runner:
99
            srt_outputs = srt_runner.forward(prompts, max_new_tokens=max_new_tokens)
100
101

        for i in range(len(prompts)):
102
            # Compare input logprobs
103
104
            hf_logprobs = torch.Tensor(hf_outputs.top_input_logprobs[i])
            srt_logprobs = torch.Tensor(srt_outputs.top_input_logprobs[i])
105
106
107
108
109
            input_len = hf_logprobs.shape[0]
            print(
                "prefill logprobs max_diff", torch.max(abs(hf_logprobs - srt_logprobs))
            )
            if input_len <= 100:
110
111
112
113
114
                assert torch.all(abs(hf_logprobs - srt_logprobs) < prefill_tolerance), (
                    f"prefill logprobs are not all close with model_path={model_path} prompts={prompts} "
                    f"prefill_tolerance={prefill_tolerance}."
                    f"{hf_logprobs=}, {srt_logprobs=}"
                )
115

116
            # Compare output logprobs
117
118
            hf_logprobs = torch.Tensor(hf_outputs.top_output_logprobs[i])
            srt_logprobs = torch.Tensor(srt_outputs.top_output_logprobs[i])
119

120
            print(
121
                "decode logprobs max_diff", torch.max(abs(hf_logprobs - srt_logprobs))
122
123
            )
            if input_len <= 100:
124
125
126
127
128
                assert torch.all(abs(hf_logprobs - srt_logprobs) < decode_tolerance), (
                    f"decode logprobs are not all close with model_path={model_path} prompts={prompts} "
                    f"decode_tolerance={decode_tolerance}."
                    f"{hf_logprobs=}, {srt_logprobs=}"
                )
129

130
131
132
        # Compare output strings
        print(f"{hf_outputs.output_strs=}")
        print(f"{srt_outputs.output_strs=}")
133
134
135
        rouge_l_scores = calculate_rouge_l(
            hf_outputs.output_strs, srt_outputs.output_strs
        )
136
        print(f"{rouge_l_scores=}")
137
        assert all(
138
139
140
141
142
            score >= rouge_l_tolerance for score in rouge_l_scores
        ), f"Not all ROUGE-L scores are greater than rouge_l_tolerance={rouge_l_tolerance}"

    def test_ci_models(self):
        for model_case in CI_MODELS:
143
            for torch_dtype in TORCH_DTYPES:
144
145
146
147
148
149
150

                # Skip long prompts for models that do not have a long context
                prompts = DEFAULT_PROMPTS
                if model_case.skip_long_prompt:
                    prompts = [p for p in DEFAULT_PROMPTS if len(p) < 1000]

                # Assert the logits and output strs are close
151
                self.assert_close_logits_and_output_strs(
152
                    prompts, model_case, torch_dtype
153
154
                )

155
    def test_others(self):
156
157
158
        if is_in_ci():
            return

159
        for model_case in ALL_OTHER_MODELS:
160
            # Only run a specified model
161
162
163
164
165
            if (
                "ONLY_RUN" in os.environ
                and os.environ["ONLY_RUN"] != model_case.model_path
            ):
                continue
166

167
            # Skip long prompts for models that do not have a long context
168
            prompts = DEFAULT_PROMPTS
169
            if model_case.skip_long_prompt:
170
171
172
173
                prompts = [p for p in DEFAULT_PROMPTS if len(p) < 1000]

            # Assert the logits and output strs are close
            self.assert_close_logits_and_output_strs(prompts, model_case, torch.float16)
174

175

176
if __name__ == "__main__":
Mingyi's avatar
Mingyi committed
177
    unittest.main()