"vscode:/vscode.git/clone" did not exist on "75ee2531a0b5c3f33685c103edf66cf4a4e210a0"
fp8_utils.py 27.3 KB
Newer Older
1
from typing import Callable, List, Optional, Tuple
HAI's avatar
HAI committed
2
3

import torch
HandH1998's avatar
HandH1998 committed
4

5
from sglang.srt.layers.quantization import deep_gemm_wrapper
Yineng Zhang's avatar
Yineng Zhang committed
6
from sglang.srt.layers.quantization.fp8_kernel import sglang_per_token_group_quant_fp8
7
from sglang.srt.layers.quantization.mxfp4_tensor import MXFP4QuantizeUtil
8
from sglang.srt.layers.utils import is_sm100_supported
Yineng Zhang's avatar
Yineng Zhang committed
9

Lianmin Zheng's avatar
Lianmin Zheng committed
10
try:
11
    from vllm import _custom_ops as ops
Lianmin Zheng's avatar
Lianmin Zheng committed
12
13
14
15
16

    VLLM_AVAILABLE = True
except ImportError:
    VLLM_AVAILABLE = False

HandH1998's avatar
HandH1998 committed
17
from sglang.srt.layers.quantization.fp8_kernel import (
18
19
20
    fp8_dtype,
    fp8_max,
    is_fp8_fnuz,
HandH1998's avatar
HandH1998 committed
21
    per_token_group_quant_fp8,
Lianmin Zheng's avatar
Lianmin Zheng committed
22
23
    scaled_fp8_quant,
    sglang_per_token_quant_fp8,
HandH1998's avatar
HandH1998 committed
24
    static_quant_fp8,
25
    triton_scaled_mm,
26
27
    w8a8_block_fp8_matmul_deepgemm,
    w8a8_block_fp8_matmul_triton,
HandH1998's avatar
HandH1998 committed
28
)
HandH1998's avatar
HandH1998 committed
29
from sglang.srt.utils import (
30
    align,
31
    ceil_div,
HandH1998's avatar
HandH1998 committed
32
33
34
    get_bool_env_var,
    get_cuda_version,
    get_device_capability,
Lianmin Zheng's avatar
Lianmin Zheng committed
35
    is_cuda,
36
    is_flashinfer_available,
HandH1998's avatar
HandH1998 committed
37
38
39
    is_hip,
)

40
_is_hip = is_hip()
Lianmin Zheng's avatar
Lianmin Zheng committed
41
_is_cuda = is_cuda()
42
_is_fp8_fnuz = is_fp8_fnuz()
Lianmin Zheng's avatar
Lianmin Zheng committed
43

44
_use_aiter = get_bool_env_var("SGLANG_USE_AITER") and _is_hip
45

46
if _use_aiter:
47
    import aiter
48
    from aiter import gemm_a8w8_blockscale, get_hip_quant
49
50

    aiter_per1x128_quant = get_hip_quant(aiter.QuantType.per_1x128)
yigex's avatar
yigex committed
51

52
if _is_cuda:
53
    from sgl_kernel import fp8_blockwise_scaled_mm, fp8_scaled_mm
HAI's avatar
HAI committed
54

Lianmin Zheng's avatar
Lianmin Zheng committed
55
use_vllm_cutlass_w8a8_fp8_kernel = get_bool_env_var("USE_VLLM_CUTLASS_W8A8_FP8_KERNEL")
56
use_triton_w8a8_fp8_kernel = get_bool_env_var("USE_TRITON_W8A8_FP8_KERNEL")
HandH1998's avatar
HandH1998 committed
57

HandH1998's avatar
HandH1998 committed
58
59
# Input scaling factors are no longer optional in _scaled_mm starting
# from pytorch 2.5. Allocating a dummy tensor to pass as input_scale
Lianmin Zheng's avatar
Lianmin Zheng committed
60
TORCH_DEVICE_IDENTITY = None
HandH1998's avatar
HandH1998 committed
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

def use_rowwise_torch_scaled_mm():
    _TORCH_VERSION = torch.__version__.split("+")[0]
    try:
        _TORCH_VERSION_TUPLE = tuple(map(int, _TORCH_VERSION.split(".")[:3]))
    except ValueError:
        _TORCH_VERSION_TUPLE = (0, 0, 0)
    if _is_hip:
        # The condition to determine if it is on a platform that supports
        # torch._scaled_mm rowwise feature.
        # The condition is determined once as the operations
        # are time consuming.
        return get_device_capability() >= (9, 4) and _TORCH_VERSION_TUPLE >= (2, 7, 0)
    return False


