fp8_utils.py 25.8 KB
Newer Older
1
from typing import Callable, List, Optional, Tuple
HAI's avatar
HAI committed
2
3

import torch
HandH1998's avatar
HandH1998 committed
4

5
from sglang.srt.layers.quantization import deep_gemm_wrapper
Yineng Zhang's avatar
Yineng Zhang committed
6
from sglang.srt.layers.quantization.fp8_kernel import sglang_per_token_group_quant_fp8
7
from sglang.srt.layers.quantization.mxfp4_tensor import MXFP4QuantizeUtil
8
from sglang.srt.layers.utils import is_sm100_supported
Yineng Zhang's avatar
Yineng Zhang committed
9

Lianmin Zheng's avatar
Lianmin Zheng committed
10
try:
11
    from vllm import _custom_ops as ops
Lianmin Zheng's avatar
Lianmin Zheng committed
12
13
14
15
16

    VLLM_AVAILABLE = True
except ImportError:
    VLLM_AVAILABLE = False

HandH1998's avatar
HandH1998 committed
17
from sglang.srt.layers.quantization.fp8_kernel import (
18
19
20
    fp8_dtype,
    fp8_max,
    is_fp8_fnuz,
HandH1998's avatar
HandH1998 committed
21
    per_token_group_quant_fp8,
Lianmin Zheng's avatar
Lianmin Zheng committed
22
23
    scaled_fp8_quant,
    sglang_per_token_quant_fp8,
HandH1998's avatar
HandH1998 committed
24
    static_quant_fp8,
25
26
    w8a8_block_fp8_matmul_deepgemm,
    w8a8_block_fp8_matmul_triton,
HandH1998's avatar
HandH1998 committed
27
)
HandH1998's avatar
HandH1998 committed
28
from sglang.srt.utils import (
29
    align,
30
    ceil_div,
HandH1998's avatar
HandH1998 committed
31
32
33
    get_bool_env_var,
    get_cuda_version,
    get_device_capability,
Lianmin Zheng's avatar
Lianmin Zheng committed
34
    is_cuda,
35
    is_flashinfer_available,
HandH1998's avatar
HandH1998 committed
36
37
38
    is_hip,
)

39
_is_hip = is_hip()
Lianmin Zheng's avatar
Lianmin Zheng committed
40
_is_cuda = is_cuda()
41
_is_fp8_fnuz = is_fp8_fnuz()
Lianmin Zheng's avatar
Lianmin Zheng committed
42

43
_use_aiter = get_bool_env_var("SGLANG_USE_AITER") and _is_hip
44

45
if _use_aiter:
46
    import aiter
47
    from aiter import gemm_a8w8_blockscale, get_hip_quant
48
49

    aiter_per1x128_quant = get_hip_quant(aiter.QuantType.per_1x128)
yigex's avatar
yigex committed
50

51
if _is_cuda:
52
    from sgl_kernel import fp8_blockwise_scaled_mm, fp8_scaled_mm
HAI's avatar
HAI committed
53

Lianmin Zheng's avatar
Lianmin Zheng committed
54
use_vllm_cutlass_w8a8_fp8_kernel = get_bool_env_var("USE_VLLM_CUTLASS_W8A8_FP8_KERNEL")
HandH1998's avatar
HandH1998 committed
55

HandH1998's avatar
HandH1998 committed
56
57
# Input scaling factors are no longer optional in _scaled_mm starting
# from pytorch 2.5. Allocating a dummy tensor to pass as input_scale
Lianmin Zheng's avatar
Lianmin Zheng committed
58
TORCH_DEVICE_IDENTITY = None
HandH1998's avatar
HandH1998 committed
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

def use_rowwise_torch_scaled_mm():
    _TORCH_VERSION = torch.__version__.split("+")[0]
    try:
        _TORCH_VERSION_TUPLE = tuple(map(int, _TORCH_VERSION.split(".")[:3]))
    except ValueError:
        _TORCH_VERSION_TUPLE = (0, 0, 0)
    if _is_hip:
        # The condition to determine if it is on a platform that supports
        # torch._scaled_mm rowwise feature.
        # The condition is determined once as the operations
        # are time consuming.
        return get_device_capability() >= (9, 4) and _TORCH_VERSION_TUPLE >= (2, 7, 0)
    return False


