test_openai_server.py 27.6 KB
Newer Older
1
2
3
4
5
"""
python3 -m unittest test_openai_server.TestOpenAIServer.test_batch
python3 -m unittest test_openai_server.TestOpenAIServer.test_completion

"""
Chayenne's avatar
Chayenne committed
6

7
import json
8
import re
9
import time
10
import unittest
11
12

import openai
13

yichuan~'s avatar
yichuan~ committed
14
from sglang.srt.hf_transformers_utils import get_tokenizer
15
from sglang.srt.utils import kill_process_tree
16
from sglang.test.test_utils import (
17
    DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST,
Lianmin Zheng's avatar
Lianmin Zheng committed
18
    DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
19
20
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
21
    CustomTestCase,
22
23
    popen_launch_server,
)
24
25


26
class TestOpenAIServer(CustomTestCase):
27
28
    @classmethod
    def setUpClass(cls):
Lianmin Zheng's avatar
Lianmin Zheng committed
29
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
30
        cls.base_url = DEFAULT_URL_FOR_TEST
31
32
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
33
34
35
36
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
37
        )
38
        cls.base_url += "/v1"
Lianmin Zheng's avatar
Lianmin Zheng committed
39
        cls.tokenizer = get_tokenizer(DEFAULT_SMALL_MODEL_NAME_FOR_TEST)
40
41
42

    @classmethod
    def tearDownClass(cls):
43
        kill_process_tree(cls.process.pid)
44

yichuan~'s avatar
yichuan~ committed
45
46
47
    def run_completion(
        self, echo, logprobs, use_list_input, parallel_sample_num, token_input
    ):
48
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
49
        prompt = "The capital of France is"
yichuan~'s avatar
yichuan~ committed
50
51
52
53
54
55
        if token_input:
            prompt_input = self.tokenizer.encode(prompt)
            num_prompt_tokens = len(prompt_input)
        else:
            prompt_input = prompt
            num_prompt_tokens = len(self.tokenizer.encode(prompt))
56
57

        if use_list_input:
yichuan~'s avatar
yichuan~ committed
58
            prompt_arg = [prompt_input, prompt_input]
59
            num_choices = len(prompt_arg)
yichuan~'s avatar
yichuan~ committed
60
            num_prompt_tokens *= 2
61
        else:
yichuan~'s avatar
yichuan~ committed
62
            prompt_arg = prompt_input
63
64
            num_choices = 1

65
66
        response = client.completions.create(
            model=self.model,
67
            prompt=prompt_arg,
yichuan~'s avatar
yichuan~ committed
68
            temperature=0,
69
70
71
            max_tokens=32,
            echo=echo,
            logprobs=logprobs,
yichuan~'s avatar
yichuan~ committed
72
            n=parallel_sample_num,
73
        )
74

yichuan~'s avatar
yichuan~ committed
75
        assert len(response.choices) == num_choices * parallel_sample_num
76

Cody Yu's avatar
Cody Yu committed
77
        if echo:
78
            text = response.choices[0].text
79
            assert text.startswith(prompt)
yichuan~'s avatar
yichuan~ committed
80

Cody Yu's avatar
Cody Yu committed
81
        if logprobs:
82
83
84
            assert response.choices[0].logprobs
            assert isinstance(response.choices[0].logprobs.tokens[0], str)
            assert isinstance(response.choices[0].logprobs.top_logprobs[1], dict)
85
            ret_num_top_logprobs = len(response.choices[0].logprobs.top_logprobs[1])
86

87
            # FIXME: Sometimes, some top_logprobs are missing in the return value. The reason is that some output id maps to the same output token and duplicate in the map
88
            # assert ret_num_top_logprobs == logprobs, f"{ret_num_top_logprobs} vs {logprobs}"
yichuan~'s avatar
yichuan~ committed
89
            assert ret_num_top_logprobs > 0
90