USE_ROWWISE_TORCH_SCALED_MM = use_rowwise_torch_scaled_mm()
79

HandH1998's avatar
HandH1998 committed
80
81
82
83
84
85
86
87
88
89
90
91

def cutlass_fp8_supported():
    if not _is_cuda:
        return False
    major, minor = get_device_capability()
    cuda_version = get_cuda_version()
    if major >= 9:
        return cuda_version >= (12, 0)
    elif major == 8 and minor == 9:
        return cuda_version >= (12, 4)
    return False

HAI's avatar
HAI committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

def normalize_e4m3fn_to_e4m3fnuz(
    weight: torch.Tensor,
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
    assert weight.dtype == torch.float8_e4m3fn
    # The bits pattern 10000000(-128) represents zero in e4m3fn
    # but NaN in e4m3fnuz. So here we set it to 0.
    # https://onnx.ai/onnx/technical/float8.html
    weight_as_int8 = weight.view(torch.int8)
    ROCM_FP8_NAN_AS_INT = -128
    weight_as_int8[weight_as_int8 == ROCM_FP8_NAN_AS_INT] = 0
    weight = weight_as_int8.view(torch.float8_e4m3fnuz)

    # For the same bits representation, e4m3fnuz value is half of
    # the e4m3fn value, so we should double the scaling factor to
    # get the same dequantized value.
    # https://onnx.ai/onnx/technical/float8.html
    weight_scale = weight_scale * 2.0
    if input_scale is not None:
        input_scale = input_scale * 2.0
    return weight, weight_scale, input_scale
HandH1998's avatar
HandH1998 committed
115
116


117
# TODO(ch-wan): define these backends in --moe-runner-backend
118
def cutlass_block_fp8_supported() -> bool:
119
    if not get_bool_env_var("SGLANG_SUPPORT_CUTLASS_BLOCK_FP8"):
120
        return False
121
122
123
124
125
126
127
128
129
130
    if _is_cuda:
        major, minor = torch.cuda.get_device_capability()
        sm_version = major * 10 + minor
        cuda_version = tuple(map(int, torch.version.cuda.split(".")))
        if cuda_version >= (12, 0) and sm_version >= 90:
            return True
    return False


CUTLASS_BLOCK_FP8_SUPPORTED = cutlass_block_fp8_supported()
131
132
133
134
135
136
137
ENABLE_FLASHINFER_GEMM = (
    get_bool_env_var("SGLANG_ENABLE_FLASHINFER_GEMM")
    and is_sm100_supported()
    and is_flashinfer_available()
)
if ENABLE_FLASHINFER_GEMM:
    from flashinfer.gemm import gemm_fp8_nt_groupwise
138
139


140
141
142
143
144
def dispatch_w8a8_block_fp8_linear() -> Callable:
    if ENABLE_FLASHINFER_GEMM:
        return flashinfer_gemm_w8a8_block_fp8_linear
    elif CUTLASS_BLOCK_FP8_SUPPORTED:
        return cutlass_w8a8_block_fp8_linear_with_fallback
145
    elif _use_aiter:
146
        return aiter_w8a8_block_fp8_linear
147
    elif deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM:
148
149
150
151
152
153
        return deepgemm_w8a8_block_fp8_linear_with_fallback
    else:
        return triton_w8a8_block_fp8_linear


def flashinfer_gemm_w8a8_block_fp8_linear(
HandH1998's avatar
HandH1998 committed
154
155
156
157
158
159
160
161
    input: torch.Tensor,
    weight: torch.Tensor,
    block_size: List[int],
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
    bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    assert input_scale is None
162