USE_ROWWISE_TORCH_SCALED_MM = use_rowwise_torch_scaled_mm()
77

HandH1998's avatar
HandH1998 committed
78
79
80
81
82
83
84
85
86
87
88
89

def cutlass_fp8_supported():
    if not _is_cuda:
        return False
    major, minor = get_device_capability()
    cuda_version = get_cuda_version()
    if major >= 9:
        return cuda_version >= (12, 0)
    elif major == 8 and minor == 9:
        return cuda_version >= (12, 4)
    return False

HAI's avatar
HAI committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

def normalize_e4m3fn_to_e4m3fnuz(
    weight: torch.Tensor,
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
    assert weight.dtype == torch.float8_e4m3fn
    # The bits pattern 10000000(-128) represents zero in e4m3fn
    # but NaN in e4m3fnuz. So here we set it to 0.
    # https://onnx.ai/onnx/technical/float8.html
    weight_as_int8 = weight.view(torch.int8)
    ROCM_FP8_NAN_AS_INT = -128
    weight_as_int8[weight_as_int8 == ROCM_FP8_NAN_AS_INT] = 0
    weight = weight_as_int8.view(torch.float8_e4m3fnuz)

    # For the same bits representation, e4m3fnuz value is half of
    # the e4m3fn value, so we should double the scaling factor to
    # get the same dequantized value.
    # https://onnx.ai/onnx/technical/float8.html
    weight_scale = weight_scale * 2.0
    if input_scale is not None:
        input_scale = input_scale * 2.0
    return weight, weight_scale, input_scale
HandH1998's avatar
HandH1998 committed
113
114


115
def cutlass_block_fp8_supported() -> bool:
116
    if not get_bool_env_var("SGLANG_SUPPORT_CUTLASS_BLOCK_FP8"):
117
        return False
118
119
120
121
122
123
124
125
126
127
    if _is_cuda:
        major, minor = torch.cuda.get_device_capability()
        sm_version = major * 10 + minor
        cuda_version = tuple(map(int, torch.version.cuda.split(".")))
        if cuda_version >= (12, 0) and sm_version >= 90:
            return True
    return False


CUTLASS_BLOCK_FP8_SUPPORTED = cutlass_block_fp8_supported()
128
129
130
131
132
133
134
ENABLE_FLASHINFER_GEMM = (
    get_bool_env_var("SGLANG_ENABLE_FLASHINFER_GEMM")
    and is_sm100_supported()
    and is_flashinfer_available()
)
if ENABLE_FLASHINFER_GEMM:
    from flashinfer.gemm import gemm_fp8_nt_groupwise
135
136


137
138
139
140
141
def dispatch_w8a8_block_fp8_linear() -> Callable:
    if ENABLE_FLASHINFER_GEMM:
        return flashinfer_gemm_w8a8_block_fp8_linear
    elif CUTLASS_BLOCK_FP8_SUPPORTED:
        return cutlass_w8a8_block_fp8_linear_with_fallback
142
    elif _use_aiter:
143
        return aiter_w8a8_block_fp8_linear
144
    elif deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM:
145
146
147
148
149
150
        return deepgemm_w8a8_block_fp8_linear_with_fallback
    else:
        return triton_w8a8_block_fp8_linear


def flashinfer_gemm_w8a8_block_fp8_linear(
HandH1998's avatar
HandH1998 committed
151
152
153
154
155
156
157
158
    input: torch.Tensor,
    weight: torch.Tensor,
    block_size: List[int],
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
    bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    assert input_scale is None
159

