test_openai_server.py 33.3 KB
Newer Older
1
2
3
"""
python3 -m unittest test_openai_server.TestOpenAIServer.test_batch
python3 -m unittest test_openai_server.TestOpenAIServer.test_completion
4
5
6
python3 -m unittest test_openai_server.TestOpenAIServer.test_completion_stream
python3 -m unittest test_openai_server.TestOpenAIServer.test_chat_completion
python3 -m unittest test_openai_server.TestOpenAIServer.test_chat_completion_stream
7
"""
Chayenne's avatar
Chayenne committed
8

9
import json
10
import re
11
import time
12
import unittest
13

14
import numpy as np
15
import openai
16
import requests
17

yichuan~'s avatar
yichuan~ committed
18
from sglang.srt.hf_transformers_utils import get_tokenizer
19
from sglang.srt.utils import kill_process_tree
woodx's avatar
woodx committed
20
from sglang.test.runners import TEST_RERANK_QUERY_DOCS
21
from sglang.test.test_utils import (
woodx's avatar
woodx committed
22
    DEFAULT_SMALL_CROSS_ENCODER_MODEL_NAME_FOR_TEST,
23
    DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST,
Lianmin Zheng's avatar
Lianmin Zheng committed
24
    DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
25
26
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
27
    CustomTestCase,
28
29
    popen_launch_server,
)
30
31


32
class TestOpenAIServer(CustomTestCase):
33
34
    @classmethod
    def setUpClass(cls):
Lianmin Zheng's avatar
Lianmin Zheng committed
35
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
36
        cls.base_url = DEFAULT_URL_FOR_TEST
37
38
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
39
40
41
42
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
43
        )
44
        cls.base_url += "/v1"
Lianmin Zheng's avatar
Lianmin Zheng committed
45
        cls.tokenizer = get_tokenizer(DEFAULT_SMALL_MODEL_NAME_FOR_TEST)
46
47
48

    @classmethod
    def tearDownClass(cls):
49
        kill_process_tree(cls.process.pid)
50

yichuan~'s avatar
yichuan~ committed
51
    def run_completion(
52
        self, echo, logprobs, use_list_input, parallel_sample_num, token_input
yichuan~'s avatar
yichuan~ committed
53
    ):
54
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
55
        prompt = "The capital of France is"
yichuan~'s avatar
yichuan~ committed
56
57
58
59
60
61
        if token_input:
            prompt_input = self.tokenizer.encode(prompt)
            num_prompt_tokens = len(prompt_input)
        else:
            prompt_input = prompt
            num_prompt_tokens = len(self.tokenizer.encode(prompt))
62
63

        if use_list_input:
yichuan~'s avatar
yichuan~ committed
64
            prompt_arg = [prompt_input, prompt_input]
65
            num_choices = len(prompt_arg)
yichuan~'s avatar
yichuan~ committed
66
            num_prompt_tokens *= 2
67
        else:
yichuan~'s avatar
yichuan~ committed
68
            prompt_arg = prompt_input
69
70
            num_choices = 1

71
72
        response = client.completions.create(
            model=self.model,
73
            prompt=prompt_arg,
yichuan~'s avatar
yichuan~ committed
74
            temperature=0,
75
76
77
            max_tokens=32,
            echo=echo,
            logprobs=logprobs,
yichuan~'s avatar
yichuan~ committed
78
            n=parallel_sample_num,
79
        )
80

yichuan~'s avatar
yichuan~ committed
81
        assert len(response.choices) == num_choices * parallel_sample_num
82

Cody Yu's avatar
Cody Yu committed
83
        if echo:
84
            text = response.choices[0].text
85
            assert text.startswith(prompt)
yichuan~'s avatar
yichuan~ committed
86

Cody Yu's avatar
Cody Yu committed
87
        if logprobs:
88
89
90
            assert response.choices[0].logprobs
            assert isinstance(response.choices[0].logprobs.tokens[0], str)
            assert isinstance(response.choices[0].logprobs.top_logprobs[1], dict)
91
            ret_num_top_logprobs = len(response.choices[0].logprobs.top_logprobs[1])
92