91
92
93
            # when echo=True and request.logprobs>0, logprob_start_len is 0, so the first token's logprob would be None.
            if not echo:
                assert response.choices[0].logprobs.token_logprobs[0]
yichuan~'s avatar
yichuan~ committed
94

95
96
        assert response.id
        assert response.created
yichuan~'s avatar
yichuan~ committed
97
98
99
        assert (
            response.usage.prompt_tokens == num_prompt_tokens
        ), f"{response.usage.prompt_tokens} vs {num_prompt_tokens}"
100
101
102
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens > 0

103
104
105
    def run_completion_stream(
        self, echo, logprobs, use_list_input, parallel_sample_num, token_input
    ):
106
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
107
        prompt = "The capital of France is"
yichuan~'s avatar
yichuan~ committed
108
        if token_input:
109
110
            prompt_input = self.tokenizer.encode(prompt)
            num_prompt_tokens = len(prompt_input)
yichuan~'s avatar
yichuan~ committed
111
        else:
112
113
114
115
116
117
118
119
120
121
122
            prompt_input = prompt
            num_prompt_tokens = len(self.tokenizer.encode(prompt))

        if use_list_input:
            prompt_arg = [prompt_input, prompt_input]
            num_choices = len(prompt_arg)
            num_prompt_tokens *= 2
        else:
            prompt_arg = prompt_input
            num_choices = 1

123
124
        generator = client.completions.create(
            model=self.model,
yichuan~'s avatar
yichuan~ committed
125
126
            prompt=prompt_arg,
            temperature=0,
127
128
129
130
            max_tokens=32,
            echo=echo,
            logprobs=logprobs,
            stream=True,
131
            stream_options={"include_usage": True},
132
            n=parallel_sample_num,
133
134
        )

135
        is_firsts = {}
136
        for response in generator:
137
138
139
140
141
142
            usage = response.usage
            if usage is not None:
                assert usage.prompt_tokens > 0
                assert usage.completion_tokens > 0
                assert usage.total_tokens > 0
                continue
143
144
145
146

            index = response.choices[0].index
            is_first = is_firsts.get(index, True)

147
148
149
            if logprobs:
                assert response.choices[0].logprobs
                assert isinstance(response.choices[0].logprobs.tokens[0], str)
150
                if not (is_first and echo):
151
152
153
154
155
156
                    assert isinstance(
                        response.choices[0].logprobs.top_logprobs[0], dict
                    )
                    ret_num_top_logprobs = len(
                        response.choices[0].logprobs.top_logprobs[0]
                    )
157
                    # FIXME: Sometimes, some top_logprobs are missing in the return value. The reason is that some output id maps to the same output token and duplicate in the map
158
                    # assert ret_num_top_logprobs == logprobs, f"{ret_num_top_logprobs} vs {logprobs}"
yichuan~'s avatar
yichuan~ committed
159
                    assert ret_num_top_logprobs > 0
160

161
            if is_first:
162
                if echo:
yichuan~'s avatar
yichuan~ committed
163
164
                    assert response.choices[0].text.startswith(
                        prompt
165
166
                    ), f"{response.choices[0].text} and all args {echo} {logprobs} {token_input} {is_first}"
                is_firsts[index] = False
167
168
169
            assert response.id
            assert response.created

170
171
172
173
174
        for index in [i for i in range(parallel_sample_num * num_choices)]:
            assert not is_firsts.get(
                index, True
            ), f"index {index} is not found in the response"

yichuan~'s avatar
yichuan~ committed
175
    def run_chat_completion(self, logprobs, parallel_sample_num):
176
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
177
178
179
180
        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
Ying Sheng's avatar
Ying Sheng committed
181
182
183
184
                {
                    "role": "user",
                    "content": "What is the capital of France? Answer in a few words.",
                },
185
186
187
188
            ],
            temperature=0,
            logprobs=logprobs is not None and logprobs > 0,
            top_logprobs=logprobs,
yichuan~'s avatar
yichuan~ committed
189
            n=parallel_sample_num,
190
        )
Ying Sheng's avatar
Ying Sheng committed
191

