test_generation_models.py 4.46 KB
Newer Older
1
2
3
4
5
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9
10
11
12
13
14
15
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

16
import multiprocessing as mp
17
18
19
20
21
22
23
import unittest

import torch

from sglang.test.runners import DEFAULT_PROMPTS, HFRunner, SRTRunner

MODELS = [
24
25
26
    ("meta-llama/Meta-Llama-3.1-8B-Instruct", 1, 1.1, 3e-2, 1),
    ("google/gemma-2-2b", 1, 3, 3e-2, 1),
    ("Alibaba-NLP/gte-Qwen2-1.5B-instruct", 1, None, 6e-2, 1),
27
28
29
30
]
TORCH_DTYPES = [torch.float16]


31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def lcs(X, Y):
    m = len(X)
    n = len(Y)
    L = [[0] * (n + 1) for _ in range(m + 1)]

    for i in range(m + 1):
        for j in range(n + 1):
            if i == 0 or j == 0:
                L[i][j] = 0
            elif X[i - 1] == Y[j - 1]:
                L[i][j] = L[i - 1][j - 1] + 1
            else:
                L[i][j] = max(L[i - 1][j], L[i][j - 1])

    return L[m][n]


def calculate_rouge_l(output_strs_list1, output_strs_list2):
    rouge_l_scores = []

    for s1, s2 in zip(output_strs_list1, output_strs_list2):
        lcs_len = lcs(s1, s2)
        precision = lcs_len / len(s1) if len(s1) > 0 else 0
        recall = lcs_len / len(s2) if len(s2) > 0 else 0
        if precision + recall > 0:
            fmeasure = (2 * precision * recall) / (precision + recall)
        else:
            fmeasure = 0.0
        rouge_l_scores.append(fmeasure)

    return rouge_l_scores


64
65
class TestGenerationModels(unittest.TestCase):
    def assert_close_prefill_logits_and_output_strs(
66
67
68
69
70
        self,
        prompts,
        model_path,
        tp_size,
        torch_dtype,
71
        max_new_tokens,
72
73
        prefill_tolerance,
        rouge_threshold,
74
        long_context_tolerance,
75
    ) -> None:
76
77
        if model_path == "Alibaba-NLP/gte-Qwen2-1.5B-instruct":
            prompts = prompts[:-1]
78
        with HFRunner(
79
            model_path, torch_dtype=torch_dtype, is_generation=True
80
        ) as hf_runner:
81
            hf_outputs = hf_runner.forward(prompts, max_new_tokens=max_new_tokens)
82
83
84
85
86

        with SRTRunner(
            model_path,
            tp_size=tp_size,
            torch_dtype=torch_dtype,
87
            is_generation=True,
88
        ) as srt_runner:
89
            srt_outputs = srt_runner.forward(prompts, max_new_tokens=max_new_tokens)
90
91
92
93
94

        for i in range(len(prompts)):
            hf_logprobs = torch.Tensor(hf_outputs.top_input_logprobs[i])
            srt_logprobs = torch.Tensor(srt_outputs.top_input_logprobs[i])

95
96
97
            print("max_diff", torch.max(abs(hf_logprobs - srt_logprobs)))
            if hf_logprobs.shape[0] <= 100:
                assert torch.all(
98
                    abs(hf_logprobs - srt_logprobs) < prefill_tolerance
99
                ), f"prefill logprobs are not all close with model_path={model_path} prompts={prompts} prefill_tolerance={prefill_tolerance}"
100

101
102
        print(f"hf_outputs.output_strs={hf_outputs.output_strs}")
        print(f"srt_outputs.output_strs={srt_outputs.output_strs}")
103
104
105
        rouge_l_scores = calculate_rouge_l(
            hf_outputs.output_strs, srt_outputs.output_strs
        )
106
        print(f"rouge_l_scores={rouge_l_scores}")
107
108
        assert all(
            score >= rouge_threshold for score in rouge_l_scores
109
        ), f"Not all ROUGE-L scores are greater than rouge_threshold={rouge_threshold}"
110

111
    def test_prefill_logits_and_output_strs(self):
112
113
114
115
116
117
118
        for (
            model,
            tp_size,
            long_context_tolerance,
            prefill_tolerance,
            rouge_threshold,
        ) in MODELS:
119
            for torch_dtype in TORCH_DTYPES:
120
                max_new_tokens = 32
121
122
123
124
125
126
                self.assert_close_prefill_logits_and_output_strs(
                    DEFAULT_PROMPTS,
                    model,
                    tp_size,
                    torch_dtype,
                    max_new_tokens,
127
128
                    prefill_tolerance=prefill_tolerance,
                    rouge_threshold=rouge_threshold,
129
                    long_context_tolerance=long_context_tolerance,
130
131
132
133
                )


if __name__ == "__main__":
134
135
136
137
138
    try:
        mp.set_start_method("spawn")
    except RuntimeError:
        pass

Mingyi's avatar
Mingyi committed
139
    unittest.main()