93
            # FIXME: Sometimes, some top_logprobs are missing in the return value. The reason is that some output id maps to the same output token and duplicate in the map
94
            # assert ret_num_top_logprobs == logprobs, f"{ret_num_top_logprobs} vs {logprobs}"
yichuan~'s avatar
yichuan~ committed
95
            assert ret_num_top_logprobs > 0
96

97
98
99
            # when echo=True and request.logprobs>0, logprob_start_len is 0, so the first token's logprob would be None.
            if not echo:
                assert response.choices[0].logprobs.token_logprobs[0]
yichuan~'s avatar
yichuan~ committed
100

101
102
        assert response.id
        assert response.created
yichuan~'s avatar
yichuan~ committed
103
104
105
        assert (
            response.usage.prompt_tokens == num_prompt_tokens
        ), f"{response.usage.prompt_tokens} vs {num_prompt_tokens}"
106
107
108
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens > 0

109
    def run_completion_stream(
110
        self, echo, logprobs, use_list_input, parallel_sample_num, token_input
111
    ):
112
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
113
        prompt = "The capital of France is"
yichuan~'s avatar
yichuan~ committed
114
        if token_input:
115
116
            prompt_input = self.tokenizer.encode(prompt)
            num_prompt_tokens = len(prompt_input)
yichuan~'s avatar
yichuan~ committed
117
        else:
118
119
120
121
122
123
124
125
126
127
128
            prompt_input = prompt
            num_prompt_tokens = len(self.tokenizer.encode(prompt))

        if use_list_input:
            prompt_arg = [prompt_input, prompt_input]
            num_choices = len(prompt_arg)
            num_prompt_tokens *= 2
        else:
            prompt_arg = prompt_input
            num_choices = 1

129
130
        generator = client.completions.create(
            model=self.model,
yichuan~'s avatar
yichuan~ committed
131
132
            prompt=prompt_arg,
            temperature=0,
133
134
135
136
            max_tokens=32,
            echo=echo,
            logprobs=logprobs,
            stream=True,
137
            stream_options={"include_usage": True},
138
            n=parallel_sample_num,
139
140
        )

141
        is_firsts = {}
142
        for response in generator:
143
144
            usage = response.usage
            if usage is not None:
145
146
147
                assert usage.prompt_tokens > 0, f"usage.prompt_tokens was zero"
                assert usage.completion_tokens > 0, f"usage.completion_tokens was zero"
                assert usage.total_tokens > 0, f"usage.total_tokens was zero"
148
                continue
149
150
151
152

            index = response.choices[0].index
            is_first = is_firsts.get(index, True)

153
            if logprobs:
154
155
156
157
                assert response.choices[0].logprobs, f"no logprobs in response"
                assert isinstance(
                    response.choices[0].logprobs.tokens[0], str
                ), f"{response.choices[0].logprobs.tokens[0]} is not a string"
158
                if not (is_first and echo):
159
160
                    assert isinstance(
                        response.choices[0].logprobs.top_logprobs[0], dict
161
                    ), f"top_logprobs was not a dictionary"
162
163
164
                    ret_num_top_logprobs = len(
                        response.choices[0].logprobs.top_logprobs[0]
                    )
165
                    # FIXME: Sometimes, some top_logprobs are missing in the return value. The reason is that some output id maps to the same output token and duplicate in the map
166
                    # assert ret_num_top_logprobs == logprobs, f"{ret_num_top_logprobs} vs {logprobs}"
167
                    assert ret_num_top_logprobs > 0, f"ret_num_top_logprobs was 0"
168

169
            if is_first:
170
                if echo:
yichuan~'s avatar
yichuan~ committed
171
172
                    assert response.choices[0].text.startswith(
                        prompt
173
174
                    ), f"{response.choices[0].text} and all args {echo} {logprobs} {token_input} {is_first}"
                is_firsts[index] = False
175
176
            assert response.id, f"no id in response"
            assert response.created, f"no created in response"
177

178
179
180
181
182
        for index in [i for i in range(parallel_sample_num * num_choices)]:
            assert not is_firsts.get(
                index, True
            ), f"index {index} is not found in the response"