192
193
194
195
196
197
198
199
200
201
202
        if logprobs:
            assert isinstance(
                response.choices[0].logprobs.content[0].top_logprobs[0].token, str
            )

            ret_num_top_logprobs = len(
                response.choices[0].logprobs.content[0].top_logprobs
            )
            assert (
                ret_num_top_logprobs == logprobs
            ), f"{ret_num_top_logprobs} vs {logprobs}"
Ying Sheng's avatar
Ying Sheng committed
203

yichuan~'s avatar
yichuan~ committed
204
        assert len(response.choices) == parallel_sample_num
205
206
207
208
209
210
211
212
        assert response.choices[0].message.role == "assistant"
        assert isinstance(response.choices[0].message.content, str)
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens > 0

213
    def run_chat_completion_stream(self, logprobs, parallel_sample_num=1):
214
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
215
216
217
218
219
220
221
222
223
224
        generator = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {"role": "user", "content": "What is the capital of France?"},
            ],
            temperature=0,
            logprobs=logprobs is not None and logprobs > 0,
            top_logprobs=logprobs,
            stream=True,
225
            stream_options={"include_usage": True},
226
            n=parallel_sample_num,
227
228
        )

229
        is_firsts = {}
230
        for response in generator:
231
232
233
234
235
236
237
            usage = response.usage
            if usage is not None:
                assert usage.prompt_tokens > 0
                assert usage.completion_tokens > 0
                assert usage.total_tokens > 0
                continue

238
            index = response.choices[0].index
239
            data = response.choices[0].delta
240

241
242
243
            if is_firsts.get(index, True):
                assert data.role == "assistant"
                is_firsts[index] = False
244
245
246
                continue

            if logprobs:
yichuan~'s avatar
yichuan~ committed
247
248
249
250
251
252
253
254
255
256
257
258
259
                assert response.choices[0].logprobs
                assert isinstance(
                    response.choices[0].logprobs.content[0].top_logprobs[0].token, str
                )
                assert isinstance(
                    response.choices[0].logprobs.content[0].top_logprobs, list
                )
                ret_num_top_logprobs = len(
                    response.choices[0].logprobs.content[0].top_logprobs
                )
                assert (
                    ret_num_top_logprobs == logprobs
                ), f"{ret_num_top_logprobs} vs {logprobs}"
260

261
262
263
264
265
266
            assert (
                isinstance(data.content, str)
                or isinstance(data.reasoning_content, str)
                or len(data.tool_calls) > 0
                or response.choices[0].finish_reason
            )
267
268
269
            assert response.id
            assert response.created

270
271
272
273
274
        for index in [i for i in range(parallel_sample_num)]:
            assert not is_firsts.get(
                index, True
            ), f"index {index} is not found in the response"

275
    def _create_batch(self, mode, client):
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
        if mode == "completion":
            input_file_path = "complete_input.jsonl"
            # write content to input file
            content = [
                {
                    "custom_id": "request-1",
                    "method": "POST",
                    "url": "/v1/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-instruct",
                        "prompt": "List 3 names of famous soccer player: ",
                        "max_tokens": 20,
                    },
                },
                {
                    "custom_id": "request-2",
                    "method": "POST",
                    "url": "/v1/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-instruct",
                        "prompt": "List 6 names of famous basketball player:  ",
                        "max_tokens": 40,
                    },
                },
                {
                    "custom_id": "request-3",
                    "method": "POST",
                    "url": "/v1/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-instruct",
                        "prompt": "List 6 names of famous tenniss player:  ",
                        "max_tokens": 40,
                    },
                },
            ]

        else:
            input_file_path = "chat_input.jsonl"
            content = [
                {
                    "custom_id": "request-1",
                    "method": "POST",
                    "url": "/v1/chat/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-0125",
                        "messages": [
                            {
                                "role": "system",
                                "content": "You are a helpful assistant.",
                            },
                            {
                                "role": "user",
                                "content": "Hello! List 3 NBA players and tell a story",
                            },
                        ],
                        "max_tokens": 30,
                    },
                },
                {
                    "custom_id": "request-2",
                    "method": "POST",
                    "url": "/v1/chat/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-0125",
                        "messages": [
                            {"role": "system", "content": "You are an assistant. "},
                            {
                                "role": "user",
                                "content": "Hello! List three capital and tell a story",
                            },
                        ],
                        "max_tokens": 50,
                    },
                },
            ]
351

