test_vision_openai_server_common.py 19.4 KB
Newer Older
1
2
3
import base64
import io
import os
4
from concurrent.futures import ThreadPoolExecutor
Ying Sheng's avatar
Ying Sheng committed
5

6
import numpy as np
Ying Sheng's avatar
Ying Sheng committed
7
import openai
8
9
import requests
from PIL import Image
Ying Sheng's avatar
Ying Sheng committed
10

11
from sglang.srt.utils import kill_process_tree
12
from sglang.test.test_utils import DEFAULT_URL_FOR_TEST, CustomTestCase
Ying Sheng's avatar
Ying Sheng committed
13

14
15
16
17
18
19
20
21
22
23
24
# image
IMAGE_MAN_IRONING_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/images/man_ironing_on_back_of_suv.png"
IMAGE_SGL_LOGO_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/images/sgl_logo.png"

# video
VIDEO_JOBS_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/videos/jobs_presenting_ipod.mp4"

# audio
AUDIO_TRUMP_SPEECH_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/audios/Trump_WEF_2018_10s.mp3"
AUDIO_BIRD_SONG_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/audios/bird_song.mp3"

Ying Sheng's avatar
Ying Sheng committed
25

26
class TestOpenAIMLLMServerBase(CustomTestCase):
Ying Sheng's avatar
Ying Sheng committed
27
28
    @classmethod
    def setUpClass(cls):
29
        cls.model = ""
30
        cls.base_url = DEFAULT_URL_FOR_TEST
Ying Sheng's avatar
Ying Sheng committed
31
        cls.api_key = "sk-123456"
32
        cls.process = None
Ying Sheng's avatar
Ying Sheng committed
33
34
35
36
        cls.base_url += "/v1"

    @classmethod
    def tearDownClass(cls):
37
        kill_process_tree(cls.process.pid)
Ying Sheng's avatar
Ying Sheng committed
38

39
40
41
    def get_vision_request_kwargs(self):
        return self.get_request_kwargs()

42
43
44
    def get_request_kwargs(self):
        return {}

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
    def get_or_download_file(self, url: str) -> str:
        cache_dir = os.path.expanduser("~/.cache")
        if url is None:
            raise ValueError()
        file_name = url.split("/")[-1]
        file_path = os.path.join(cache_dir, file_name)
        os.makedirs(cache_dir, exist_ok=True)

        if not os.path.exists(file_path):
            response = requests.get(url)
            response.raise_for_status()

            with open(file_path, "wb") as f:
                f.write(response.content)
        return file_path


62
63
64
65
66
67
68
69
70
71
72
73
74
75
class AudioOpenAITestMixin(TestOpenAIMLLMServerBase):
    def verify_speech_recognition_response(self, text):
        check_list = [
            "thank you",
            "it's a privilege to be here",
            "leader",
            "science",
            "art",
        ]
        for check_word in check_list:
            assert (
                check_word in text.lower()
            ), f"audio_response: |{text}| should contain |{check_word}|"

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    def prepare_audio_messages(self, prompt, audio_file_name):
        messages = [
            {
                "role": "user",
                "content": [
                    {
                        "type": "audio_url",
                        "audio_url": {"url": f"{audio_file_name}"},
                    },
                    {
                        "type": "text",
                        "text": prompt,
                    },
                ],
            }
        ]

        return messages

    def get_audio_request_kwargs(self):
        return self.get_request_kwargs()

    def get_audio_response(self, url: str, prompt, category):
        audio_file_path = self.get_or_download_file(url)
        client = openai.Client(api_key="sk-123456", base_url=self.base_url)

        messages = self.prepare_audio_messages(prompt, audio_file_path)

        response = client.chat.completions.create(
            model="default",
            messages=messages,
            temperature=0,
            max_tokens=128,
            stream=False,
            **(self.get_audio_request_kwargs()),
        )

        audio_response = response.choices[0].message.content

        print("-" * 30)
        print(f"audio {category} response:\n{audio_response}")
        print("-" * 30)

        audio_response = audio_response.lower()

        self.assertIsNotNone(audio_response)
        self.assertGreater(len(audio_response), 0)

        return audio_response.lower()

    def test_audio_speech_completion(self):
        # a fragment of Trump's speech
        audio_response = self.get_audio_response(
            AUDIO_TRUMP_SPEECH_URL,
            "Listen to this audio and write down the audio transcription in English.",
            category="speech",
        )
133
        self.verify_speech_recognition_response(audio_response)
134
135
136
137
138
139
140
141
142
143
144

    def test_audio_ambient_completion(self):
        # bird song
        audio_response = self.get_audio_response(
            AUDIO_BIRD_SONG_URL,
            "Please listen to the audio snippet carefully and transcribe the content in English.",
            "ambient",
        )
        assert "bird" in audio_response


