test_generation_models.py 5.67 KB
Newer Older
1
2
3
4
5
6
7
8
"""
Usage:

To test a specific model:
1. Add it to ALL_OTHER_MODELS
2. Run `ONLY_RUN=Qwen/Qwen2-1.5B python3 -m unittest test_generation_models.TestGenerationModels.test_others`
"""

9
10
11
12
13
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
14

15
    http://www.apache.org/licenses/LICENSE-2.0
16

17
18
19
20
21
22
23
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

24
import dataclasses
25
import multiprocessing as mp
26
import os
27
import unittest
28
from typing import List
29
30
31
32

import torch

from sglang.test.runners import DEFAULT_PROMPTS, HFRunner, SRTRunner
33
from sglang.test.test_utils import calculate_rouge_l, is_in_ci
34

35

36
37
38
39
40
41
42
@dataclasses.dataclass
class ModelCase:
    model_path: str
    tp_size: int = 1
    prefill_tolerance: float = 5e-2
    decode_tolerance: float = 5e-2
    rouge_l_tolerance: float = 1
43
44


45
# Popular models that run on the CI
46
CI_MODELS = [
47
    ModelCase("meta-llama/Llama-3.1-8B-Instruct"),
48
49
    ModelCase("google/gemma-2-2b"),
]
50

51
# All other models that do not run on the CI
52
53
ALL_OTHER_MODELS = [
    ModelCase("Qwen/Qwen2-1.5B"),
54
    ModelCase("Qwen/Qwen2.5-14B-Instruct"),
55
    ModelCase("HuggingFaceTB/SmolLM-135M-Instruct"),
Jani Monoses's avatar
Jani Monoses committed
56
    ModelCase("allenai/OLMo-1B-0724-hf", decode_tolerance=8e-2),
57
]
58

59
TORCH_DTYPES = [torch.float16]
60
61


62
class TestGenerationModels(unittest.TestCase):
63
64
65
66
    @classmethod
    def setUpClass(cls):
        mp.set_start_method("spawn")

67
    def assert_close_logits_and_output_strs(
68
        self,
69
70
71
        prompts: List[str],
        model_case: ModelCase,
        torch_dtype: torch.dtype,
72
    ) -> None:
73
74
75
76
77
78
79
        model_path = model_case.model_path
        prefill_tolerance, decode_tolerance, rouge_l_tolerance = (
            model_case.prefill_tolerance,
            model_case.decode_tolerance,
            model_case.rouge_l_tolerance,
        )
        max_new_tokens = 32
80

81
        with HFRunner(
82
83
84
            model_path,
            torch_dtype=torch_dtype,
            model_type="generation",
85
        ) as hf_runner:
86
            hf_outputs = hf_runner.forward(prompts, max_new_tokens=max_new_tokens)
87
88
89

        with SRTRunner(
            model_path,
90
            tp_size=model_case.tp_size,
91
            torch_dtype=torch_dtype,
92
            model_type="generation",
93
        ) as srt_runner:
94
            srt_outputs = srt_runner.forward(prompts, max_new_tokens=max_new_tokens)
95
96

        for i in range(len(prompts)):
97
            # Compare input logprobs
98
99
            hf_logprobs = torch.Tensor(hf_outputs.top_input_logprobs[i])
            srt_logprobs = torch.Tensor(srt_outputs.top_input_logprobs[i])
100
101
102
103
104
            input_len = hf_logprobs.shape[0]
            print(
                "prefill logprobs max_diff", torch.max(abs(hf_logprobs - srt_logprobs))
            )
            if input_len <= 100:
105
106
107
108
109
                assert torch.all(abs(hf_logprobs - srt_logprobs) < prefill_tolerance), (
                    f"prefill logprobs are not all close with model_path={model_path} prompts={prompts} "
                    f"prefill_tolerance={prefill_tolerance}."
                    f"{hf_logprobs=}, {srt_logprobs=}"
                )
110

111
            # Compare output logprobs
112
113
            hf_logprobs = torch.Tensor(hf_outputs.top_output_logprobs[i])
            srt_logprobs = torch.Tensor(srt_outputs.top_output_logprobs[i])
114

115
            print(
116
                "decode logprobs max_diff", torch.max(abs(hf_logprobs - srt_logprobs))
117
118
            )
            if input_len <= 100:
119
120
121
122
123
                assert torch.all(abs(hf_logprobs - srt_logprobs) < decode_tolerance), (
                    f"decode logprobs are not all close with model_path={model_path} prompts={prompts} "
                    f"decode_tolerance={decode_tolerance}."
                    f"{hf_logprobs=}, {srt_logprobs=}"
                )
124

125
126
127
        # Compare output strings
        print(f"{hf_outputs.output_strs=}")
        print(f"{srt_outputs.output_strs=}")
128
129
130
        rouge_l_scores = calculate_rouge_l(
            hf_outputs.output_strs, srt_outputs.output_strs
        )
131
        print(f"{rouge_l_scores=}")
132
        assert all(
133
134
135
136
137
            score >= rouge_l_tolerance for score in rouge_l_scores
        ), f"Not all ROUGE-L scores are greater than rouge_l_tolerance={rouge_l_tolerance}"

    def test_ci_models(self):
        for model_case in CI_MODELS:
138
            for torch_dtype in TORCH_DTYPES:
139
140
                self.assert_close_logits_and_output_strs(
                    DEFAULT_PROMPTS, model_case, torch_dtype
141
142
                )

143
    def test_others(self):
144
145
146
        if is_in_ci():
            return

147
        for model_case in ALL_OTHER_MODELS:
148
            # Only run a specified model
149
150
151
152
153
            if (
                "ONLY_RUN" in os.environ
                and os.environ["ONLY_RUN"] != model_case.model_path
            ):
                continue
154
155
156

            # Skip long prompts for models that does not have a long context
            prompts = DEFAULT_PROMPTS
Jani Monoses's avatar
Jani Monoses committed
157
158
159
            if model_case.model_path in [
                "HuggingFaceTB/SmolLM-135M-Instruct",
                "allenai/OLMo-1B-0724-hf",
160
                "google/gemma-2-2b",  # There is a bug with new transformers library. This can only run with transformers==4.44
Jani Monoses's avatar
Jani Monoses committed
161
            ]:
162
163
164
165
                prompts = [p for p in DEFAULT_PROMPTS if len(p) < 1000]

            # Assert the logits and output strs are close
            self.assert_close_logits_and_output_strs(prompts, model_case, torch.float16)
166

167

168
if __name__ == "__main__":
Mingyi's avatar
Mingyi committed
169
    unittest.main()