native_api.ipynb 15 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
7
    "# SGLang Native APIs\n",
Chayenne's avatar
Chayenne committed
8
    "\n",
Chayenne's avatar
Chayenne committed
9
    "Apart from the OpenAI compatible APIs, the SGLang Runtime also provides its native server APIs. We introduce these following APIs:\n",
Chayenne's avatar
Chayenne committed
10
    "\n",
Chayenne's avatar
Chayenne committed
11
    "- `/generate` (text generation model)\n",
Chayenne's avatar
Chayenne committed
12
    "- `/get_model_info`\n",
13
    "- `/get_server_info`\n",
Chayenne's avatar
Chayenne committed
14
15
16
    "- `/health`\n",
    "- `/health_generate`\n",
    "- `/flush_cache`\n",
Chayenne's avatar
Chayenne committed
17
    "- `/update_weights`\n",
Chayenne's avatar
Chayenne committed
18
    "- `/encode`(embedding model)\n",
woodx's avatar
woodx committed
19
    "- `/v1/rerank`(cross encoder rerank model)\n",
20
    "- `/classify`(reward model)\n",
21
22
23
    "- `/start_expert_distribution_record`\n",
    "- `/stop_expert_distribution_record`\n",
    "- `/dump_expert_distribution_record`\n",
Chayenne's avatar
Chayenne committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
    "\n",
    "We mainly use `requests` to test these APIs in the following examples. You can also use `curl`."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Launch A Server"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
38
   "metadata": {},
Chayenne's avatar
Chayenne committed
39
40
   "outputs": [],
   "source": [
Chayenne's avatar
Chayenne committed
41
    "import requests\n",
42
    "from sglang.test.test_utils import is_in_ci\n",
Chayenne's avatar
Chayenne committed
43
    "\n",
44
45
46
47
48
49
50
51
52
    "if is_in_ci():\n",
    "    from patch import launch_server_cmd\n",
    "else:\n",
    "    from sglang.utils import launch_server_cmd\n",
    "\n",
    "from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
    "\n",
    "\n",
    "server_process, port = launch_server_cmd(\n",
53
    "    \"python3 -m sglang.launch_server --model-path qwen/qwen2.5-0.5b-instruct --host 0.0.0.0\"\n",
Chayenne's avatar
Chayenne committed
54
    ")\n",
55
56
57
58
    "## To run qwen2.5-0.5b-instruct model on the Ascend-Npu, you can execute the following command:\n",
    "# server_process, port = launch_server_cmd(\n",
    "#     \"python3 -m sglang.launch_server --model-path qwen/qwen2.5-0.5b-instruct --host 0.0.0.0 --device npu --tp 2 --attention-backend torch_native\"\n",
    "# )\n",
Chayenne's avatar
Chayenne committed
59
    "\n",
60
    "wait_for_server(f\"http://localhost:{port}\")"
Chayenne's avatar
Chayenne committed
61
62
63
64
65
66
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
67
    "## Generate (text generation model)\n",
68
    "Generate completions. This is similar to the `/v1/completions` in OpenAI API. Detailed parameters can be found in the [sampling parameters](./sampling_params.md)."
Chayenne's avatar
Chayenne committed
69
70
71
72
73
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
74
   "metadata": {},
Chayenne's avatar
Chayenne committed
75
76
   "outputs": [],
   "source": [
77
    "url = f\"http://localhost:{port}/generate\"\n",
Chayenne's avatar
Chayenne committed
78
    "data = {\"text\": \"What is the capital of France?\"}\n",
Chayenne's avatar
Chayenne committed
79
80
    "\n",
    "response = requests.post(url, json=data)\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
81
    "print_highlight(response.json())"
Chayenne's avatar
Chayenne committed
82
83
   ]
  },
84
85
86
87
88
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": []
  },
Chayenne's avatar
Chayenne committed
89
90
91
92
93
94
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Get Model Info\n",
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
95
    "Get the information of the model.\n",
Chayenne's avatar
Chayenne committed
96
97
    "\n",
    "- `model_path`: The path/name of the model.\n",
Chayenne's avatar
Chayenne committed
98
99
    "- `is_generation`: Whether the model is used as generation model or embedding model.\n",
    "- `tokenizer_path`: The path/name of the tokenizer."