183
    def run_chat_completion(self, logprobs, parallel_sample_num):
184
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
185
186
187
188
        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
Ying Sheng's avatar
Ying Sheng committed
189
190
191
192
                {
                    "role": "user",
                    "content": "What is the capital of France? Answer in a few words.",
                },
193
194
195
196
            ],
            temperature=0,
            logprobs=logprobs is not None and logprobs > 0,
            top_logprobs=logprobs,
yichuan~'s avatar
yichuan~ committed
197
            n=parallel_sample_num,
198
        )
Ying Sheng's avatar
Ying Sheng committed
199

200
201
202
203
204
205
206
207
208
209
210
        if logprobs:
            assert isinstance(
                response.choices[0].logprobs.content[0].top_logprobs[0].token, str
            )

            ret_num_top_logprobs = len(
                response.choices[0].logprobs.content[0].top_logprobs
            )
            assert (
                ret_num_top_logprobs == logprobs
            ), f"{ret_num_top_logprobs} vs {logprobs}"
Ying Sheng's avatar
Ying Sheng committed
211

yichuan~'s avatar
yichuan~ committed
212
        assert len(response.choices) == parallel_sample_num
213
214
215
216
217
218
219
220
        assert response.choices[0].message.role == "assistant"
        assert isinstance(response.choices[0].message.content, str)
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens > 0

221
    def run_chat_completion_stream(self, logprobs, parallel_sample_num=1):
222
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
223
224
225
226
227
228
229
230
231
232
        generator = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {"role": "user", "content": "What is the capital of France?"},
            ],
            temperature=0,
            logprobs=logprobs is not None and logprobs > 0,
            top_logprobs=logprobs,
            stream=True,
233
            stream_options={"include_usage": True},
234
            n=parallel_sample_num,
235
236
        )

237
        is_firsts = {}
238
        is_finished = {}
239
        for response in generator:
240
241
            usage = response.usage
            if usage is not None:
242
243
244
                assert usage.prompt_tokens > 0, f"usage.prompt_tokens was zero"
                assert usage.completion_tokens > 0, f"usage.completion_tokens was zero"
                assert usage.total_tokens > 0, f"usage.total_tokens was zero"
245
246
                continue

247
            index = response.choices[0].index
248
249
250
251
            finish_reason = response.choices[0].finish_reason
            if finish_reason is not None:
                is_finished[index] = True

252
            data = response.choices[0].delta
253

254
            if is_firsts.get(index, True):
255
256
257
                assert (
                    data.role == "assistant"
                ), f"data.role was not 'assistant' for first chunk"
258
                is_firsts[index] = False
259
260
                continue

261
            if logprobs and not is_finished.get(index, False):
262
                assert response.choices[0].logprobs, f"logprobs was not returned"
yichuan~'s avatar
yichuan~ committed
263
264
                assert isinstance(
                    response.choices[0].logprobs.content[0].top_logprobs[0].token, str
265
                ), f"top_logprobs token was not a string"
yichuan~'s avatar
yichuan~ committed
266
267
                assert isinstance(
                    response.choices[0].logprobs.content[0].top_logprobs, list
268
                ), f"top_logprobs was not a list"
yichuan~'s avatar
yichuan~ committed
269
270
271
272
273
274
                ret_num_top_logprobs = len(
                    response.choices[0].logprobs.content[0].top_logprobs
                )
                assert (
                    ret_num_top_logprobs == logprobs
                ), f"{ret_num_top_logprobs} vs {logprobs}"
275

276
277
278
            assert (
                isinstance(data.content, str)
                or isinstance(data.reasoning_content, str)
279
                or (isinstance(data.tool_calls, list) and len(data.tool_calls) > 0)
280
281
                or response.choices[0].finish_reason
            )
282
283
284
            assert response.id
            assert response.created

285
286
287
288
289
        for index in [i for i in range(parallel_sample_num)]:
            assert not is_firsts.get(
                index, True
            ), f"index {index} is not found in the response"