352
353
354
        with open(input_file_path, "w") as file:
            for line in content:
                file.write(json.dumps(line) + "\n")
355

356
357
358
359
360
361
362
363
364
365
366
367
        with open(input_file_path, "rb") as file:
            uploaded_file = client.files.create(file=file, purpose="batch")
        if mode == "completion":
            endpoint = "/v1/completions"
        elif mode == "chat":
            endpoint = "/v1/chat/completions"
        completion_window = "24h"
        batch_job = client.batches.create(
            input_file_id=uploaded_file.id,
            endpoint=endpoint,
            completion_window=completion_window,
        )
368

369
        return batch_job, content, uploaded_file
370
371
372

    def run_batch(self, mode):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
373
        batch_job, content, uploaded_file = self._create_batch(mode=mode, client=client)
374

375
376
377
378
379
380
        while batch_job.status not in ["completed", "failed", "cancelled"]:
            time.sleep(3)
            print(
                f"Batch job status: {batch_job.status}...trying again in 3 seconds..."
            )
            batch_job = client.batches.retrieve(batch_job.id)
381
382
383
        assert (
            batch_job.status == "completed"
        ), f"Batch job status is not completed: {batch_job.status}"
384
385
386
387
388
389
        assert batch_job.request_counts.completed == len(content)
        assert batch_job.request_counts.failed == 0
        assert batch_job.request_counts.total == len(content)

        result_file_id = batch_job.output_file_id
        file_response = client.files.content(result_file_id)
yichuan~'s avatar
yichuan~ committed
390
391
392
393
394
395
        result_content = file_response.read().decode("utf-8")  # Decode bytes to string
        results = [
            json.loads(line)
            for line in result_content.split("\n")
            if line.strip() != ""
        ]
396
        assert len(results) == len(content)
397
398
399
        for delete_fid in [uploaded_file.id, result_file_id]:
            del_pesponse = client.files.delete(delete_fid)
            assert del_pesponse.deleted
400

401
402
    def run_cancel_batch(self, mode):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
403
        batch_job, _, uploaded_file = self._create_batch(mode=mode, client=client)
404
405
406
407
408
409
410
411
412
413
414
415
416
417

        assert batch_job.status not in ["cancelling", "cancelled"]

        batch_job = client.batches.cancel(batch_id=batch_job.id)
        assert batch_job.status == "cancelling"

        while batch_job.status not in ["failed", "cancelled"]:
            batch_job = client.batches.retrieve(batch_job.id)
            print(
                f"Batch job status: {batch_job.status}...trying again in 3 seconds..."
            )
            time.sleep(3)

        assert batch_job.status == "cancelled"
418
419
        del_response = client.files.delete(uploaded_file.id)
        assert del_response.deleted
420

421
422
423
    def test_completion(self):
        for echo in [False, True]:
            for logprobs in [None, 5]:
424
                for use_list_input in [True, False]:
yichuan~'s avatar
yichuan~ committed
425
426
427
428
429
430
431
432
433
                    for parallel_sample_num in [1, 2]:
                        for token_input in [False, True]:
                            self.run_completion(
                                echo,
                                logprobs,
                                use_list_input,
                                parallel_sample_num,
                                token_input,
                            )
434
435

    def test_completion_stream(self):
yichuan~'s avatar
yichuan~ committed
436
        # parallel sampling adn list input are not supported in streaming mode
437
438
        for echo in [False, True]:
            for logprobs in [None, 5]:
439
440
441
442
443
444
445
446
447
448
                for use_list_input in [True, False]:
                    for parallel_sample_num in [1, 2]:
                        for token_input in [False, True]:
                            self.run_completion_stream(
                                echo,
                                logprobs,
                                use_list_input,
                                parallel_sample_num,
                                token_input,
                            )
449

