native_api.ipynb 10.5 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
7
    "# Native APIs\n",
Chayenne's avatar
Chayenne committed
8
    "\n",
Chayenne's avatar
Chayenne committed
9
    "Apart from the OpenAI compatible APIs, the SGLang Runtime also provides its native server APIs. We introduce these following APIs:\n",
Chayenne's avatar
Chayenne committed
10
    "\n",
Chayenne's avatar
Chayenne committed
11
    "- `/generate` (text generation model)\n",
Chayenne's avatar
Chayenne committed
12
    "- `/get_model_info`\n",
13
    "- `/get_server_info`\n",
Chayenne's avatar
Chayenne committed
14
15
16
    "- `/health`\n",
    "- `/health_generate`\n",
    "- `/flush_cache`\n",
Chayenne's avatar
Chayenne committed
17
    "- `/update_weights`\n",
Chayenne's avatar
Chayenne committed
18
    "- `/encode`(embedding model)\n",
19
    "- `/classify`(reward model)\n",
Chayenne's avatar
Chayenne committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
    "\n",
    "We mainly use `requests` to test these APIs in the following examples. You can also use `curl`."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Launch A Server"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
34
   "metadata": {},
Chayenne's avatar
Chayenne committed
35
36
37
38
39
40
41
42
43
   "outputs": [],
   "source": [
    "from sglang.utils import (\n",
    "    execute_shell_command,\n",
    "    wait_for_server,\n",
    "    terminate_process,\n",
    "    print_highlight,\n",
    ")\n",
    "\n",
Chayenne's avatar
Chayenne committed
44
45
    "import requests\n",
    "\n",
Chayenne's avatar
Chayenne committed
46
    "server_process = execute_shell_command(\n",
Chayenne's avatar
Chayenne committed
47
    "    \"\"\"\n",
Chayenne's avatar
Chayenne committed
48
49
50
51
52
53
54
55
56
57
58
    "python3 -m sglang.launch_server --model-path meta-llama/Llama-3.2-1B-Instruct --port=30010\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(\"http://localhost:30010\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
59
    "## Generate (text generation model)\n",
60
    "Generate completions. This is similar to the `/v1/completions` in OpenAI API. Detailed parameters can be found in the [sampling parameters](../references/sampling_params.md)."
Chayenne's avatar
Chayenne committed
61
62
63
64
65
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
66
   "metadata": {},
Chayenne's avatar
Chayenne committed
67
68
69
   "outputs": [],
   "source": [
    "url = \"http://localhost:30010/generate\"\n",
Chayenne's avatar
Chayenne committed
70
    "data = {\"text\": \"What is the capital of France?\"}\n",
Chayenne's avatar
Chayenne committed
71
72
    "\n",
    "response = requests.post(url, json=data)\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
73
    "print_highlight(response.json())"
Chayenne's avatar
Chayenne committed
74
75
76
77
78
79
80
81
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Get Model Info\n",
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
82
    "Get the information of the model.\n",
Chayenne's avatar
Chayenne committed
83
84
    "\n",
    "- `model_path`: The path/name of the model.\n",
Chayenne's avatar
Chayenne committed
85
86
    "- `is_generation`: Whether the model is used as generation model or embedding model.\n",
    "- `tokenizer_path`: The path/name of the tokenizer."
Chayenne's avatar
Chayenne committed
87
88
89
90
91
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
92
   "metadata": {},
Chayenne's avatar
Chayenne committed
93
94
95
96
97
98
99
100
   "outputs": [],
   "source": [
    "url = \"http://localhost:30010/get_model_info\"\n",
    "\n",
    "response = requests.get(url)\n",
    "response_json = response.json()\n",
    "print_highlight(response_json)\n",
    "assert response_json[\"model_path\"] == \"meta-llama/Llama-3.2-1B-Instruct\"\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
101
    "assert response_json[\"is_generation\"] is True\n",
Chayenne's avatar
Chayenne committed
102
103
    "assert response_json[\"tokenizer_path\"] == \"meta-llama/Llama-3.2-1B-Instruct\"\n",
    "assert response_json.keys() == {\"model_path\", \"is_generation\", \"tokenizer_path\"}"
Chayenne's avatar
Chayenne committed
104
105
106
107
108
109
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
110
111
112
113
114
115
    "## Get Server Info\n",
    "Gets the server information including CLI arguments, token limits, and memory pool sizes.\n",
    "- Note: `get_server_info` merges the following deprecated endpoints:\n",
    "  - `get_server_args`\n",
    "  - `get_memory_pool_size` \n",
    "  - `get_max_total_num_tokens`"
Chayenne's avatar
Chayenne committed
116
117
118
119
120
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
121
   "metadata": {},
Chayenne's avatar
Chayenne committed
122
123
   "outputs": [],
   "source": [
124
    "# get_server_info\n",
Chayenne's avatar
Chayenne committed
125
    "\n",
126
    "url = \"http://localhost:30010/get_server_info\"\n",
Chayenne's avatar
Chayenne committed
127
128
129
130
131
132
133
134
135
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
136
137
138
    "## Health Check\n",
    "- `/health`: Check the health of the server.\n",
    "- `/health_generate`: Check the health of the server by generating one token."