Chayenne's avatar
Chayenne committed
100
101
102
103
104
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
105
   "metadata": {},
Chayenne's avatar
Chayenne committed
106
107
   "outputs": [],
   "source": [
108
    "url = f\"http://localhost:{port}/get_model_info\"\n",
Chayenne's avatar
Chayenne committed
109
110
111
112
    "\n",
    "response = requests.get(url)\n",
    "response_json = response.json()\n",
    "print_highlight(response_json)\n",
113
    "assert response_json[\"model_path\"] == \"qwen/qwen2.5-0.5b-instruct\"\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
114
    "assert response_json[\"is_generation\"] is True\n",
115
    "assert response_json[\"tokenizer_path\"] == \"qwen/qwen2.5-0.5b-instruct\"\n",
116
117
118
119
120
121
    "assert response_json.keys() == {\n",
    "    \"model_path\",\n",
    "    \"is_generation\",\n",
    "    \"tokenizer_path\",\n",
    "    \"preferred_sampling_params\",\n",
    "}"
Chayenne's avatar
Chayenne committed
122
123
124
125
126
127
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
128
129
130
131
132
133
    "## Get Server Info\n",
    "Gets the server information including CLI arguments, token limits, and memory pool sizes.\n",
    "- Note: `get_server_info` merges the following deprecated endpoints:\n",
    "  - `get_server_args`\n",
    "  - `get_memory_pool_size` \n",
    "  - `get_max_total_num_tokens`"
Chayenne's avatar
Chayenne committed
134
135
136
137
138
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
139
   "metadata": {},
Chayenne's avatar
Chayenne committed
140
141
   "outputs": [],
   "source": [
142
    "# get_server_info\n",
Chayenne's avatar
Chayenne committed
143
    "\n",
144
    "url = f\"http://localhost:{port}/get_server_info\"\n",
Chayenne's avatar
Chayenne committed
145
146
147
148
149
150
151
152
153
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
154
155
156
    "## Health Check\n",
    "- `/health`: Check the health of the server.\n",
    "- `/health_generate`: Check the health of the server by generating one token."
Chayenne's avatar
Chayenne committed
157
158
159
160
161
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
162
   "metadata": {},
Chayenne's avatar
Chayenne committed
163
164
   "outputs": [],
   "source": [
165
    "url = f\"http://localhost:{port}/health_generate\"\n",
Chayenne's avatar
Chayenne committed
166
    "\n",
167
    "response = requests.get(url)\n",
Chayenne's avatar
Chayenne committed
168
169
170
171
172
173
    "print_highlight(response.text)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
174
   "metadata": {},
Chayenne's avatar
Chayenne committed
175
176
   "outputs": [],
   "source": [
177
    "url = f\"http://localhost:{port}/health\"\n",
Chayenne's avatar
Chayenne committed
178
179
180
181
182
    "\n",
    "response = requests.get(url)\n",
    "print_highlight(response.text)"
   ]
  },
183
184
185
186
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
187
    "## Flush Cache\n",
188
    "\n",
189
    "Flush the radix cache. It will be automatically triggered when the model weights are updated by the `/update_weights` API."
190
191
192
193
194
195
196
197
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
198
    "# flush cache\n",
199
    "\n",
200
    "url = f\"http://localhost:{port}/flush_cache\"\n",
201
    "\n",
202
    "response = requests.post(url)\n",
203
204
205
    "print_highlight(response.text)"
   ]
  },
Chayenne's avatar
Chayenne committed
206
207
208
209
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
210
    "## Update Weights From Disk\n",
Chayenne's avatar
Chayenne committed
211
    "\n",
Chayenne's avatar
Chayenne committed
212
213
214
    "Update model weights from disk without restarting the server. Only applicable for models with the same architecture and parameter size.\n",
    "\n",
    "SGLang support `update_weights_from_disk` API for continuous evaluation during training (save checkpoint to disk and update weights from disk).\n"
Chayenne's avatar
Chayenne committed
215
216
217
218
219
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
220
   "metadata": {},
Chayenne's avatar
Chayenne committed
221
222
223
224
   "outputs": [],
   "source": [
    "# successful update with same architecture and size\n",
    "\n",
225
    "url = f\"http://localhost:{port}/update_weights_from_disk\"\n",
226
    "data = {\"model_path\": \"qwen/qwen2.5-0.5b-instruct\"}\n",
Chayenne's avatar
Chayenne committed
227
228
229
    "\n",
    "response = requests.post(url, json=data)\n",
    "print_highlight(response.text)\n",
230
    "assert response.json()[\"success\"] is True\n",
231
    "assert response.json()[\"message\"] == \"Succeeded to update model weights.\""
Chayenne's avatar
Chayenne committed
232
233
234
235
236
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
237
   "metadata": {},
Chayenne's avatar
Chayenne committed
238
239
   "outputs": [],
   "source": [
240
    "# failed update with different parameter size or wrong name\n",
Chayenne's avatar
Chayenne committed
241
    "\n",
242
    "url = f\"http://localhost:{port}/update_weights_from_disk\"\n",
243
    "data = {\"model_path\": \"qwen/qwen2.5-0.5b-instruct-wrong\"}\n",
Chayenne's avatar
Chayenne committed
244
245
246
247
    "\n",
    "response = requests.post(url, json=data)\n",
    "response_json = response.json()\n",
    "print_highlight(response_json)\n",
248
    "assert response_json[\"success\"] is False\n",
Chayenne's avatar
Chayenne committed
249
    "assert response_json[\"message\"] == (\n",
250
    "    \"Failed to get weights iterator: \"\n",
251
    "    \"qwen/qwen2.5-0.5b-instruct-wrong\"\n",
252
    "    \" (repository not found).\"\n",
Chayenne's avatar
Chayenne committed
253
254
255
    ")"
   ]
  },
256
257
258
259
260
261
262
263
264
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(server_process)"
   ]
  },
Chayenne's avatar
Chayenne committed
265
266
267
268
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
269
    "## Encode (embedding model)\n",
Chayenne's avatar
Chayenne committed
270
    "\n",
Chayenne's avatar
Chayenne committed
271
272
    "Encode text into embeddings. Note that this API is only available for [embedding models](openai_api_embeddings.html#openai-apis-embedding) and will raise an error for generation models.\n",
    "Therefore, we launch a new server to server an embedding model."