HandH1998's avatar
HandH1998 committed
163
164
    input_2d = input.view(-1, input.shape[-1])
    output_shape = [*input.shape[:-1], weight.shape[0]]
165
166

    q_input, x_scale = sglang_per_token_group_quant_fp8(
167
        input_2d, block_size[1], column_major_scales=True
HandH1998's avatar
HandH1998 committed
168
    )
169
    # TRTLLM requires column-major scaling factors
170
    output = gemm_fp8_nt_groupwise(
171
172
173
174
175
        q_input,
        weight,
        x_scale,
        weight_scale,
        out_dtype=input_2d.dtype,
176
        backend="trtllm",
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    )

    if bias is not None:
        output += bias

    return output.to(dtype=input_2d.dtype).view(*output_shape)


def cutlass_w8a8_block_fp8_linear_with_fallback(
    input: torch.Tensor,
    weight: torch.Tensor,
    block_size: List[int],
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
    bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    assert input_scale is None

    # TODO: add more robust shape check here
    shape_supported = weight.shape[0] % 128 == 0 and weight.shape[1] % 128 == 0

    if not shape_supported:
        # fallback to triton
        return triton_w8a8_block_fp8_linear(
            input, weight, block_size, weight_scale, input_scale, bias
yigex's avatar
yigex committed
202
        )
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

    input_2d = input.view(-1, input.shape[-1])
    output_shape = [*input.shape[:-1], weight.shape[0]]

    q_input, x_scale = per_token_group_quant_fp8(
        input_2d, block_size[1], column_major_scales=True
    )
    output = fp8_blockwise_scaled_mm(
        q_input, weight.T, x_scale, weight_scale.T, out_dtype=input_2d.dtype
    )
    if bias is not None:
        output += bias
    return output.to(dtype=input_2d.dtype).view(*output_shape)


def deepgemm_w8a8_block_fp8_linear_with_fallback(
    input: torch.Tensor,
    weight: torch.Tensor,
    block_size: List[int],
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
    bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    assert input_scale is None

    output_dtype = input.dtype
    dtype_supported = output_dtype == torch.bfloat16

231
232
    # TODO: https://github.com/sgl-project/sglang/pull/6890#issuecomment-2943395737
    shape_supported = weight.shape[0] % 64 == 0 and weight.shape[1] % 128 == 0
233
234
235
236
237

    if not (shape_supported and dtype_supported):
        # fall back to triton
        return triton_w8a8_block_fp8_linear(
            input, weight, block_size, weight_scale, input_scale, bias
238
        )
HandH1998's avatar
HandH1998 committed
239

240
241
242
243
244
245
246
247
    input_2d = input.view(-1, input.shape[-1])
    output_shape = [*input.shape[:-1], weight.shape[0]]

    q_input, x_scale = sglang_per_token_group_quant_fp8(
        input_2d,
        block_size[1],
        column_major_scales=True,
        scale_tma_aligned=True,
fzyzcjy's avatar
fzyzcjy committed
248
        scale_ue8m0=deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0,
249
    )
250

251
252
253
254
    # NOTE(alcanderian): Useless when scale is packed to int32
    # if get_bool_env_var("SGLANG_W8A8_DEEPGEMM_SANITY_CHECK_UE8M0"):
    #     _check_ue8m0("x_scale", x_scale)
    #     _check_ue8m0("weight_scale", ws)
255

256
257
258
259
260
261
262
263
    output = w8a8_block_fp8_matmul_deepgemm(
        q_input, weight, x_scale, weight_scale, block_size, output_dtype=output_dtype
    )
    if bias is not None:
        output += bias
    return output.to(dtype=output_dtype).view(*output_shape)


264
265
266
267
268
def _check_ue8m0(name, x):
    x_ceil = ceil_to_ue8m0(x)
    assert torch.all(x == x_ceil), f"{name=} {x=} {x_ceil=}"


269
270
271
272
273
274
275
276
277
278
279
280
def aiter_w8a8_block_fp8_linear(
    input: torch.Tensor,
    weight: torch.Tensor,
    block_size: List[int],
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
    bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    assert input_scale is None
    input_2d = input.view(-1, input.shape[-1])
    output_shape = [*input.shape[:-1], weight.shape[0]]