290
    def test_completion(self):
291
292
293
294
295
296
297
298
299
300
301
302
        for echo in [False, True]:
            for logprobs in [None, 5]:
                for use_list_input in [True, False]:
                    for parallel_sample_num in [1, 2]:
                        for token_input in [False, True]:
                            self.run_completion(
                                echo,
                                logprobs,
                                use_list_input,
                                parallel_sample_num,
                                token_input,
                            )
303
304

    def test_completion_stream(self):
305
        # parallel sampling and list input are not supported in streaming mode
306
307
308
309
310
311
312
313
314
315
316
317
        for echo in [False, True]:
            for logprobs in [None, 5]:
                for use_list_input in [True, False]:
                    for parallel_sample_num in [1, 2]:
                        for token_input in [False, True]:
                            self.run_completion_stream(
                                echo,
                                logprobs,
                                use_list_input,
                                parallel_sample_num,
                                token_input,
                            )
318

319
    def test_chat_completion(self):
320
321
322
        for logprobs in [None, 5]:
            for parallel_sample_num in [1, 2]:
                self.run_chat_completion(logprobs, parallel_sample_num)
323
324

    def test_chat_completion_stream(self):
325
326
327
        for logprobs in [None, 5]:
            for parallel_sample_num in [1, 2]:
                self.run_chat_completion_stream(logprobs, parallel_sample_num)
328
329

    def test_regex(self):
330
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

        regex = (
            r"""\{\n"""
            + r"""   "name": "[\w]+",\n"""
            + r"""   "population": [\d]+\n"""
            + r"""\}"""
        )

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {"role": "user", "content": "Introduce the capital of France."},
            ],
            temperature=0,
            max_tokens=128,
            extra_body={"regex": regex},
        )
        text = response.choices[0].message.content

        try:
            js_obj = json.loads(text)
        except (TypeError, json.decoder.JSONDecodeError):
            print("JSONDecodeError", text)
            raise
        assert isinstance(js_obj["name"], str)
        assert isinstance(js_obj["population"], int)

359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    def test_penalty(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {"role": "user", "content": "Introduce the capital of France."},
            ],
            temperature=0,
            max_tokens=32,
            frequency_penalty=1.0,
        )
        text = response.choices[0].message.content
        assert isinstance(text, str)

375
376
377
378
    def test_response_prefill(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
379
            model="meta-llama/Llama-3.1-8B-Instruct",
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {
                    "role": "user",
                    "content": """
Extract the name, size, price, and color from this product description as a JSON object:

<description>
The SmartHome Mini is a compact smart home assistant available in black or white for only $49.99. At just 5 inches wide, it lets you control lights, thermostats, and other connected devices via voice or app—no matter where you place it in your home. This affordable little hub brings convenient hands-free control to your smart devices.
</description>
""",
                },
                {
                    "role": "assistant",
                    "content": "{\n",
                },
            ],
            temperature=0,
398
            extra_body={"continue_final_message": True},
399
400
401
402
403
404
405
406
        )

        assert (
            response.choices[0]
            .message.content.strip()
            .startswith('"name": "SmartHome Mini",')
        )

407
408
409
410
411
412
    def test_model_list(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        models = list(client.models.list())
        assert len(models) == 1
        assert isinstance(getattr(models[0], "max_model_len", None), int)

413
414
415
416
417
418
419
420
421
422
423
424
    def test_retrieve_model(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        # Test retrieving an existing model
        retrieved_model = client.models.retrieve(self.model)
        self.assertEqual(retrieved_model.id, self.model)
        self.assertEqual(retrieved_model.root, self.model)

        # Test retrieving a non-existent model
        with self.assertRaises(openai.NotFoundError):
            client.models.retrieve("non-existent-model")

425

426
427
428
429
# -------------------------------------------------------------------------
#    EBNF Test Class: TestOpenAIServerEBNF
#    Launches the server with xgrammar, has only EBNF tests
# -------------------------------------------------------------------------
430
class TestOpenAIServerEBNF(CustomTestCase):
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"

        # passing xgrammar specifically
        other_args = ["--grammar-backend", "xgrammar"]
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=other_args,
        )
        cls.base_url += "/v1"
        cls.tokenizer = get_tokenizer(DEFAULT_SMALL_MODEL_NAME_FOR_TEST)