HandH1998's avatar
HandH1998 committed
160
161
    input_2d = input.view(-1, input.shape[-1])
    output_shape = [*input.shape[:-1], weight.shape[0]]
162
163
164

    q_input, x_scale = sglang_per_token_group_quant_fp8(
        input_2d, block_size[1], column_major_scales=False
HandH1998's avatar
HandH1998 committed
165
    )
166
167

    output = gemm_fp8_nt_groupwise(
168
169
170
171
172
173
        q_input,
        weight,
        x_scale,
        weight_scale,
        scale_major_mode="K",
        out_dtype=input_2d.dtype,
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    )

    if bias is not None:
        output += bias

    return output.to(dtype=input_2d.dtype).view(*output_shape)


def cutlass_w8a8_block_fp8_linear_with_fallback(
    input: torch.Tensor,
    weight: torch.Tensor,
    block_size: List[int],
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
    bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    assert input_scale is None

    # TODO: add more robust shape check here
    shape_supported = weight.shape[0] % 128 == 0 and weight.shape[1] % 128 == 0

    if not shape_supported:
        # fallback to triton
        return triton_w8a8_block_fp8_linear(
            input, weight, block_size, weight_scale, input_scale, bias
yigex's avatar
yigex committed
199
        )
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

    input_2d = input.view(-1, input.shape[-1])
    output_shape = [*input.shape[:-1], weight.shape[0]]

    q_input, x_scale = per_token_group_quant_fp8(
        input_2d, block_size[1], column_major_scales=True
    )
    output = fp8_blockwise_scaled_mm(
        q_input, weight.T, x_scale, weight_scale.T, out_dtype=input_2d.dtype
    )
    if bias is not None:
        output += bias
    return output.to(dtype=input_2d.dtype).view(*output_shape)


def deepgemm_w8a8_block_fp8_linear_with_fallback(
    input: torch.Tensor,
    weight: torch.Tensor,
    block_size: List[int],
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
    bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    assert input_scale is None

    output_dtype = input.dtype
    dtype_supported = output_dtype == torch.bfloat16

228
229
    # TODO: https://github.com/sgl-project/sglang/pull/6890#issuecomment-2943395737
    shape_supported = weight.shape[0] % 64 == 0 and weight.shape[1] % 128 == 0
230
231
232
233
234

    if not (shape_supported and dtype_supported):
        # fall back to triton
        return triton_w8a8_block_fp8_linear(
            input, weight, block_size, weight_scale, input_scale, bias
235
        )
HandH1998's avatar
HandH1998 committed
236

237
238
239
240
241
242
243
244
    input_2d = input.view(-1, input.shape[-1])
    output_shape = [*input.shape[:-1], weight.shape[0]]

    q_input, x_scale = sglang_per_token_group_quant_fp8(
        input_2d,
        block_size[1],
        column_major_scales=True,
        scale_tma_aligned=True,
fzyzcjy's avatar
fzyzcjy committed
245
        scale_ue8m0=deep_gemm_wrapper.DEEPGEMM_SCALE_UE8M0,
246
    )
247

248
249
250
251
    # NOTE(alcanderian): Useless when scale is packed to int32
    # if get_bool_env_var("SGLANG_W8A8_DEEPGEMM_SANITY_CHECK_UE8M0"):
    #     _check_ue8m0("x_scale", x_scale)
    #     _check_ue8m0("weight_scale", ws)
252

253
254
255
256
257
258
259
260
    output = w8a8_block_fp8_matmul_deepgemm(
        q_input, weight, x_scale, weight_scale, block_size, output_dtype=output_dtype
    )
    if bias is not None:
        output += bias
    return output.to(dtype=output_dtype).view(*output_shape)


261
262
263
264
265
def _check_ue8m0(name, x):
    x_ceil = ceil_to_ue8m0(x)
    assert torch.all(x == x_ceil), f"{name=} {x=} {x_ceil=}"