281
    q_input, x_scale = aiter_per1x128_quant(input_2d, quant_dtype=aiter.dtypes.fp8)
282
    output = gemm_a8w8_blockscale(
283
        q_input, weight, x_scale, weight_scale, dtype=input.dtype
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    )

    if bias is not None:
        output += bias

    return output.to(dtype=input_2d.dtype).view(*output_shape)


def triton_w8a8_block_fp8_linear(
    input: torch.Tensor,
    weight: torch.Tensor,
    block_size: List[int],
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
    bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    assert input_scale is None
    input_2d = input.view(-1, input.shape[-1])
    output_shape = [*input.shape[:-1], weight.shape[0]]

    q_input, x_scale = per_token_group_quant_fp8(
        input_2d, block_size[1], column_major_scales=False
    )
    output = w8a8_block_fp8_matmul_triton(
        q_input, weight, x_scale, weight_scale, block_size, output_dtype=input_2d.dtype
    )
HandH1998's avatar
HandH1998 committed
310
    if bias is not None:
311
312
        output += bias
    return output.to(dtype=input_2d.dtype).view(*output_shape)
HandH1998's avatar
HandH1998 committed
313
314


315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
def dequant_mxfp4(
    w_block: torch.Tensor,
    w_scale: torch.Tensor,
    out_dtype,
) -> torch.Tensor:
    """
    :param w_block: (batch, n, k, 16), uint8, pack two mxfp4 into one byte
    :param w_scale: (batch, n, k), uint8
    :return: (batch, n, k * 32), float32
    """

    assert w_block.dtype == torch.uint8
    assert w_scale.dtype == torch.uint8

    batch, n, k, pack_dim = w_block.shape
    batch_, n_, k_ = w_scale.shape
    assert pack_dim == 16
    assert batch == batch_
    assert n == n_
    assert k == k_

    out_raw = MXFP4QuantizeUtil.dequantize(
        quantized_data=w_block, scale=w_scale, dtype=out_dtype, block_sizes=[32]
    )
    return out_raw.reshape(batch, n, k * 32)


HandH1998's avatar
HandH1998 committed
342
def input_to_float8(
343
    x: torch.Tensor, dtype: torch.dtype = fp8_dtype
HandH1998's avatar
HandH1998 committed
344
345
346
) -> Tuple[torch.Tensor, torch.Tensor]:
    """This function quantizes input values to float8 values with tensor-wise quantization."""
    min_val, max_val = x.aminmax()
347
    amax = torch.maximum(min_val.abs(), max_val.abs()).float().clamp(min=1e-12)
348
349
350
351
352
353
354
355
356
357

    if _is_fp8_fnuz:
        dtype = fp8_dtype
        fp_max = fp8_max
    else:
        finfo = torch.finfo(dtype)
        fp_max = finfo.max

    scale = fp_max / amax
    x_scl_sat = (x.float() * scale).clamp(min=-fp_max, max=fp_max)
HandH1998's avatar
HandH1998 committed
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
    return x_scl_sat.to(dtype).contiguous(), scale.float().reciprocal()


def block_quant_to_tensor_quant(
    x_q_block: torch.Tensor,
    x_s: torch.Tensor,
    block_size: List[int],
) -> Tuple[torch.Tensor, torch.Tensor]:
    """This function converts block-wise quantization to tensor-wise quantization.
    The inputs are block-wise quantization tensor `x_q_block`, block-wise quantization scale
    and the block size.
    The outputs are tensor-wise quantization tensor and tensor-wise quantization scale.
    Note only float8 is supported for now.
    """
    block_n, block_k = block_size[0], block_size[1]
    n, k = x_q_block.shape
    n_tiles = (n + block_n - 1) // block_n
    k_tiles = (k + block_k - 1) // block_k
    assert n_tiles == x_s.shape[0]
    assert k_tiles == x_s.shape[1]

    x_dq_block = x_q_block.to(torch.float32)

    x_dq_block_tiles = [
        [
            x_dq_block[
                j * block_n : min((j + 1) * block_n, n),
                i * block_k : min((i + 1) * block_k, k),
            ]
            for i in range(k_tiles)
        ]
        for j in range(n_tiles)
    ]

    for i in range(k_tiles):
        for j in range(n_tiles):
            x_dq_block_tiles[j][i][:, :] = x_dq_block_tiles[j][i] * x_s[j][i]