Chayenne's avatar
Chayenne committed
273
274
275
276
277
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
278
   "metadata": {},
Chayenne's avatar
Chayenne committed
279
280
   "outputs": [],
   "source": [
281
    "embedding_process, port = launch_server_cmd(\n",
Chayenne's avatar
Chayenne committed
282
    "    \"\"\"\n",
283
    "python3 -m sglang.launch_server --model-path Alibaba-NLP/gte-Qwen2-1.5B-instruct \\\n",
284
    "    --host 0.0.0.0 --is-embedding\n",
Chayenne's avatar
Chayenne committed
285
286
287
    "\"\"\"\n",
    ")\n",
    "\n",
288
    "wait_for_server(f\"http://localhost:{port}\")"
Chayenne's avatar
Chayenne committed
289
290
291
292
293
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
294
   "metadata": {},
Chayenne's avatar
Chayenne committed
295
296
297
298
   "outputs": [],
   "source": [
    "# successful encode for embedding model\n",
    "\n",
299
    "url = f\"http://localhost:{port}/encode\"\n",
300
    "data = {\"model\": \"Alibaba-NLP/gte-Qwen2-1.5B-instruct\", \"text\": \"Once upon a time\"}\n",
Chayenne's avatar
Chayenne committed
301
302
303
304
305
306
    "\n",
    "response = requests.post(url, json=data)\n",
    "response_json = response.json()\n",
    "print_highlight(f\"Text embedding (first 10): {response_json['embedding'][:10]}\")"
   ]
  },
307
308
309
310
311
312
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
313
    "terminate_process(embedding_process)"
314
315
   ]
  },
woodx's avatar
woodx committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## v1/rerank (cross encoder rerank model)\n",
    "Rerank a list of documents given a query using a cross-encoder model. Note that this API is only available for cross encoder model like [BAAI/bge-reranker-v2-m3](https://huggingface.co/BAAI/bge-reranker-v2-m3) with `attention-backend` `triton` and `torch_native`.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "reranker_process, port = launch_server_cmd(\n",
    "    \"\"\"\n",
    "python3 -m sglang.launch_server --model-path BAAI/bge-reranker-v2-m3 \\\n",
    "    --host 0.0.0.0 --disable-radix-cache --chunked-prefill-size -1 --attention-backend triton --is-embedding\n",
    "\"\"\"\n",
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# compute rerank scores for query and documents\n",
    "\n",
    "url = f\"http://localhost:{port}/v1/rerank\"\n",
    "data = {\n",
    "    \"model\": \"BAAI/bge-reranker-v2-m3\",\n",
    "    \"query\": \"what is panda?\",\n",
    "    \"documents\": [\n",
    "        \"hi\",\n",
    "        \"The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.\",\n",
    "    ],\n",
    "}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "response_json = response.json()\n",
    "for item in response_json:\n",
    "    print_highlight(f\"Score: {item['score']:.2f} - Document: '{item['document']}'\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(reranker_process)"
   ]
  },
Chayenne's avatar
Chayenne committed
373
374
375
376
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
377
    "## Classify (reward model)\n",
Chayenne's avatar
Chayenne committed
378
    "\n",
379
    "SGLang Runtime also supports reward models. Here we use a reward model to classify the quality of pairwise generations."
