test_vision_openai_server_common.py 18 KB
Newer Older
1
2
import base64
import io
Ying Sheng's avatar
Ying Sheng committed
3
import json
4
import os
5
from concurrent.futures import ThreadPoolExecutor
Ying Sheng's avatar
Ying Sheng committed
6

7
import numpy as np
Ying Sheng's avatar
Ying Sheng committed
8
import openai
9
10
import requests
from PIL import Image
Ying Sheng's avatar
Ying Sheng committed
11

12
from sglang.srt.utils import kill_process_tree
13
14
15
from sglang.test.test_utils import (
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
16
    CustomTestCase,
17
18
    popen_launch_server,
)
Ying Sheng's avatar
Ying Sheng committed
19

20
21
22
23
24
25
26
27
28
29
30
# image
IMAGE_MAN_IRONING_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/images/man_ironing_on_back_of_suv.png"
IMAGE_SGL_LOGO_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/images/sgl_logo.png"

# video
VIDEO_JOBS_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/videos/jobs_presenting_ipod.mp4"

# audio
AUDIO_TRUMP_SPEECH_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/audios/Trump_WEF_2018_10s.mp3"
AUDIO_BIRD_SONG_URL = "https://raw.githubusercontent.com/sgl-project/sgl-test-files/refs/heads/main/audios/bird_song.mp3"

Ying Sheng's avatar
Ying Sheng committed
31

32
class TestOpenAIVisionServer(CustomTestCase):
Ying Sheng's avatar
Ying Sheng committed
33
34
    @classmethod
    def setUpClass(cls):
35
        cls.model = "lmms-lab/llava-onevision-qwen2-0.5b-ov"
36
        cls.base_url = DEFAULT_URL_FOR_TEST
Ying Sheng's avatar
Ying Sheng committed
37
38
39
40
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
41
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
Ying Sheng's avatar
Ying Sheng committed
42
43
44
45
46
47
            api_key=cls.api_key,
        )
        cls.base_url += "/v1"

    @classmethod
    def tearDownClass(cls):
48
        kill_process_tree(cls.process.pid)
Ying Sheng's avatar
Ying Sheng committed
49

50
51
52
    def get_request_kwargs(self):
        return {}

53
    def test_single_image_chat_completion(self):
Ying Sheng's avatar
Ying Sheng committed
54
55
56
57
58
59
60
61
62
63
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
64
                            "image_url": {"url": IMAGE_MAN_IRONING_URL},
Ying Sheng's avatar
Ying Sheng committed
65
                        },
Ying Sheng's avatar
Ying Sheng committed
66
67
68
69
                        {
                            "type": "text",
                            "text": "Describe this image in a very short sentence.",
                        },
Ying Sheng's avatar
Ying Sheng committed
70
71
72
73
                    ],
                },
            ],
            temperature=0,
74
            **(self.get_request_kwargs()),
Ying Sheng's avatar
Ying Sheng committed
75
76
77
        )

        assert response.choices[0].message.role == "assistant"
Ying Sheng's avatar
Ying Sheng committed
78
79
        text = response.choices[0].message.content
        assert isinstance(text, str)
80
        # `driver` is for gemma-3-it
81
82
83
84
85
86
87
88
89
90
        assert (
            "man" in text or "person" or "driver" in text
        ), f"text: {text}, should contain man, person or driver"
        assert (
            "cab" in text
            or "taxi" in text
            or "SUV" in text
            or "vehicle" in text
            or "car" in text
        ), f"text: {text}, should contain cab, taxi, SUV, vehicle or car"
Mick's avatar
Mick committed
91
        # MiniCPMO fails to recognize `iron`, but `hanging`
92
93
94
        assert (
            "iron" in text or "hang" in text or "cloth" in text or "holding" in text
        ), f"text: {text}, should contain iron, hang, cloth or holding"
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens > 0