396
    x_q_tensor, scale = (
Lianmin Zheng's avatar
Lianmin Zheng committed
397
        scaled_fp8_quant(x_dq_block)
398
399
400
        if _is_cuda
        else input_to_float8(x_dq_block, dtype=x_q_block.dtype)
    )
HandH1998's avatar
HandH1998 committed
401
402
403
    return x_q_tensor, scale


404
405
406
407
408
409
410
411
412
413
414
415
def block_quant_dequant(
    x_q_block: torch.Tensor,
    x_s: torch.Tensor,
    block_size: List[int],
    dtype: torch.dtype,
) -> torch.Tensor:
    """This function converts block-wise quantization to unquantized.
    The inputs are block-wise quantization tensor `x_q_block`, block-wise quantization scale
    and the block size.
    The output is an unquantized tensor with dtype.
    """
    block_n, block_k = block_size[0], block_size[1]
416
    *_, n, k = x_q_block.shape
417

418
419
420
421
422
    # ... n_scale k_scale -> ... (n_scale block_n) (k_scale block_k)
    x_scale_repeat = x_s.repeat_interleave(block_n, dim=-2).repeat_interleave(
        block_k, dim=-1
    )
    x_scale_repeat = x_scale_repeat[..., :n, :k]
423

424
    return (x_q_block.to(torch.float32) * x_scale_repeat).to(dtype)
425
426


427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
def requant_weight_ue8m0_inplace(weight, weight_scale_inv, weight_block_size):
    assert isinstance(weight, torch.nn.Parameter)
    assert isinstance(weight_scale_inv, torch.nn.Parameter)
    weight.data, weight_scale_inv.data = _requant_weight_ue8m0(
        weight, weight_scale_inv, weight_block_size
    )


def _requant_weight_ue8m0(
    weight: torch.Tensor,
    weight_scale_inv: torch.Tensor,
    weight_block_size: List[int],
):
    assert weight_block_size == [128, 128]

    *_, n, k = weight.shape

    weight_dequant = block_quant_dequant(
        weight,
        weight_scale_inv,
        weight_block_size,
        torch.bfloat16,
    )

    weight_dequant_flat = weight_dequant.view((-1, k))
    out_w_flat, out_s_flat = per_block_cast_to_fp8(weight_dequant_flat)

    out_w = out_w_flat.view(weight.shape)
    out_s = out_s_flat.view(weight_scale_inv.shape)

    # NOTE copy and modified from DeepGEMM
    def _transform_scale(sf, mn: int):
        import deep_gemm.utils.layout

        sf = sf.index_select(-2, torch.arange(mn, device=sf.device) // 128)
        sf = deep_gemm.utils.layout.get_col_major_tma_aligned_packed_tensor(sf)
        return sf

    out_s = _transform_scale(out_s, mn=out_w.shape[-2])

    return out_w, out_s


# COPIED FROM DeepGEMM
def per_block_cast_to_fp8(x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
    assert x.dim() == 2
    m, n = x.shape
    x_padded = torch.zeros(
        (align(m, 128), align(n, 128)), dtype=x.dtype, device=x.device
    )
    x_padded[:m, :n] = x
    x_view = x_padded.view(-1, 128, x_padded.size(1) // 128, 128)
    x_amax = x_view.abs().float().amax(dim=(1, 3), keepdim=True).clamp(1e-4)
    sf = ceil_to_ue8m0(x_amax / 448.0)
    x_scaled = (x_view * (1.0 / sf)).to(torch.float8_e4m3fn)
    return x_scaled.view_as(x_padded)[:m, :n].contiguous(), sf.view(
        x_view.size(0), x_view.size(2)
    )