Chayenne's avatar
Chayenne committed
139
140
141
142
143
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
144
   "metadata": {},
Chayenne's avatar
Chayenne committed
145
146
   "outputs": [],
   "source": [
147
    "url = \"http://localhost:30010/health_generate\"\n",
Chayenne's avatar
Chayenne committed
148
    "\n",
149
    "response = requests.get(url)\n",
Chayenne's avatar
Chayenne committed
150
151
152
153
154
155
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
156
   "metadata": {},
Chayenne's avatar
Chayenne committed
157
158
   "outputs": [],
   "source": [
159
    "url = \"http://localhost:30010/health\"\n",
Chayenne's avatar
Chayenne committed
160
161
162
163
164
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.text)"
   ]
  },
165
166
167
168
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
169
    "## Flush Cache\n",
170
    "\n",
171
    "Flush the radix cache. It will be automatically triggered when the model weights are updated by the `/update_weights` API."
172
173
174
175
176
177
178
179
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
180
    "# flush cache\n",
181
    "\n",
182
    "url = \"http://localhost:30010/flush_cache\"\n",
183
    "\n",
184
    "response = requests.post(url)\n",
185
186
187
    "print_highlight(response.text)"
   ]
  },
Chayenne's avatar
Chayenne committed
188
189
190
191
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
192
    "## Update Weights From Disk\n",
Chayenne's avatar
Chayenne committed
193
    "\n",
Chayenne's avatar
Chayenne committed
194
195
196
    "Update model weights from disk without restarting the server. Only applicable for models with the same architecture and parameter size.\n",
    "\n",
    "SGLang support `update_weights_from_disk` API for continuous evaluation during training (save checkpoint to disk and update weights from disk).\n"
Chayenne's avatar
Chayenne committed
197
198
199
200
201
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
202
   "metadata": {},
Chayenne's avatar
Chayenne committed
203
204
205
206
   "outputs": [],
   "source": [
    "# successful update with same architecture and size\n",
    "\n",
Chayenne's avatar
Chayenne committed
207
    "url = \"http://localhost:30010/update_weights_from_disk\"\n",
Chayenne's avatar
Chayenne committed
208
209
210
211
    "data = {\"model_path\": \"meta-llama/Llama-3.2-1B\"}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "print_highlight(response.text)\n",
212
    "assert response.json()[\"success\"] is True\n",
Chayenne's avatar
Chayenne committed
213
214
215
216
217
218
219
    "assert response.json()[\"message\"] == \"Succeeded to update model weights.\"\n",
    "assert response.json().keys() == {\"success\", \"message\"}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
220
   "metadata": {},
Chayenne's avatar
Chayenne committed
221
222
223
224
   "outputs": [],
   "source": [
    "# failed update with different parameter size\n",
    "\n",
Chayenne's avatar
Chayenne committed
225
    "url = \"http://localhost:30010/update_weights_from_disk\"\n",
Chayenne's avatar
Chayenne committed
226
227
228
229
230
    "data = {\"model_path\": \"meta-llama/Llama-3.2-3B\"}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "response_json = response.json()\n",
    "print_highlight(response_json)\n",
231
    "assert response_json[\"success\"] is False\n",
Chayenne's avatar
Chayenne committed
232
233
234
235
236
237
238
    "assert response_json[\"message\"] == (\n",
    "    \"Failed to update weights: The size of tensor a (2048) must match \"\n",
    "    \"the size of tensor b (3072) at non-singleton dimension 1.\\n\"\n",
    "    \"Rolling back to original weights.\"\n",
    ")"
   ]
  },
Chayenne's avatar
Chayenne committed
239
240
241
242
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
243
    "## Encode (embedding model)\n",
Chayenne's avatar
Chayenne committed
244
    "\n",
Chayenne's avatar
Chayenne committed
245
246
    "Encode text into embeddings. Note that this API is only available for [embedding models](openai_api_embeddings.html#openai-apis-embedding) and will raise an error for generation models.\n",
    "Therefore, we launch a new server to server an embedding model."