450
451
    def test_chat_completion(self):
        for logprobs in [None, 5]:
yichuan~'s avatar
yichuan~ committed
452
453
            for parallel_sample_num in [1, 2]:
                self.run_chat_completion(logprobs, parallel_sample_num)
454
455
456

    def test_chat_completion_stream(self):
        for logprobs in [None, 5]:
457
458
            for parallel_sample_num in [1, 2]:
                self.run_chat_completion_stream(logprobs, parallel_sample_num)
459

460
461
462
463
    def test_batch(self):
        for mode in ["completion", "chat"]:
            self.run_batch(mode)

464
    def test_cancel_batch(self):
465
466
467
        for mode in ["completion", "chat"]:
            self.run_cancel_batch(mode)

468
    def test_regex(self):
469
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497

        regex = (
            r"""\{\n"""
            + r"""   "name": "[\w]+",\n"""
            + r"""   "population": [\d]+\n"""
            + r"""\}"""
        )

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {"role": "user", "content": "Introduce the capital of France."},
            ],
            temperature=0,
            max_tokens=128,
            extra_body={"regex": regex},
        )
        text = response.choices[0].message.content

        try:
            js_obj = json.loads(text)
        except (TypeError, json.decoder.JSONDecodeError):
            print("JSONDecodeError", text)
            raise
        assert isinstance(js_obj["name"], str)
        assert isinstance(js_obj["population"], int)

498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
    def test_penalty(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {"role": "user", "content": "Introduce the capital of France."},
            ],
            temperature=0,
            max_tokens=32,
            frequency_penalty=1.0,
        )
        text = response.choices[0].message.content
        assert isinstance(text, str)

514
515
516
517
    def test_response_prefill(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
518
            model="meta-llama/Llama-3.1-8B-Instruct",
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {
                    "role": "user",
                    "content": """
Extract the name, size, price, and color from this product description as a JSON object:

<description>
The SmartHome Mini is a compact smart home assistant available in black or white for only $49.99. At just 5 inches wide, it lets you control lights, thermostats, and other connected devices via voice or app—no matter where you place it in your home. This affordable little hub brings convenient hands-free control to your smart devices.
</description>
""",
                },
                {
                    "role": "assistant",
                    "content": "{\n",
                },
            ],
            temperature=0,
537
            extra_body={"continue_final_message": True},
538
539
540
541
542
543
544
545
        )

        assert (
            response.choices[0]
            .message.content.strip()
            .startswith('"name": "SmartHome Mini",')
        )

546
547
548
549
550
551
    def test_model_list(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        models = list(client.models.list())
        assert len(models) == 1
        assert isinstance(getattr(models[0], "max_model_len", None), int)

552

553
554
555
556
# -------------------------------------------------------------------------
#    EBNF Test Class: TestOpenAIServerEBNF
#    Launches the server with xgrammar, has only EBNF tests
# -------------------------------------------------------------------------
557
class TestOpenAIServerEBNF(CustomTestCase):
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"

        # passing xgrammar specifically
        other_args = ["--grammar-backend", "xgrammar"]
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=other_args,
        )
        cls.base_url += "/v1"
        cls.tokenizer = get_tokenizer(DEFAULT_SMALL_MODEL_NAME_FOR_TEST)

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def test_ebnf(self):
        """
        Ensure we can pass `ebnf` to the local openai server
        and that it enforces the grammar.
        """
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        ebnf_grammar = r"""
        root ::= "Hello" | "Hi" | "Hey"
        """
        pattern = re.compile(r"^(Hello|Hi|Hey)[.!?]*\s*$")