487
488
489
490
491
# COPIED FROM DeepGEMM
def ceil_to_ue8m0(x: torch.Tensor):
    return torch.pow(2.0, torch.ceil(torch.log2(x.abs())))


492
493
494
495
496
def channel_quant_to_tensor_quant(
    x_q_channel: torch.Tensor,
    x_s: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
    x_dq_channel = x_q_channel.to(torch.float32) * x_s
497
    x_q_tensor, scale = (
Lianmin Zheng's avatar
Lianmin Zheng committed
498
        scaled_fp8_quant(x_dq_channel)
499
500
501
        if _is_cuda
        else input_to_float8(x_dq_channel, dtype=x_q_channel.dtype)
    )
502
503
504
    return x_q_tensor, scale


505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
def _process_scaled_mm_output(output, input_2d_shape, output_shape):
    if type(output) is tuple and len(output) == 2:
        output = output[0]
    return torch.narrow(output, 0, 0, input_2d_shape[0]).view(*output_shape)


def _apply_fallback_scaled_mm(
    qinput,
    weight,
    x_scale,
    weight_scale,
    input_2d_shape,
    output_shape,
    bias,
    input_dtype,
):
    global TORCH_DEVICE_IDENTITY
    if TORCH_DEVICE_IDENTITY is None:
        TORCH_DEVICE_IDENTITY = torch.ones(1, dtype=torch.float32, device=weight.device)

    output = torch._scaled_mm(
        qinput,
        weight,
        scale_a=TORCH_DEVICE_IDENTITY,
        scale_b=TORCH_DEVICE_IDENTITY,
        out_dtype=torch.float32,
    )

    output = _process_scaled_mm_output(output, input_2d_shape, output_shape)
    x_scale = torch.narrow(x_scale, 0, 0, input_2d_shape[0])

    output = output * x_scale * weight_scale.t()
    if bias is not None:
        output = output + bias
    return output.to(dtype=input_dtype)


HandH1998's avatar
HandH1998 committed
542
543
544
545
546
547
548
def apply_fp8_linear(
    input: torch.Tensor,
    weight: torch.Tensor,
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
    input_scale_ub: Optional[torch.Tensor] = None,
    bias: Optional[torch.Tensor] = None,
549
    cutlass_fp8_supported: bool = cutlass_fp8_supported(),
HandH1998's avatar
HandH1998 committed
550
    use_per_token_if_dynamic: bool = False,
551
552
    pad_output: Optional[bool] = None,
    compressed_tensor_quant: bool = False,
HandH1998's avatar
HandH1998 committed
553
) -> torch.Tensor:
554
555
556
557
558
559
560
561
562
    # Note: we pad the input because torch._scaled_mm is more performant
    # for matrices with batch dimension > 16.
    # This could change in the future.
    # We also don't pad when using torch.compile,
    # as it breaks with dynamic shapes.
    if pad_output is None:
        pad_output = not get_bool_env_var("SGLANG_ENABLE_TORCH_COMPILE")
    output_padding = 17 if pad_output else None

HandH1998's avatar
HandH1998 committed
563
564
565
566
    # View input as 2D matrix for fp8 methods
    input_2d = input.view(-1, input.shape[-1])
    output_shape = [*input.shape[:-1], weight.shape[1]]

567
    if compressed_tensor_quant:
568
569
        # cutlass_scaled_mm supports per tensor/channel W and per tensor/token A
        # for sgl-kernel fp8_scaled_mm, it support per channel W now
570
571
572
573
574
575
        if cutlass_fp8_supported and weight_scale.numel() == weight.shape[1]:
            qinput, x_scale = scaled_fp8_quant(
                input_2d,
                input_scale,
                use_per_token_if_dynamic=use_per_token_if_dynamic,
            )
576
577
578