    def test_multi_turn_chat_completion(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
112
                            "image_url": {"url": IMAGE_MAN_IRONING_URL},
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
                        },
                        {
                            "type": "text",
                            "text": "Describe this image in a very short sentence.",
                        },
                    ],
                },
                {
                    "role": "assistant",
                    "content": [
                        {
                            "type": "text",
                            "text": "There is a man at the back of a yellow cab ironing his clothes.",
                        }
                    ],
                },
                {
                    "role": "user",
                    "content": [
                        {"type": "text", "text": "Repeat your previous answer."}
                    ],
                },
            ],
            temperature=0,
137
            **(self.get_request_kwargs()),
138
139
140
141
142
        )

        assert response.choices[0].message.role == "assistant"
        text = response.choices[0].message.content
        assert isinstance(text, str)
143
144
145
        assert (
            "man" in text or "cab" in text
        ), f"text: {text}, should contain man or cab"
Ying Sheng's avatar
Ying Sheng committed
146
147
148
149
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
150
151
        assert response.usage.total_tokens > 0

152
    def test_multi_images_chat_completion(self):
153
154
155
156
157
158
159
160
161
162
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
Mick's avatar
Mick committed
163
                            "image_url": {"url": IMAGE_MAN_IRONING_URL},
164
                            "modalities": "multi-images",
165
166
167
                        },
                        {
                            "type": "image_url",
168
                            "image_url": {"url": IMAGE_SGL_LOGO_URL},
169
                            "modalities": "multi-images",
170
171
172
                        },
                        {
                            "type": "text",
173
174
                            "text": "I have two very different images. They are not related at all. "
                            "Please describe the first image in one sentence, and then describe the second image in another sentence.",
175
176
177
178
179
                        },
                    ],
                },
            ],
            temperature=0,
180
            **(self.get_request_kwargs()),
181
182
183
184
185
        )

        assert response.choices[0].message.role == "assistant"
        text = response.choices[0].message.content
        assert isinstance(text, str)
Mick's avatar
Mick committed
186
187
188
        print("-" * 30)
        print(f"Multi images response:\n{text}")
        print("-" * 30)
189
190
191
192
193
194
        assert (
            "man" in text or "cab" in text or "SUV" in text or "taxi" in text
        ), f"text: {text}, should contain man, cab, SUV or taxi"
        assert (
            "logo" in text or '"S"' in text or "SG" in text
        ), f"text: {text}, should contain logo, S or SG"
195
196
197
198
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
Ying Sheng's avatar
Ying Sheng committed
199
200
        assert response.usage.total_tokens > 0

201
    def prepare_video_images_messages(self, video_path):
202
203
        # the memory consumed by the Vision Attention varies a lot, e.g. blocked qkv vs full-sequence sdpa
        # the size of the video embeds differs from the `modality` argument when preprocessed
204
205
206
207
208
209
210

        # We import decord here to avoid a strange Segmentation fault (core dumped) issue.
        # The following import order will cause Segmentation fault.
        # import decord
        # from transformers import AutoTokenizer
        from decord import VideoReader, cpu

211
        max_frames_num = 10
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
        vr = VideoReader(video_path, ctx=cpu(0))
        total_frame_num = len(vr)
        uniform_sampled_frames = np.linspace(
            0, total_frame_num - 1, max_frames_num, dtype=int
        )
        frame_idx = uniform_sampled_frames.tolist()
        frames = vr.get_batch(frame_idx).asnumpy()

        base64_frames = []
        for frame in frames:
            pil_img = Image.fromarray(frame)
            buff = io.BytesIO()
            pil_img.save(buff, format="JPEG")
            base64_str = base64.b64encode(buff.getvalue()).decode("utf-8")
            base64_frames.append(base64_str)

        messages = [{"role": "user", "content": []}]
        frame_format = {
            "type": "image_url",
            "image_url": {"url": "data:image/jpeg;base64,{}"},
232
            "modalities": "image",
233
234
235
236
237
238
239
240
241
242
243
244
245
        }

        for base64_frame in base64_frames:
            frame_format["image_url"]["url"] = "data:image/jpeg;base64,{}".format(
                base64_frame
            )
            messages[0]["content"].append(frame_format.copy())

        prompt = {"type": "text", "text": "Please describe the video in detail."}
        messages[0]["content"].append(prompt)

        return messages

246
    def prepare_video_messages(self, video_path):
247
248
249
250
251
        messages = [
            {
                "role": "user",
                "content": [
                    {
252
253
                        "type": "video_url",
                        "video_url": {"url": f"{video_path}"},
254
255
256
257
258
259
260
                    },
                    {"type": "text", "text": "Please describe the video in detail."},
                ],
            },
        ]
        return messages