145
146
class ImageOpenAITestMixin(TestOpenAIMLLMServerBase):
    def run_decode_with_image(self, image_id):
Ying Sheng's avatar
Ying Sheng committed
147
148
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        content = []
        if image_id == 0:
            content.append(
                {
                    "type": "image_url",
                    "image_url": {"url": IMAGE_MAN_IRONING_URL},
                }
            )
        elif image_id == 1:
            content.append(
                {
                    "type": "image_url",
                    "image_url": {"url": IMAGE_SGL_LOGO_URL},
                }
            )
        else:
            pass

        content.append(
            {
                "type": "text",
                "text": "Describe this image in a sentence.",
            }
        )

Ying Sheng's avatar
Ying Sheng committed
174
175
176
        response = client.chat.completions.create(
            model="default",
            messages=[
177
                {"role": "user", "content": content},
Ying Sheng's avatar
Ying Sheng committed
178
179
            ],
            temperature=0,
180
            **(self.get_vision_request_kwargs()),
Ying Sheng's avatar
Ying Sheng committed
181
182
183
        )

        assert response.choices[0].message.role == "assistant"
Ying Sheng's avatar
Ying Sheng committed
184
185
        text = response.choices[0].message.content
        assert isinstance(text, str)
186
187
188
189
190
191
192
193
194
195
196

    def test_mixed_batch(self):
        image_ids = [0, 1, 2] * 4
        with ThreadPoolExecutor(4) as executor:
            list(executor.map(self.run_decode_with_image, image_ids))

    def verify_single_image_response(self, response):
        assert response.choices[0].message.role == "assistant"
        text = response.choices[0].message.content
        assert isinstance(text, str)

197
        # `driver` is for gemma-3-it
198
199
200
201
202
203
204
205
206
207
        assert (
            "man" in text or "person" or "driver" in text
        ), f"text: {text}, should contain man, person or driver"
        assert (
            "cab" in text
            or "taxi" in text
            or "SUV" in text
            or "vehicle" in text
            or "car" in text
        ), f"text: {text}, should contain cab, taxi, SUV, vehicle or car"
Mick's avatar
Mick committed
208
        # MiniCPMO fails to recognize `iron`, but `hanging`
209
        assert (
210
211
            "iron" in text or "hang" in text or "cloth" in text or "holding" in text
        ), f"text: {text}, should contain iron, hang, cloth or holding"
212
213
214
215
216
217
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens > 0

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    def test_single_image_chat_completion(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
                            "image_url": {"url": IMAGE_MAN_IRONING_URL},
                        },
                        {
                            "type": "text",
                            "text": "Describe this image in a sentence.",
                        },
                    ],
                },
            ],
            temperature=0,
            **(self.get_vision_request_kwargs()),
        )

        print("-" * 30)
        print(f"Single image response:\n{response.choices[0].message.content}")
        print("-" * 30)

        self.verify_single_image_response(response)

248
249
250
251
252
253
254
255
256
257
258
    def test_multi_turn_chat_completion(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
259
                            "image_url": {"url": IMAGE_MAN_IRONING_URL},
260
261
262
                        },
                        {
                            "type": "text",
263
                            "text": "Describe this image in a sentence.",
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
                        },
                    ],
                },
                {
                    "role": "assistant",
                    "content": [
                        {
                            "type": "text",
                            "text": "There is a man at the back of a yellow cab ironing his clothes.",
                        }
                    ],
                },
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": "Repeat your previous answer."}
                    ],
                },
            ],
            temperature=0,
284
            **(self.get_vision_request_kwargs()),
285
286
287
288
289
        )

        assert response.choices[0].message.role == "assistant"
        text = response.choices[0].message.content
        assert isinstance(text, str)
290
291
292
        assert (
            "man" in text or "cab" in text
        ), f"text: {text}, should contain man or cab"
Ying Sheng's avatar
Ying Sheng committed
293
294
295
296
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
297
298
        assert response.usage.total_tokens > 0