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def test_ebnf(self):
        """
        Ensure we can pass `ebnf` to the local openai server
        and that it enforces the grammar.
        """
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        ebnf_grammar = r"""
        root ::= "Hello" | "Hi" | "Hey"
        """
        pattern = re.compile(r"^(Hello|Hi|Hey)[.!?]*\s*$")

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful EBNF test bot."},
                {"role": "user", "content": "Say a greeting (Hello, Hi, or Hey)."},
            ],
            temperature=0,
            max_tokens=32,
            extra_body={"ebnf": ebnf_grammar},
        )
        text = response.choices[0].message.content.strip()
        self.assertTrue(len(text) > 0, "Got empty text from EBNF generation")
        self.assertRegex(text, pattern, f"Text '{text}' doesn't match EBNF choices")

    def test_ebnf_strict_json(self):
        """
        A stricter EBNF that produces exactly {"name":"Alice"} format
        with no trailing punctuation or extra fields.
        """
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        ebnf_grammar = r"""
        root    ::= "{" pair "}"
        pair    ::= "\"name\"" ":" string
        string  ::= "\"" [A-Za-z]+ "\""
        """
        pattern = re.compile(r'^\{"name":"[A-Za-z]+"\}$')

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "EBNF mini-JSON generator."},
                {
                    "role": "user",
                    "content": "Generate single key JSON with only letters.",
                },
            ],
            temperature=0,
            max_tokens=64,
            extra_body={"ebnf": ebnf_grammar},
        )
        text = response.choices[0].message.content.strip()
        self.assertTrue(len(text) > 0, "Got empty text from EBNF strict JSON test")
        self.assertRegex(
            text, pattern, f"Text '{text}' not matching the EBNF strict JSON shape"
        )


511
class TestOpenAIEmbedding(CustomTestCase):
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"

        # Configure embedding-specific args
        other_args = ["--is-embedding", "--enable-metrics"]
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=other_args,
        )
        cls.base_url += "/v1"

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def test_embedding_single(self):
        """Test single embedding request"""
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        response = client.embeddings.create(model=self.model, input="Hello world")
        self.assertEqual(len(response.data), 1)
        self.assertTrue(len(response.data[0].embedding) > 0)

    def test_embedding_batch(self):
        """Test batch embedding request"""
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        response = client.embeddings.create(
            model=self.model, input=["Hello world", "Test text"]
        )
        self.assertEqual(len(response.data), 2)
        self.assertTrue(len(response.data[0].embedding) > 0)
        self.assertTrue(len(response.data[1].embedding) > 0)

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
    def test_embedding_single_batch_str(self):
        """Test embedding with a List[str] and length equals to 1"""
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        response = client.embeddings.create(model=self.model, input=["Hello world"])
        self.assertEqual(len(response.data), 1)
        self.assertTrue(len(response.data[0].embedding) > 0)

    def test_embedding_single_int_list(self):
        """Test embedding with a List[int] or List[List[int]]]"""
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        response = client.embeddings.create(
            model=self.model,
            input=[[15339, 314, 703, 284, 612, 262, 10658, 10188, 286, 2061]],
        )
        self.assertEqual(len(response.data), 1)
        self.assertTrue(len(response.data[0].embedding) > 0)

        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        response = client.embeddings.create(
            model=self.model,
            input=[15339, 314, 703, 284, 612, 262, 10658, 10188, 286, 2061],
        )
        self.assertEqual(len(response.data), 1)
        self.assertTrue(len(response.data[0].embedding) > 0)

575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
    def test_empty_string_embedding(self):
        """Test embedding an empty string."""