266
267
268
269
270
271
272
273
274
275
276
277
def aiter_w8a8_block_fp8_linear(
    input: torch.Tensor,
    weight: torch.Tensor,
    block_size: List[int],
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
    bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    assert input_scale is None
    input_2d = input.view(-1, input.shape[-1])
    output_shape = [*input.shape[:-1], weight.shape[0]]

278
    q_input, x_scale = aiter_per1x128_quant(input_2d, quant_dtype=aiter.dtypes.fp8)
279
    output = gemm_a8w8_blockscale(
280
        q_input, weight, x_scale, weight_scale, dtype=input.dtype
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    )

    if bias is not None:
        output += bias

    return output.to(dtype=input_2d.dtype).view(*output_shape)


def triton_w8a8_block_fp8_linear(
    input: torch.Tensor,
    weight: torch.Tensor,
    block_size: List[int],
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
    bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    assert input_scale is None
    input_2d = input.view(-1, input.shape[-1])
    output_shape = [*input.shape[:-1], weight.shape[0]]

    q_input, x_scale = per_token_group_quant_fp8(
        input_2d, block_size[1], column_major_scales=False
    )
    output = w8a8_block_fp8_matmul_triton(
        q_input, weight, x_scale, weight_scale, block_size, output_dtype=input_2d.dtype
    )
HandH1998's avatar
HandH1998 committed
307
    if bias is not None:
308
309
        output += bias
    return output.to(dtype=input_2d.dtype).view(*output_shape)
HandH1998's avatar
HandH1998 committed
310
311


312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
def dequant_mxfp4(
    w_block: torch.Tensor,
    w_scale: torch.Tensor,
    out_dtype,
) -> torch.Tensor:
    """
    :param w_block: (batch, n, k, 16), uint8, pack two mxfp4 into one byte
    :param w_scale: (batch, n, k), uint8
    :return: (batch, n, k * 32), float32
    """

    assert w_block.dtype == torch.uint8
    assert w_scale.dtype == torch.uint8

    batch, n, k, pack_dim = w_block.shape
    batch_, n_, k_ = w_scale.shape
    assert pack_dim == 16
    assert batch == batch_
    assert n == n_
    assert k == k_

    out_raw = MXFP4QuantizeUtil.dequantize(
        quantized_data=w_block, scale=w_scale, dtype=out_dtype, block_sizes=[32]
    )
    return out_raw.reshape(batch, n, k * 32)


HandH1998's avatar
HandH1998 committed
339
def input_to_float8(
340
    x: torch.Tensor, dtype: torch.dtype = fp8_dtype
HandH1998's avatar
HandH1998 committed
341
342
343
) -> Tuple[torch.Tensor, torch.Tensor]:
    """This function quantizes input values to float8 values with tensor-wise quantization."""
    min_val, max_val = x.aminmax()
344
    amax = torch.maximum(min_val.abs(), max_val.abs()).float().clamp(min=1e-12)
345
346
347
348
349
350
351
352
353
354

    if _is_fp8_fnuz:
        dtype = fp8_dtype
        fp_max = fp8_max
    else:
        finfo = torch.finfo(dtype)
        fp_max = finfo.max

    scale = fp_max / amax
    x_scl_sat = (x.float() * scale).clamp(min=-fp_max, max=fp_max)
HandH1998's avatar
HandH1998 committed
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    return x_scl_sat.to(dtype).contiguous(), scale.float().reciprocal()