Chayenne's avatar
Chayenne committed
247
248
249
250
251
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
252
   "metadata": {},
Chayenne's avatar
Chayenne committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
   "outputs": [],
   "source": [
    "terminate_process(server_process)\n",
    "\n",
    "embedding_process = execute_shell_command(\n",
    "    \"\"\"\n",
    "python -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-7B-instruct \\\n",
    "    --port 30020 --host 0.0.0.0 --is-embedding\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(\"http://localhost:30020\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
270
   "metadata": {},
Chayenne's avatar
Chayenne committed
271
272
273
274
275
276
277
278
279
280
281
282
   "outputs": [],
   "source": [
    "# successful encode for embedding model\n",
    "\n",
    "url = \"http://localhost:30020/encode\"\n",
    "data = {\"model\": \"Alibaba-NLP/gte-Qwen2-7B-instruct\", \"text\": \"Once upon a time\"}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "response_json = response.json()\n",
    "print_highlight(f\"Text embedding (first 10): {response_json['embedding'][:10]}\")"
   ]
  },
Chayenne's avatar
Chayenne committed
283
284
285
286
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
287
    "## Classify (reward model)\n",
Chayenne's avatar
Chayenne committed
288
    "\n",
289
    "SGLang Runtime also supports reward models. Here we use a reward model to classify the quality of pairwise generations."
Chayenne's avatar
Chayenne committed
290
291
292
293
294
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
295
   "metadata": {},
Chayenne's avatar
Chayenne committed
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
   "outputs": [],
   "source": [
    "terminate_process(embedding_process)\n",
    "\n",
    "# Note that SGLang now treats embedding models and reward models as the same type of models.\n",
    "# This will be updated in the future.\n",
    "\n",
    "reward_process = execute_shell_command(\n",
    "    \"\"\"\n",
    "python -m sglang.launch_server --model-path Skywork/Skywork-Reward-Llama-3.1-8B-v0.2 --port 30030 --host 0.0.0.0 --is-embedding\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(\"http://localhost:30030\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
315
   "metadata": {},
Chayenne's avatar
Chayenne committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
   "outputs": [],
   "source": [
    "from transformers import AutoTokenizer\n",
    "\n",
    "PROMPT = (\n",
    "    \"What is the range of the numeric output of a sigmoid node in a neural network?\"\n",
    ")\n",
    "\n",
    "RESPONSE1 = \"The output of a sigmoid node is bounded between -1 and 1.\"\n",
    "RESPONSE2 = \"The output of a sigmoid node is bounded between 0 and 1.\"\n",
    "\n",
    "CONVS = [\n",
    "    [{\"role\": \"user\", \"content\": PROMPT}, {\"role\": \"assistant\", \"content\": RESPONSE1}],\n",
    "    [{\"role\": \"user\", \"content\": PROMPT}, {\"role\": \"assistant\", \"content\": RESPONSE2}],\n",
    "]\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"Skywork/Skywork-Reward-Llama-3.1-8B-v0.2\")\n",
    "prompts = tokenizer.apply_chat_template(CONVS, tokenize=False)\n",
    "\n",
335
    "url = \"http://localhost:30030/classify\"\n",
Chayenne's avatar
Chayenne committed
336
    "data = {\"model\": \"Skywork/Skywork-Reward-Llama-3.1-8B-v0.2\", \"text\": prompts}\n",
Chayenne's avatar
Chayenne committed
337
338
339
340
341
342
    "\n",
    "responses = requests.post(url, json=data).json()\n",
    "for response in responses:\n",
    "    print_highlight(f\"reward: {response['embedding'][0]}\")"
   ]
  },
Chayenne's avatar
Chayenne committed
343
344
  {
   "cell_type": "code",
345
346
   "execution_count": null,
   "metadata": {},
Chayenne's avatar
Chayenne committed
347
348
   "outputs": [],
   "source": [
Chayenne's avatar
Chayenne committed
349
    "terminate_process(reward_process)"
Chayenne's avatar
Chayenne committed
350
351
352
353
354
355
356
357
358
359
360
361
362
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
363
   "pygments_lexer": "ipython3"
Chayenne's avatar
Chayenne committed
364
365
366
367
368
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}