299
    def test_multi_images_chat_completion(self):
300
301
302
303
304
305
306
307
308
309
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
Mick's avatar
Mick committed
310
                            "image_url": {"url": IMAGE_MAN_IRONING_URL},
311
                            "modalities": "multi-images",
312
313
314
                        },
                        {
                            "type": "image_url",
315
                            "image_url": {"url": IMAGE_SGL_LOGO_URL},
316
                            "modalities": "multi-images",
317
318
319
                        },
                        {
                            "type": "text",
320
                            "text": "I have two very different images. Please describe them.",
321
322
323
324
325
                        },
                    ],
                },
            ],
            temperature=0,
326
            **(self.get_vision_request_kwargs()),
327
328
329
330
331
        )

        assert response.choices[0].message.role == "assistant"
        text = response.choices[0].message.content
        assert isinstance(text, str)
Mick's avatar
Mick committed
332
333
334
        print("-" * 30)
        print(f"Multi images response:\n{text}")
        print("-" * 30)
335
        assert (
336
337
338
339
340
341
            "man" in text
            or "cab" in text
            or "SUV" in text
            or "taxi" in text
            or "car" in text
        ), f"text: {text}, should contain man, cab, SUV, taxi or car"
342
        assert (
343
344
            "logo" in text or '"S"' in text or "SG" in text or "graphic" in text
        ), f"text: {text}, should contain logo, S or SG or graphic"
345
346
347
348
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
349
350
        assert response.usage.total_tokens > 0

351
    def prepare_video_images_messages(self, video_path):
352
353
        # the memory consumed by the Vision Attention varies a lot, e.g. blocked qkv vs full-sequence sdpa
        # the size of the video embeds differs from the `modality` argument when preprocessed
354
355
356
357
358
359
360

        # We import decord here to avoid a strange Segmentation fault (core dumped) issue.
        # The following import order will cause Segmentation fault.
        # import decord
        # from transformers import AutoTokenizer
        from decord import VideoReader, cpu

361
        max_frames_num = 10
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
        vr = VideoReader(video_path, ctx=cpu(0))
        total_frame_num = len(vr)
        uniform_sampled_frames = np.linspace(
            0, total_frame_num - 1, max_frames_num, dtype=int
        )
        frame_idx = uniform_sampled_frames.tolist()
        frames = vr.get_batch(frame_idx).asnumpy()

        base64_frames = []
        for frame in frames:
            pil_img = Image.fromarray(frame)
            buff = io.BytesIO()
            pil_img.save(buff, format="JPEG")
            base64_str = base64.b64encode(buff.getvalue()).decode("utf-8")
            base64_frames.append(base64_str)

        messages = [{"role": "user", "content": []}]
        frame_format = {
            "type": "image_url",
            "image_url": {"url": "data:image/jpeg;base64,{}"},
382
            "modalities": "image",
383
384
385
386
387
388
389
390
391
392
393
394
395
        }

        for base64_frame in base64_frames:
            frame_format["image_url"]["url"] = "data:image/jpeg;base64,{}".format(
                base64_frame
            )
            messages[0]["content"].append(frame_format.copy())

        prompt = {"type": "text", "text": "Please describe the video in detail."}
        messages[0]["content"].append(prompt)

        return messages

396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    def test_video_images_chat_completion(self):
        url = VIDEO_JOBS_URL
        file_path = self.get_or_download_file(url)

        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        messages = self.prepare_video_images_messages(file_path)

        response = client.chat.completions.create(
            model="default",
            messages=messages,
            temperature=0,
            max_tokens=1024,
            stream=False,
        )

        video_response = response.choices[0].message.content

        print("-" * 30)
        print(f"Video images response:\n{video_response}")
        print("-" * 30)