def block_quant_to_tensor_quant(
    x_q_block: torch.Tensor,
    x_s: torch.Tensor,
    block_size: List[int],
) -> Tuple[torch.Tensor, torch.Tensor]:
    """This function converts block-wise quantization to tensor-wise quantization.
    The inputs are block-wise quantization tensor `x_q_block`, block-wise quantization scale
    and the block size.
    The outputs are tensor-wise quantization tensor and tensor-wise quantization scale.
    Note only float8 is supported for now.
    """
    block_n, block_k = block_size[0], block_size[1]
    n, k = x_q_block.shape
    n_tiles = (n + block_n - 1) // block_n
    k_tiles = (k + block_k - 1) // block_k
    assert n_tiles == x_s.shape[0]
    assert k_tiles == x_s.shape[1]

    x_dq_block = x_q_block.to(torch.float32)

    x_dq_block_tiles = [
        [
            x_dq_block[
                j * block_n : min((j + 1) * block_n, n),
                i * block_k : min((i + 1) * block_k, k),
            ]
            for i in range(k_tiles)
        ]
        for j in range(n_tiles)
    ]

    for i in range(k_tiles):
        for j in range(n_tiles):
            x_dq_block_tiles[j][i][:, :] = x_dq_block_tiles[j][i] * x_s[j][i]

393
    x_q_tensor, scale = (
Lianmin Zheng's avatar
Lianmin Zheng committed
394
        scaled_fp8_quant(x_dq_block)
395
396
397
        if _is_cuda
        else input_to_float8(x_dq_block, dtype=x_q_block.dtype)
    )
HandH1998's avatar
HandH1998 committed
398
399
400
    return x_q_tensor, scale


401
402
403
404
405
406
407
408
409
410
411
412
def block_quant_dequant(
    x_q_block: torch.Tensor,
    x_s: torch.Tensor,
    block_size: List[int],
    dtype: torch.dtype,
) -> torch.Tensor:
    """This function converts block-wise quantization to unquantized.
    The inputs are block-wise quantization tensor `x_q_block`, block-wise quantization scale
    and the block size.
    The output is an unquantized tensor with dtype.
    """
    block_n, block_k = block_size[0], block_size[1]
413
    *_, n, k = x_q_block.shape
414

415
416
417
418
419
    # ... n_scale k_scale -> ... (n_scale block_n) (k_scale block_k)
    x_scale_repeat = x_s.repeat_interleave(block_n, dim=-2).repeat_interleave(
        block_k, dim=-1
    )
    x_scale_repeat = x_scale_repeat[..., :n, :k]
420

421
    return (x_q_block.to(torch.float32) * x_scale_repeat).to(dtype)
422
423


424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
def requant_weight_ue8m0_inplace(weight, weight_scale_inv, weight_block_size):
    assert isinstance(weight, torch.nn.Parameter)
    assert isinstance(weight_scale_inv, torch.nn.Parameter)
    weight.data, weight_scale_inv.data = _requant_weight_ue8m0(
        weight, weight_scale_inv, weight_block_size
    )


def _requant_weight_ue8m0(
    weight: torch.Tensor,
    weight_scale_inv: torch.Tensor,
    weight_block_size: List[int],
):
    assert weight_block_size == [128, 128]

    *_, n, k = weight.shape

    weight_dequant = block_quant_dequant(
        weight,
        weight_scale_inv,
        weight_block_size,
        torch.bfloat16,
    )

    weight_dequant_flat = weight_dequant.view((-1, k))
    out_w_flat, out_s_flat = per_block_cast_to_fp8(weight_dequant_flat)

    out_w = out_w_flat.view(weight.shape)
    out_s = out_s_flat.view(weight_scale_inv.shape)