        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        # Text embedding example with empty string
        text = ""
        # Expect a BadRequestError for empty input
        with self.assertRaises(openai.BadRequestError) as cm:
            client.embeddings.create(
                model=self.model,
                input=text,
            )
        # check the status code
        self.assertEqual(cm.exception.status_code, 400)

591

woodx's avatar
woodx committed
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
class TestOpenAIV1Rerank(CustomTestCase):
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_SMALL_CROSS_ENCODER_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"
        cls.score_tolerance = 1e-2

        # Configure embedding-specific args
        other_args = [
            "--is-embedding",
            "--enable-metrics",
            "--disable-radix-cache",
            "--chunked-prefill-size",
            "-1",
            "--attention-backend",
            "torch_native",
        ]
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=other_args,
        )
        cls.base_url += "/v1/rerank"

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def run_rerank(self, query, docs):
        response = requests.post(
            self.base_url,
            headers={
                "Authorization": f"Bearer {self.api_key}",
                "Content-Type": "application/json",
            },
            json={"query": query, "documents": docs},
        )

        return response.json()

    def test_rerank_single(self):
        """Test single rerank request"""
        query = TEST_RERANK_QUERY_DOCS[0]["query"]
        docs = TEST_RERANK_QUERY_DOCS[0]["documents"]

        response = self.run_rerank(query, docs)

        self.assertEqual(len(response), 1)
        self.assertTrue(isinstance(response[0]["score"], float))
        self.assertTrue(isinstance(response[0]["document"], str))
        self.assertTrue(isinstance(response[0]["index"], int))

    def test_rerank_batch(self):
        """Test batch rerank request"""
        query = TEST_RERANK_QUERY_DOCS[1]["query"]
        docs = TEST_RERANK_QUERY_DOCS[1]["documents"]

        response = self.run_rerank(query, docs)

        self.assertEqual(len(response), 2)
        self.assertTrue(isinstance(response[0]["score"], float))
        self.assertTrue(isinstance(response[1]["score"], float))
        self.assertTrue(isinstance(response[0]["document"], str))
        self.assertTrue(isinstance(response[1]["document"], str))
        self.assertTrue(isinstance(response[0]["index"], int))
        self.assertTrue(isinstance(response[1]["index"], int))


663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
class TestOpenAIServerIgnoreEOS(CustomTestCase):
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
        )
        cls.base_url += "/v1"
        cls.tokenizer = get_tokenizer(DEFAULT_SMALL_MODEL_NAME_FOR_TEST)

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def test_ignore_eos(self):
        """
        Test that ignore_eos=True allows generation to continue beyond EOS token
        and reach the max_tokens limit.
        """
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        max_tokens = 200

        response_default = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": "Count from 1 to 20."},
            ],
            temperature=0,
            max_tokens=max_tokens,
            extra_body={"ignore_eos": False},
        )

        response_ignore_eos = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": "Count from 1 to 20."},
            ],
            temperature=0,
            max_tokens=max_tokens,
            extra_body={"ignore_eos": True},
        )

        default_tokens = len(
            self.tokenizer.encode(response_default.choices[0].message.content)
        )
        ignore_eos_tokens = len(
            self.tokenizer.encode(response_ignore_eos.choices[0].message.content)
        )

        # Check if ignore_eos resulted in more tokens or exactly max_tokens
        # The ignore_eos response should either:
        # 1. Have more tokens than the default response (if default stopped at EOS before max_tokens)
        # 2. Have exactly max_tokens (if it reached the max_tokens limit)
        self.assertTrue(
            ignore_eos_tokens > default_tokens or ignore_eos_tokens >= max_tokens,
            f"ignore_eos did not generate more tokens: {ignore_eos_tokens} vs {default_tokens}",
        )

        self.assertEqual(
            response_ignore_eos.choices[0].finish_reason,
            "length",
            f"Expected finish_reason='length' for ignore_eos=True, got {response_ignore_eos.choices[0].finish_reason}",
        )


736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
class TestOpenAIV1Score(CustomTestCase):
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"

        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
        )
        cls.base_url += "/v1/score"
        cls.tokenizer = get_tokenizer(DEFAULT_SMALL_MODEL_NAME_FOR_TEST)