Chayenne's avatar
Chayenne committed
380
381
382
383
384
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
385
   "metadata": {},
Chayenne's avatar
Chayenne committed
386
387
388
389
390
   "outputs": [],
   "source": [
    "# Note that SGLang now treats embedding models and reward models as the same type of models.\n",
    "# This will be updated in the future.\n",
    "\n",
391
    "reward_process, port = launch_server_cmd(\n",
Chayenne's avatar
Chayenne committed
392
    "    \"\"\"\n",
393
    "python3 -m sglang.launch_server --model-path Skywork/Skywork-Reward-Llama-3.1-8B-v0.2 --host 0.0.0.0 --is-embedding\n",
Chayenne's avatar
Chayenne committed
394
395
396
    "\"\"\"\n",
    ")\n",
    "\n",
397
    "wait_for_server(f\"http://localhost:{port}\")"
Chayenne's avatar
Chayenne committed
398
399
400
401
402
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
403
   "metadata": {},
Chayenne's avatar
Chayenne committed
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
   "outputs": [],
   "source": [
    "from transformers import AutoTokenizer\n",
    "\n",
    "PROMPT = (\n",
    "    \"What is the range of the numeric output of a sigmoid node in a neural network?\"\n",
    ")\n",
    "\n",
    "RESPONSE1 = \"The output of a sigmoid node is bounded between -1 and 1.\"\n",
    "RESPONSE2 = \"The output of a sigmoid node is bounded between 0 and 1.\"\n",
    "\n",
    "CONVS = [\n",
    "    [{\"role\": \"user\", \"content\": PROMPT}, {\"role\": \"assistant\", \"content\": RESPONSE1}],\n",
    "    [{\"role\": \"user\", \"content\": PROMPT}, {\"role\": \"assistant\", \"content\": RESPONSE2}],\n",
    "]\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"Skywork/Skywork-Reward-Llama-3.1-8B-v0.2\")\n",
    "prompts = tokenizer.apply_chat_template(CONVS, tokenize=False)\n",
    "\n",
423
    "url = f\"http://localhost:{port}/classify\"\n",
Chayenne's avatar
Chayenne committed
424
    "data = {\"model\": \"Skywork/Skywork-Reward-Llama-3.1-8B-v0.2\", \"text\": prompts}\n",
Chayenne's avatar
Chayenne committed
425
426
427
428
429
430
    "\n",
    "responses = requests.post(url, json=data).json()\n",
    "for response in responses:\n",
    "    print_highlight(f\"reward: {response['embedding'][0]}\")"
   ]
  },
Chayenne's avatar
Chayenne committed
431
432
  {
   "cell_type": "code",
433
434
   "execution_count": null,
   "metadata": {},
Chayenne's avatar
Chayenne committed
435
436
   "outputs": [],
   "source": [
437
    "terminate_process(reward_process)"
Chayenne's avatar
Chayenne committed
438
   ]
439
  },
440
441
442
443
444
445
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Capture expert selection distribution in MoE models\n",
    "\n",
446
447
448
    "SGLang Runtime supports recording the number of times an expert is selected in a MoE model run for each expert in the model. This is useful when analyzing the throughput of the model and plan for optimization.\n",
    "\n",
    "*Note: We only print out the first 10 lines of the csv below for better readability. Please adjust accordingly if you want to analyze the results more deeply.*"
449
450
451
452
453
454
455
456
457
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "expert_record_server_process, port = launch_server_cmd(\n",
458
    "    \"python3 -m sglang.launch_server --model-path Qwen/Qwen1.5-MoE-A2.7B --host 0.0.0.0 --expert-distribution-recorder-mode stat\"\n",
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
    ")\n",
    "\n",
    "wait_for_server(f\"http://localhost:{port}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "response = requests.post(f\"http://localhost:{port}/start_expert_distribution_record\")\n",
    "print_highlight(response)\n",
    "\n",
    "url = f\"http://localhost:{port}/generate\"\n",
    "data = {\"text\": \"What is the capital of France?\"}\n",
    "\n",
    "response = requests.post(url, json=data)\n",
    "print_highlight(response.json())\n",
    "\n",
    "response = requests.post(f\"http://localhost:{port}/stop_expert_distribution_record\")\n",
    "print_highlight(response)\n",
    "\n",
    "response = requests.post(f\"http://localhost:{port}/dump_expert_distribution_record\")\n",
483
    "print_highlight(response)"
484
485
486
487
488
489
490
491
492
493
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "terminate_process(expert_record_server_process)"
   ]
Chayenne's avatar
Chayenne committed
494
495
496
497
498
499
500
501
502
503
504
505
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
506
   "pygments_lexer": "ipython3"
Chayenne's avatar
Chayenne committed
507
508
509
510
511
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}