    # NOTE copy and modified from DeepGEMM
    def _transform_scale(sf, mn: int):
        import deep_gemm.utils.layout

        sf = sf.index_select(-2, torch.arange(mn, device=sf.device) // 128)
        sf = deep_gemm.utils.layout.get_col_major_tma_aligned_packed_tensor(sf)
        return sf

    out_s = _transform_scale(out_s, mn=out_w.shape[-2])

    return out_w, out_s


# COPIED FROM DeepGEMM
def per_block_cast_to_fp8(x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
    assert x.dim() == 2
    m, n = x.shape
    x_padded = torch.zeros(
        (align(m, 128), align(n, 128)), dtype=x.dtype, device=x.device
    )
    x_padded[:m, :n] = x
    x_view = x_padded.view(-1, 128, x_padded.size(1) // 128, 128)
    x_amax = x_view.abs().float().amax(dim=(1, 3), keepdim=True).clamp(1e-4)
    sf = ceil_to_ue8m0(x_amax / 448.0)
    x_scaled = (x_view * (1.0 / sf)).to(torch.float8_e4m3fn)
    return x_scaled.view_as(x_padded)[:m, :n].contiguous(), sf.view(
        x_view.size(0), x_view.size(2)
    )


484
485
486
487
488
# COPIED FROM DeepGEMM
def ceil_to_ue8m0(x: torch.Tensor):
    return torch.pow(2.0, torch.ceil(torch.log2(x.abs())))


489
490
491
492
493
def channel_quant_to_tensor_quant(
    x_q_channel: torch.Tensor,
    x_s: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
    x_dq_channel = x_q_channel.to(torch.float32) * x_s
494
    x_q_tensor, scale = (
Lianmin Zheng's avatar
Lianmin Zheng committed
495
        scaled_fp8_quant(x_dq_channel)
496
497
498
        if _is_cuda
        else input_to_float8(x_dq_channel, dtype=x_q_channel.dtype)
    )
499
500
501
    return x_q_tensor, scale


502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
def _process_scaled_mm_output(output, input_2d_shape, output_shape):
    if type(output) is tuple and len(output) == 2:
        output = output[0]
    return torch.narrow(output, 0, 0, input_2d_shape[0]).view(*output_shape)


def _apply_fallback_scaled_mm(
    qinput,
    weight,
    x_scale,
    weight_scale,
    input_2d_shape,
    output_shape,
    bias,
    input_dtype,
):
    global TORCH_DEVICE_IDENTITY
    if TORCH_DEVICE_IDENTITY is None:
        TORCH_DEVICE_IDENTITY = torch.ones(1, dtype=torch.float32, device=weight.device)

    output = torch._scaled_mm(
        qinput,
        weight,
        scale_a=TORCH_DEVICE_IDENTITY,
        scale_b=TORCH_DEVICE_IDENTITY,
        out_dtype=torch.float32,
    )

    output = _process_scaled_mm_output(output, input_2d_shape, output_shape)
    x_scale = torch.narrow(x_scale, 0, 0, input_2d_shape[0])

    output = output * x_scale * weight_scale.t()
    if bias is not None:
        output = output + bias
    return output.to(dtype=input_dtype)


HandH1998's avatar
HandH1998 committed
539
540
541
542
543
544
545
def apply_fp8_linear(
    input: torch.Tensor,
    weight: torch.Tensor,
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
    input_scale_ub: Optional[torch.Tensor] = None,
    bias: Optional[torch.Tensor] = None,
546
    cutlass_fp8_supported: bool = cutlass_fp8_supported(),
HandH1998's avatar
HandH1998 committed
547
    use_per_token_if_dynamic: bool = False,
548
549
    pad_output: Optional[bool] = None,
    compressed_tensor_quant: bool = False,
HandH1998's avatar
HandH1998 committed
550
) -> torch.Tensor:
551
552
553
554
555
556
557
558
559
    # Note: we pad the input because torch._scaled_mm is more performant
    # for matrices with batch dimension > 16.
    # This could change in the future.
    # We also don't pad when using torch.compile,
    # as it breaks with dynamic shapes.
    if pad_output is None:
        pad_output = not get_bool_env_var("SGLANG_ENABLE_TORCH_COMPILE")
    output_padding = 17 if pad_output else None

HandH1998's avatar
HandH1998 committed
560
561
562
563
    # View input as 2D matrix for fp8 methods
    input_2d = input.view(-1, input.shape[-1])
    output_shape = [*input.shape[:-1], weight.shape[1]]