            # Fused GEMM_DQ
            if VLLM_AVAILABLE and use_vllm_cutlass_w8a8_fp8_kernel:
579
                # Fall back to vllm cutlass w8a8 fp8 kernel
580
                output = ops.cutlass_scaled_mm(
581
582
583
584
585
586
587
588
589
590
591
                    qinput,
                    weight,
                    out_dtype=input.dtype,
                    scale_a=x_scale,
                    scale_b=weight_scale,
                    bias=bias,
                )
            else:
                assert (
                    weight_scale.numel() == weight.shape[1]
                ), "cutlass w8a8 fp8 sgl-kernel only supports per-channel scale"
592
593
594

                cutlass_compatible_b = (
                    weight.shape[0] % 16 == 0 and weight.shape[1] % 16 == 0
595
                )
596
                if not cutlass_compatible_b or use_triton_w8a8_fp8_kernel:
597
598
599
600
601
602
603
604
605
606
607
608
609
610
                    # Massage the input to be 2D
                    qinput = qinput.view(-1, qinput.shape[-1])
                    output = triton_scaled_mm(
                        qinput, weight, x_scale, weight_scale, input.dtype, bias
                    )
                else:
                    output = fp8_scaled_mm(
                        qinput,
                        weight,
                        x_scale,
                        weight_scale,
                        out_dtype=input.dtype,
                        bias=bias,
                    )
611
612
613
614
615
616
            return output.view(*output_shape)

        # torch.scaled_mm supports per tensor weights + activations only
        # so fallback to naive if per channel or per token
        else:
            # Maybe apply padding to output, see comment in __init__
617
618
            qinput, x_scale = (
                scaled_fp8_quant(
619
620
                    input_2d,
                    input_scale,
621
                    num_token_padding=output_padding,
622
623
                    use_per_token_if_dynamic=use_per_token_if_dynamic,
                )
624
625
                if _is_cuda
                else ops.scaled_fp8_quant(
626
627
                    input_2d,
                    input_scale,
628
                    num_token_padding=output_padding,
629
630
                    use_per_token_if_dynamic=use_per_token_if_dynamic,
                )
631
            )
632
633
634
635
636
637
638
639
640
641
642
643
644
645

            per_tensor_weights = weight_scale.numel() == 1
            per_tensor_activations = x_scale.numel() == 1

            if per_tensor_weights and per_tensor_activations:
                # Fused GEMM_DQ
                output = torch._scaled_mm(
                    qinput,
                    weight,
                    out_dtype=input.dtype,
                    scale_a=x_scale,
                    scale_b=weight_scale,
                    bias=bias,
                )
646
                return _process_scaled_mm_output(output, input_2d.shape, output_shape)
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

            elif (
                use_per_token_if_dynamic
                and not per_tensor_weights
                and not per_tensor_activations
                and USE_ROWWISE_TORCH_SCALED_MM
            ):
                # For now validated on ROCm platform
                # fp8 rowwise scaling in torch._scaled_mm is introduced in
                # https://github.com/pytorch/pytorch/pull/144432 using hipBLASLt
                # and ROCm 6.3, which only exists in torch 2.7 and above.
                # For CUDA platform please validate if the
                # torch._scaled_mm support rowwise scaled GEMM
                # Fused GEMM_DQ Rowwise GEMM
                output = torch._scaled_mm(
                    qinput,
                    weight,
                    out_dtype=input.dtype,
                    scale_a=x_scale,
                    scale_b=weight_scale.t(),
                    bias=bias,
                )
669
                return _process_scaled_mm_output(output, input_2d.shape, output_shape)
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685

            else:
                # Fallback for channelwise case, where we use unfused DQ
                # due to limitations with scaled_mm