261
    def get_or_download_file(self, url: str) -> str:
262
        cache_dir = os.path.expanduser("~/.cache")
263
264
265
266
        if url is None:
            raise ValueError()
        file_name = url.split("/")[-1]
        file_path = os.path.join(cache_dir, file_name)
267
268
269
270
271
272
273
274
        os.makedirs(cache_dir, exist_ok=True)

        if not os.path.exists(file_path):
            response = requests.get(url)
            response.raise_for_status()

            with open(file_path, "wb") as f:
                f.write(response.content)
275
276
        return file_path

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
    # this test samples frames of video as input, but not video directly
    def test_video_images_chat_completion(self):
        url = VIDEO_JOBS_URL
        file_path = self.get_or_download_file(url)

        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        messages = self.prepare_video_images_messages(file_path)

        response = client.chat.completions.create(
            model="default",
            messages=messages,
            temperature=0,
            max_tokens=1024,
            stream=False,
        )

        video_response = response.choices[0].message.content

        print("-" * 30)
        print(f"Video images response:\n{video_response}")
        print("-" * 30)

        # Add assertions to validate the video response
        assert (
            "iPod" in video_response
            or "device" in video_response
            or "microphone" in video_response
        ), video_response
        assert (
            "man" in video_response
            or "person" in video_response
            or "individual" in video_response
            or "speaker" in video_response
        ), video_response
        assert (
            "present" in video_response
            or "examine" in video_response
            or "display" in video_response
            or "hold" in video_response
        )
        assert "black" in video_response or "dark" in video_response
        self.assertIsNotNone(video_response)
        self.assertGreater(len(video_response), 0)

    def _test_video_chat_completion(self):
323
324
        url = VIDEO_JOBS_URL
        file_path = self.get_or_download_file(url)
325
326
327
328
329

        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        messages = self.prepare_video_messages(file_path)

Mick's avatar
Mick committed
330
        response = client.chat.completions.create(
331
332
333
334
            model="default",
            messages=messages,
            temperature=0,
            max_tokens=1024,
Mick's avatar
Mick committed
335
            stream=False,
336
            **(self.get_request_kwargs()),
337
        )
338

Mick's avatar
Mick committed
339
340
        video_response = response.choices[0].message.content

341
        print("-" * 30)
Mick's avatar
Mick committed
342
        print(f"Video response:\n{video_response}")
343
344
345
        print("-" * 30)

        # Add assertions to validate the video response
346
        assert (
347
348
349
            "iPod" in video_response
            or "device" in video_response
            or "microphone" in video_response
350
        ), f"video_response: {video_response}, should contain 'iPod' or 'device'"
Mick's avatar
Mick committed
351
352
353
354
        assert (
            "man" in video_response
            or "person" in video_response
            or "individual" in video_response
355
            or "speaker" in video_response
356
        ), f"video_response: {video_response}, should either have 'man' in video_response, or 'person' in video_response, or 'individual' in video_response or 'speaker' in video_response"
Mick's avatar
Mick committed
357
358
359
360
        assert (
            "present" in video_response
            or "examine" in video_response
            or "display" in video_response
361
            or "hold" in video_response
362
363
364
365
        ), f"video_response: {video_response}, should contain 'present', 'examine', 'display', or 'hold'"
        assert (
            "black" in video_response or "dark" in video_response
        ), f"video_response: {video_response}, should contain 'black' or 'dark'"
366
367
368
        self.assertIsNotNone(video_response)
        self.assertGreater(len(video_response), 0)

Ying Sheng's avatar
Ying Sheng committed
369
370
371
372
    def test_regex(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        regex = (
373
374
375
            r"""\{"""
            + r""""color":"[\w]+","""
            + r""""number_of_cars":[\d]+"""
Ying Sheng's avatar
Ying Sheng committed
376
377
378
            + r"""\}"""
        )

379
380
381
        extra_kwargs = self.get_request_kwargs()
        extra_kwargs.setdefault("extra_body", {})["regex"] = regex