564
    if compressed_tensor_quant:
565
566
        # cutlass_scaled_mm supports per tensor/channel W and per tensor/token A
        # for sgl-kernel fp8_scaled_mm, it support per channel W now
567
568
569
570
571
572
        if cutlass_fp8_supported and weight_scale.numel() == weight.shape[1]:
            qinput, x_scale = scaled_fp8_quant(
                input_2d,
                input_scale,
                use_per_token_if_dynamic=use_per_token_if_dynamic,
            )
573
574
575

            # Fused GEMM_DQ
            if VLLM_AVAILABLE and use_vllm_cutlass_w8a8_fp8_kernel:
576
                # Fall back to vllm cutlass w8a8 fp8 kernel
577
                output = ops.cutlass_scaled_mm(
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
                    qinput,
                    weight,
                    out_dtype=input.dtype,
                    scale_a=x_scale,
                    scale_b=weight_scale,
                    bias=bias,
                )
            else:
                assert (
                    weight_scale.numel() == weight.shape[1]
                ), "cutlass w8a8 fp8 sgl-kernel only supports per-channel scale"
                output = fp8_scaled_mm(
                    qinput,
                    weight,
                    x_scale,
                    weight_scale,
                    out_dtype=input.dtype,
                    bias=bias,
                )
            return output.view(*output_shape)

        # torch.scaled_mm supports per tensor weights + activations only
        # so fallback to naive if per channel or per token
        else:
            # Maybe apply padding to output, see comment in __init__
603
604
            qinput, x_scale = (
                scaled_fp8_quant(
605
606
                    input_2d,
                    input_scale,
607
                    num_token_padding=output_padding,
608
609
                    use_per_token_if_dynamic=use_per_token_if_dynamic,
                )
610
611
                if _is_cuda
                else ops.scaled_fp8_quant(
612
613
                    input_2d,
                    input_scale,
614
                    num_token_padding=output_padding,
615
616
                    use_per_token_if_dynamic=use_per_token_if_dynamic,
                )
617
            )
618
619
620
621
622
623
624
625
626
627
628
629
630
631

            per_tensor_weights = weight_scale.numel() == 1
            per_tensor_activations = x_scale.numel() == 1

            if per_tensor_weights and per_tensor_activations:
                # Fused GEMM_DQ
                output = torch._scaled_mm(
                    qinput,
                    weight,
                    out_dtype=input.dtype,
                    scale_a=x_scale,
                    scale_b=weight_scale,
                    bias=bias,
                )
632
                return _process_scaled_mm_output(output, input_2d.shape, output_shape)
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654

            elif (
                use_per_token_if_dynamic
                and not per_tensor_weights
                and not per_tensor_activations
                and USE_ROWWISE_TORCH_SCALED_MM
            ):
                # For now validated on ROCm platform
                # fp8 rowwise scaling in torch._scaled_mm is introduced in
                # https://github.com/pytorch/pytorch/pull/144432 using hipBLASLt
                # and ROCm 6.3, which only exists in torch 2.7 and above.
                # For CUDA platform please validate if the
                # torch._scaled_mm support rowwise scaled GEMM
                # Fused GEMM_DQ Rowwise GEMM
                output = torch._scaled_mm(
                    qinput,
                    weight,
                    out_dtype=input.dtype,
                    scale_a=x_scale,
                    scale_b=weight_scale.t(),
                    bias=bias,
                )
655
                return _process_scaled_mm_output(output, input_2d.shape, output_shape)
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671

            else:
                # Fallback for channelwise case, where we use unfused DQ
                # due to limitations with scaled_mm