                # Symmetric quantized GEMM by definition computes the following:
                #   C = (s_x * X) (s_w * W) + bias
                # This is equivalent to dequantizing the weights and activations
                # before applying a GEMM.
                #
                # In order to compute quantized operands, a quantized kernel
                # will rewrite the above like so:
                #   C = s_w * s_x * (X * W) + bias
                #
                # For the scaled_mm fallback case, we break this down, since it
                # does not support s_w being a vector.
686
                return _apply_fallback_scaled_mm(
687
688
                    qinput,
                    weight,
689
690
691
692
693
694
                    x_scale,
                    weight_scale,
                    input_2d.shape,
                    output_shape,
                    bias,
                    input.dtype,
695
                )
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
    else:
        # cutlass w8a8 fp8 sgl-kernel only supports per-token scale
        if input_scale is not None:
            assert input_scale.numel() == 1
            # broadcast per-tensor scale to per-token scale when supporting cutlass
            qinput, x_scale = static_quant_fp8(
                input_2d, input_scale, repeat_scale=cutlass_fp8_supported
            )
        else:
            # default use per-token quantization if dynamic
            if _is_cuda:
                qinput, x_scale = sglang_per_token_quant_fp8(input_2d)
            else:
                # TODO(kkhuang): temporarily enforce per-tensor activation scaling if weight is per-tensor scaling
                # final solution should be: 1. add support to per-tensor activation scaling.
                # 2. solve the torch.compile error from weight_scale.numel() == 1 and x_scale.numel() > 1 (below line#308)
                if _is_hip and weight_scale.numel() == 1:
                    qinput, x_scale = ops.scaled_fp8_quant(
                        input_2d,
                        input_scale,
                        use_per_token_if_dynamic=use_per_token_if_dynamic,
                    )
                else:
                    qinput, x_scale = per_token_group_quant_fp8(
                        input_2d, group_size=input_2d.shape[1]
                    )

        if cutlass_fp8_supported:
            try:
                if VLLM_AVAILABLE and use_vllm_cutlass_w8a8_fp8_kernel:
726
                    # Fall back to vllm cutlass w8a8 fp8 kernel
727
728
729
730
731
732
733
734
735
736
737
738
                    output = ops.cutlass_scaled_mm(
                        qinput,
                        weight,
                        out_dtype=input.dtype,
                        scale_a=x_scale,
                        scale_b=weight_scale,
                        bias=bias,
                    )
                else:
                    assert (
                        weight_scale.numel() == weight.shape[1]
                    ), "cutlass w8a8 fp8 sgl-kernel only supports per-channel scale"
739
740
741

                    cutlass_compatible_b = (
                        weight.shape[0] % 16 == 0 and weight.shape[1] % 16 == 0
742
                    )
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
                    if not cutlass_compatible_b or use_triton_w8a8_fp8_kernel:
                        # Massage the input to be 2D
                        qinput = qinput.view(-1, qinput.shape[-1])
                        output = triton_scaled_mm(
                            qinput, weight, x_scale, weight_scale, input.dtype, bias
                        )
                    else:
                        output = fp8_scaled_mm(
                            qinput,
                            weight,
                            x_scale,
                            weight_scale,
                            out_dtype=input.dtype,
                            bias=bias,
                        )
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
                return output.view(*output_shape)
            except (ImportError, NameError, AttributeError):
                pass

        # torch.scaled_mm supports per tensor weights + activations only
        # so fallback to naive if per channel or per token
        per_tensor_weights = weight_scale.numel() == 1
        per_tensor_activations = x_scale.numel() == 1

        if per_tensor_weights and per_tensor_activations:
            # Fused GEMM_DQ
            output = torch._scaled_mm(
                qinput,
                weight,
                out_dtype=input.dtype,
                scale_a=x_scale,
                scale_b=weight_scale,
                bias=bias,
            )
            return _process_scaled_mm_output(output, input_2d.shape, output_shape)

        else:
            # Fallback for channelwise case, where we use unfused DQ
            # due to limitations with scaled_mm

            # Symmetric quantized GEMM by definition computes the following:
            #   C = (s_x * X) (s_w * W) + bias
            # This is equivalent to dequantizing the weights and activations
            # before applying a GEMM.
            #
            # In order to compute quantized operands, a quantized kernel
            # will rewrite the above like so:
            #   C = s_w * s_x * (X * W) + bias
            #
            # For the scaled_mm fallback case, we break this down, since it
            # does not support s_w being a vector.
            return _apply_fallback_scaled_mm(
                qinput,
                weight,
                x_scale,
                weight_scale,
                input_2d.shape,
                output_shape,
                bias,
                input.dtype,
            )
804
805
806
807
808
809
810
811
812


def can_auto_enable_marlin_fp8() -> bool:
    try:
        major, minor = get_device_capability()
        sm = major * 10 + minor
        return 80 <= sm < 89
    except Exception:
        return False