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful EBNF test bot."},
                {"role": "user", "content": "Say a greeting (Hello, Hi, or Hey)."},
            ],
            temperature=0,
            max_tokens=32,
            extra_body={"ebnf": ebnf_grammar},
        )
        text = response.choices[0].message.content.strip()
        print("EBNF test output:", repr(text))
        self.assertTrue(len(text) > 0, "Got empty text from EBNF generation")
        self.assertRegex(text, pattern, f"Text '{text}' doesn't match EBNF choices")

    def test_ebnf_strict_json(self):
        """
        A stricter EBNF that produces exactly {"name":"Alice"} format
        with no trailing punctuation or extra fields.
        """
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        ebnf_grammar = r"""
        root    ::= "{" pair "}"
        pair    ::= "\"name\"" ":" string
        string  ::= "\"" [A-Za-z]+ "\""
        """
        pattern = re.compile(r'^\{"name":"[A-Za-z]+"\}$')

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "EBNF mini-JSON generator."},
                {
                    "role": "user",
                    "content": "Generate single key JSON with only letters.",
                },
            ],
            temperature=0,
            max_tokens=64,
            extra_body={"ebnf": ebnf_grammar},
        )
        text = response.choices[0].message.content.strip()
        print("EBNF strict JSON test output:", repr(text))
        self.assertTrue(len(text) > 0, "Got empty text from EBNF strict JSON test")
        self.assertRegex(
            text, pattern, f"Text '{text}' not matching the EBNF strict JSON shape"
        )


640
class TestOpenAIEmbedding(CustomTestCase):
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"

        # Configure embedding-specific args
        other_args = ["--is-embedding", "--enable-metrics"]
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=other_args,
        )
        cls.base_url += "/v1"

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def test_embedding_single(self):
        """Test single embedding request"""
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        response = client.embeddings.create(model=self.model, input="Hello world")
        self.assertEqual(len(response.data), 1)
        self.assertTrue(len(response.data[0].embedding) > 0)

    def test_embedding_batch(self):
        """Test batch embedding request"""
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        response = client.embeddings.create(
            model=self.model, input=["Hello world", "Test text"]
        )
        self.assertEqual(len(response.data), 2)
        self.assertTrue(len(response.data[0].embedding) > 0)
        self.assertTrue(len(response.data[1].embedding) > 0)


680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
class TestOpenAIServerIgnoreEOS(CustomTestCase):
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
        )
        cls.base_url += "/v1"
        cls.tokenizer = get_tokenizer(DEFAULT_SMALL_MODEL_NAME_FOR_TEST)

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def test_ignore_eos(self):
        """
        Test that ignore_eos=True allows generation to continue beyond EOS token
        and reach the max_tokens limit.
        """
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        max_tokens = 200

        response_default = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": "Count from 1 to 20."},
            ],
            temperature=0,
            max_tokens=max_tokens,
            extra_body={"ignore_eos": False},
        )

        response_ignore_eos = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": "Count from 1 to 20."},
            ],
            temperature=0,
            max_tokens=max_tokens,
            extra_body={"ignore_eos": True},
        )

        default_tokens = len(
            self.tokenizer.encode(response_default.choices[0].message.content)
        )
        ignore_eos_tokens = len(
            self.tokenizer.encode(response_ignore_eos.choices[0].message.content)
        )

        # Check if ignore_eos resulted in more tokens or exactly max_tokens
        # The ignore_eos response should either:
        # 1. Have more tokens than the default response (if default stopped at EOS before max_tokens)
        # 2. Have exactly max_tokens (if it reached the max_tokens limit)
        self.assertTrue(
            ignore_eos_tokens > default_tokens or ignore_eos_tokens >= max_tokens,
            f"ignore_eos did not generate more tokens: {ignore_eos_tokens} vs {default_tokens}",
        )

        self.assertEqual(
            response_ignore_eos.choices[0].finish_reason,
            "length",
            f"Expected finish_reason='length' for ignore_eos=True, got {response_ignore_eos.choices[0].finish_reason}",
        )


753
if __name__ == "__main__":
Lianmin Zheng's avatar
Lianmin Zheng committed
754
    unittest.main()