Ying Sheng's avatar
Ying Sheng committed
382
383
384
385
386
387
388
389
        response = client.chat.completions.create(
            model="default",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "image_url",
390
                            "image_url": {"url": IMAGE_MAN_IRONING_URL},
Ying Sheng's avatar
Ying Sheng committed
391
392
393
394
395
396
397
398
399
                        },
                        {
                            "type": "text",
                            "text": "Describe this image in the JSON format.",
                        },
                    ],
                },
            ],
            temperature=0,
400
            **extra_kwargs,
Ying Sheng's avatar
Ying Sheng committed
401
402
403
404
405
406
407
408
409
410
411
        )
        text = response.choices[0].message.content

        try:
            js_obj = json.loads(text)
        except (TypeError, json.decoder.JSONDecodeError):
            print("JSONDecodeError", text)
            raise
        assert isinstance(js_obj["color"], str)
        assert isinstance(js_obj["number_of_cars"], int)

412
413
414
415
416
417
418
419
    def run_decode_with_image(self, image_id):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        content = []
        if image_id == 0:
            content.append(
                {
                    "type": "image_url",
420
                    "image_url": {"url": IMAGE_MAN_IRONING_URL},
421
422
423
424
425
426
                }
            )
        elif image_id == 1:
            content.append(
                {
                    "type": "image_url",
427
                    "image_url": {"url": IMAGE_SGL_LOGO_URL},
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
                }
            )
        else:
            pass

        content.append(
            {
                "type": "text",
                "text": "Describe this image in a very short sentence.",
            }
        )

        response = client.chat.completions.create(
            model="default",
            messages=[
                {"role": "user", "content": content},
            ],
            temperature=0,
446
            **(self.get_request_kwargs()),
447
448
449
450
451
452
453
454
455
456
457
        )

        assert response.choices[0].message.role == "assistant"
        text = response.choices[0].message.content
        assert isinstance(text, str)

    def test_mixed_batch(self):
        image_ids = [0, 1, 2] * 4
        with ThreadPoolExecutor(4) as executor:
            list(executor.map(self.run_decode_with_image, image_ids))

Mick's avatar
Mick committed
458
459
460
461
462
463
464
465
466
    def prepare_audio_messages(self, prompt, audio_file_name):
        messages = [
            {
                "role": "user",
                "content": [
                    {
                        "type": "audio_url",
                        "audio_url": {"url": f"{audio_file_name}"},
                    },
Mick's avatar
Mick committed
467
468
469
470
                    {
                        "type": "text",
                        "text": prompt,
                    },
Mick's avatar
Mick committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
                ],
            }
        ]

        return messages

    def get_audio_response(self, url: str, prompt, category):
        audio_file_path = self.get_or_download_file(url)
        client = openai.Client(api_key="sk-123456", base_url=self.base_url)

        messages = self.prepare_audio_messages(prompt, audio_file_path)

        response = client.chat.completions.create(
            model="default",
            messages=messages,
            temperature=0,
            max_tokens=128,
            stream=False,
489
            **(self.get_request_kwargs()),
Mick's avatar
Mick committed
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
        )

        audio_response = response.choices[0].message.content

        print("-" * 30)
        print(f"audio {category} response:\n{audio_response}")
        print("-" * 30)

        audio_response = audio_response.lower()

        self.assertIsNotNone(audio_response)
        self.assertGreater(len(audio_response), 0)

        return audio_response

    def _test_audio_speech_completion(self):
        # a fragment of Trump's speech
        audio_response = self.get_audio_response(
            AUDIO_TRUMP_SPEECH_URL,
            "I have an audio sample. Please repeat the person's words",
            category="speech",
        )
        assert "thank you" in audio_response
        assert "it's a privilege to be here" in audio_response
        assert "leader" in audio_response
        assert "science" in audio_response
        assert "art" in audio_response

    def _test_audio_ambient_completion(self):
        # bird song
        audio_response = self.get_audio_response(
            AUDIO_BIRD_SONG_URL,
            "Please listen to the audio snippet carefully and transcribe the content.",
            "ambient",
        )
        assert "bird" in audio_response

    def test_audio_chat_completion(self):
        pass