        # Add assertions to validate the video response
        assert (
            "iPod" in video_response
            or "device" in video_response
            or "microphone" in video_response
423
424
425
426
427
428
        ), f"""
        ====================== video_response =====================
        {video_response}
        ===========================================================
        should contain 'iPod' or 'device' or 'microphone'
        """
429
430
431
432
433
        assert (
            "man" in video_response
            or "person" in video_response
            or "individual" in video_response
            or "speaker" in video_response
434
            or "presenter" in video_response
435
            or "Steve" in video_response
436
            or "hand" in video_response
437
438
439
440
        ), f"""
        ====================== video_response =====================
        {video_response}
        ===========================================================
441
        should contain 'man' or 'person' or 'individual' or 'speaker' or 'presenter' or 'Steve' or 'hand'
442
        """
443
444
445
446
447
        assert (
            "present" in video_response
            or "examine" in video_response
            or "display" in video_response
            or "hold" in video_response
448
449
450
451
452
453
        ), f"""
        ====================== video_response =====================
        {video_response}
        ===========================================================
        should contain 'present' or 'examine' or 'display' or 'hold'
        """
454
455
456
        self.assertIsNotNone(video_response)
        self.assertGreater(len(video_response), 0)

457

458
class VideoOpenAITestMixin(TestOpenAIMLLMServerBase):
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
    def prepare_video_messages(self, video_path):
        messages = [
            {
                "role": "user",
                "content": [
                    {
                        "type": "video_url",
                        "video_url": {"url": f"{video_path}"},
                    },
                    {"type": "text", "text": "Please describe the video in detail."},
                ],
            },
        ]
        return messages

    def test_video_chat_completion(self):
475
476
        url = VIDEO_JOBS_URL
        file_path = self.get_or_download_file(url)
477
478
479
480
481

        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        messages = self.prepare_video_messages(file_path)

Mick's avatar
Mick committed
482
        response = client.chat.completions.create(
483
484
485
486
            model="default",
            messages=messages,
            temperature=0,
            max_tokens=1024,
Mick's avatar
Mick committed
487
            stream=False,
488
            **(self.get_vision_request_kwargs()),
489
        )
490

491
        video_response = response.choices[0].message.content.lower()
Mick's avatar
Mick committed
492

493
        print("-" * 30)
Mick's avatar
Mick committed
494
        print(f"Video response:\n{video_response}")
495
496
497
        print("-" * 30)

        # Add assertions to validate the video response
498
        assert (
499
            "ipod" in video_response
500
501
            or "device" in video_response
            or "microphone" in video_response
502
            or "phone" in video_response
503
        ), f"video_response: {video_response}, should contain 'iPod' or 'device'"
Mick's avatar
Mick committed
504
505
506
507
        assert (
            "man" in video_response
            or "person" in video_response
            or "individual" in video_response
508
            or "speaker" in video_response
509
            or "presenter" in video_response
510
            or "hand" in video_response
511
        ), f"video_response: {video_response}, should either have 'man' in video_response, or 'person' in video_response, or 'individual' in video_response or 'speaker' in video_response or 'presenter' or 'hand' in video_response"
Mick's avatar
Mick committed
512
513
514
515
        assert (
            "present" in video_response
            or "examine" in video_response
            or "display" in video_response
516
            or "hold" in video_response
517
518
519
520
        ), f"video_response: {video_response}, should contain 'present', 'examine', 'display', or 'hold'"
        assert (
            "black" in video_response or "dark" in video_response
        ), f"video_response: {video_response}, should contain 'black' or 'dark'"
521
522
        self.assertIsNotNone(video_response)
        self.assertGreater(len(video_response), 0)
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564


class OmniOpenAITestMixin(
    ImageOpenAITestMixin, VideoOpenAITestMixin, AudioOpenAITestMixin
):
    def test_mixed_modality_chat_completion(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        messages = [
            {
                "role": "user",
                "content": [
                    {
                        "type": "image_url",
                        "image_url": {"url": IMAGE_MAN_IRONING_URL},
                    },
                    {
                        "type": "audio_url",
                        "audio_url": {"url": AUDIO_TRUMP_SPEECH_URL},
                    },
                    {
                        "type": "text",
                        "text": "I have an image and audio, which are not related at all. Please:  1. Describe the image in a sentence, 2. Repeat the exact words from the audio I provided. Be exact",
                    },
                ],
            },
        ]
        response = client.chat.completions.create(
            model="default",
            messages=messages,
            temperature=0,
            max_tokens=128,
            stream=False,
        )

        text = response.choices[0].message.content

        print("-" * 30)
        print(f"Mixed modality response:\n{text}")
        print("-" * 30)

        self.verify_single_image_response(response=response)
        self.verify_speech_recognition_response(text=text)