                # Symmetric quantized GEMM by definition computes the following:
                #   C = (s_x * X) (s_w * W) + bias
                # This is equivalent to dequantizing the weights and activations
                # before applying a GEMM.
                #
                # In order to compute quantized operands, a quantized kernel
                # will rewrite the above like so:
                #   C = s_w * s_x * (X * W) + bias
                #
                # For the scaled_mm fallback case, we break this down, since it
                # does not support s_w being a vector.
672
                return _apply_fallback_scaled_mm(
673
674
                    qinput,
                    weight,
675
676
677
678
679
680
                    x_scale,
                    weight_scale,
                    input_2d.shape,
                    output_shape,
                    bias,
                    input.dtype,
681
                )
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
    else:
        # cutlass w8a8 fp8 sgl-kernel only supports per-token scale
        if input_scale is not None:
            assert input_scale.numel() == 1
            # broadcast per-tensor scale to per-token scale when supporting cutlass
            qinput, x_scale = static_quant_fp8(
                input_2d, input_scale, repeat_scale=cutlass_fp8_supported
            )
        else:
            # default use per-token quantization if dynamic
            if _is_cuda:
                qinput, x_scale = sglang_per_token_quant_fp8(input_2d)
            else:
                # TODO(kkhuang): temporarily enforce per-tensor activation scaling if weight is per-tensor scaling
                # final solution should be: 1. add support to per-tensor activation scaling.
                # 2. solve the torch.compile error from weight_scale.numel() == 1 and x_scale.numel() > 1 (below line#308)
                if _is_hip and weight_scale.numel() == 1:
                    qinput, x_scale = ops.scaled_fp8_quant(
                        input_2d,
                        input_scale,
                        use_per_token_if_dynamic=use_per_token_if_dynamic,
                    )
                else:
                    qinput, x_scale = per_token_group_quant_fp8(
                        input_2d, group_size=input_2d.shape[1]
                    )

        if cutlass_fp8_supported:
            try:
                if VLLM_AVAILABLE and use_vllm_cutlass_w8a8_fp8_kernel:
712
                    # Fall back to vllm cutlass w8a8 fp8 kernel
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
                    output = ops.cutlass_scaled_mm(
                        qinput,
                        weight,
                        out_dtype=input.dtype,
                        scale_a=x_scale,
                        scale_b=weight_scale,
                        bias=bias,
                    )
                else:
                    assert (
                        weight_scale.numel() == weight.shape[1]
                    ), "cutlass w8a8 fp8 sgl-kernel only supports per-channel scale"
                    output = fp8_scaled_mm(
                        qinput,
                        weight,
                        x_scale,
                        weight_scale,
                        out_dtype=input.dtype,
                        bias=bias,
                    )
                return output.view(*output_shape)
            except (ImportError, NameError, AttributeError):
                pass

        # torch.scaled_mm supports per tensor weights + activations only
        # so fallback to naive if per channel or per token
        per_tensor_weights = weight_scale.numel() == 1
        per_tensor_activations = x_scale.numel() == 1

        if per_tensor_weights and per_tensor_activations:
            # Fused GEMM_DQ
            output = torch._scaled_mm(
                qinput,
                weight,
                out_dtype=input.dtype,
                scale_a=x_scale,
                scale_b=weight_scale,
                bias=bias,
            )
            return _process_scaled_mm_output(output, input_2d.shape, output_shape)

        else:
            # Fallback for channelwise case, where we use unfused DQ
            # due to limitations with scaled_mm

            # Symmetric quantized GEMM by definition computes the following:
            #   C = (s_x * X) (s_w * W) + bias
            # This is equivalent to dequantizing the weights and activations
            # before applying a GEMM.
            #
            # In order to compute quantized operands, a quantized kernel
            # will rewrite the above like so:
            #   C = s_w * s_x * (X * W) + bias
            #
            # For the scaled_mm fallback case, we break this down, since it
            # does not support s_w being a vector.
            return _apply_fallback_scaled_mm(
                qinput,
                weight,
                x_scale,
                weight_scale,
                input_2d.shape,
                output_shape,
                bias,
                input.dtype,
            )