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def run_score(
        self, query, items, label_token_ids, apply_softmax=False, item_first=False
    ):
        response = requests.post(
            self.base_url,
            headers={
                "Authorization": f"Bearer {self.api_key}",
                "Content-Type": "application/json",
            },
            json={
                "model": self.model,
                "query": query,
                "items": items,
                "label_token_ids": label_token_ids,
                "apply_softmax": apply_softmax,
                "item_first": item_first,
            },
        )
        return response.json()

    def test_score_text_input(self):
        """Test scoring with text input"""
        query = "The capital of France is"
        items = ["Paris", "London", "Berlin"]

        # Get valid token IDs from the tokenizer
        label_token_ids = []
        for item in items:
            token_ids = self.tokenizer.encode(item, add_special_tokens=False)
            if not token_ids:
                self.fail(f"Failed to encode item: {item}")
            label_token_ids.append(token_ids[0])

        response = self.run_score(query, items, label_token_ids, apply_softmax=True)

        # Handle error responses
        if response.get("type") == "BadRequestError":
            self.fail(f"Score request failed with error: {response['message']}")

        # Verify response structure
        self.assertIn("scores", response, "Response should have a 'scores' field")
        self.assertIsInstance(response["scores"], list, "scores should be a list")
        self.assertEqual(
            len(response["scores"]),
            len(items),
            "Number of scores should match number of items",
        )

        # Each score should be a list of floats in the order of label_token_ids
        for i, score_list in enumerate(response["scores"]):
            self.assertIsInstance(score_list, list, f"Score {i} should be a list")
            self.assertEqual(
                len(score_list),
                len(label_token_ids),
                f"Score {i} length should match label_token_ids",
            )
            self.assertTrue(
                all(isinstance(v, float) for v in score_list),
                f"Score {i} values should be floats",
            )
            self.assertAlmostEqual(
                sum(score_list),
                1.0,
                places=6,
                msg=f"Score {i} probabilities should sum to 1",
            )

    def test_score_token_input(self):
        """Test scoring with token IDs input"""
        query = "The capital of France is"
        items = ["Paris", "London", "Berlin"]

        # Get valid token IDs
        query_ids = self.tokenizer.encode(query, add_special_tokens=False)
        item_ids = [
            self.tokenizer.encode(item, add_special_tokens=False) for item in items
        ]
        label_token_ids = [
            ids[0] for ids in item_ids if ids
        ]  # Get first token ID of each item

        response = self.run_score(
            query_ids, item_ids, label_token_ids, apply_softmax=True
        )

        # Handle error responses
        if response.get("type") == "BadRequestError":
            self.fail(f"Score request failed with error: {response['message']}")

        # Verify response structure
        self.assertIn("scores", response, "Response should have a 'scores' field")
        self.assertIsInstance(response["scores"], list, "scores should be a list")
        self.assertEqual(
            len(response["scores"]),
            len(items),
            "Number of scores should match number of items",
        )

        # Each score should be a list of floats in the order of label_token_ids
        for i, score_list in enumerate(response["scores"]):
            self.assertIsInstance(score_list, list, f"Score {i} should be a list")
            self.assertEqual(
                len(score_list),
                len(label_token_ids),
                f"Score {i} length should match label_token_ids",
            )
            self.assertTrue(
                all(isinstance(v, float) for v in score_list),
                f"Score {i} values should be floats",
            )
            self.assertAlmostEqual(
                sum(score_list),
                1.0,
                places=6,
                msg=f"Score {i} probabilities should sum to 1",
            )

    def test_score_error_handling(self):
        """Test error handling for invalid inputs"""
        query = "The capital of France is"
        items = ["Paris", "London", "Berlin"]

        # Test with invalid token ID
        response = requests.post(
            self.base_url,
            headers={
                "Authorization": f"Bearer {self.api_key}",
                "Content-Type": "application/json",
            },
            json={
                "model": self.model,
                "query": query,
                "items": items,
                "label_token_ids": [999999],  # Invalid token ID
                "apply_softmax": True,
            },
        )
        self.assertEqual(response.status_code, 400)
        error_response = response.json()
        self.assertEqual(error_response["type"], "BadRequestError")
        self.assertIn("Token ID 999999 is out of vocabulary", error_response["message"])


899
if __name__ == "__main__":
Lianmin Zheng's avatar
Lianmin Zheng committed
900
    unittest.main()