sgl_kernel_ops.h 11.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
/* Copyright 2025 SGLang Team. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

16
#pragma once
17

18
19
#include <ATen/ATen.h>
#include <ATen/Tensor.h>
20
#include <Python.h>
21
22
#include <torch/library.h>
#include <torch/torch.h>
23

24
#include <tuple>
25
26
#include <vector>

27
28
29
30
31
32
33
34
35
36
37
38
39
40
#define _CONCAT(A, B) A##B
#define CONCAT(A, B) _CONCAT(A, B)

#define _STRINGIFY(A) #A
#define STRINGIFY(A) _STRINGIFY(A)

#define TORCH_LIBRARY_EXPAND(NAME, MODULE) TORCH_LIBRARY(NAME, MODULE)

#define REGISTER_EXTENSION(NAME)                                                                      \
  PyMODINIT_FUNC CONCAT(PyInit_, NAME)() {                                                            \
    static struct PyModuleDef module = {PyModuleDef_HEAD_INIT, STRINGIFY(NAME), nullptr, 0, nullptr}; \
    return PyModule_Create(&module);                                                                  \
  }

Ke Bao's avatar
Ke Bao committed
41
using fptr_t = int64_t;
42
43
44
45

/*
 * From csrc/allreduce
 */
46
#ifdef USE_ROCM
47
// ROCM custom allreduce
48
49
50
51
52
53
54
fptr_t init_custom_ar(
    torch::Tensor& meta,
    torch::Tensor& rank_data,
    const std::vector<std::string>& handles,
    const std::vector<int64_t>& offsets,
    int64_t rank,
    bool full_nvlink);
55
56
57
58
void all_reduce_reg(fptr_t _fa, torch::Tensor& inp, torch::Tensor& out);
void all_reduce_unreg(fptr_t _fa, torch::Tensor& inp, torch::Tensor& reg_buffer, torch::Tensor& out);
void dispose(fptr_t _fa);
int64_t meta_size();
59
60
void register_buffer(
    fptr_t _fa, torch::Tensor& t, const std::vector<std::string>& handles, const std::vector<int64_t>& offsets);
61
std::tuple<torch::Tensor, std::vector<int64_t>> get_graph_buffer_ipc_meta(fptr_t _fa);
62
63
void register_graph_buffers(
    fptr_t _fa, const std::vector<std::string>& handles, const std::vector<std::vector<int64_t>>& offsets);
64
65
66
torch::Tensor allocate_meta_buffer(int64_t size);
torch::Tensor get_meta_buffer_ipc_handle(torch::Tensor& inp);
#else
67
68
69
// custom allreduce
fptr_t
init_custom_ar(const std::vector<fptr_t>& fake_ipc_ptrs, torch::Tensor& rank_data, int64_t rank, bool full_nvlink);
Ke Bao's avatar
Ke Bao committed
70
void dispose(fptr_t _fa);
71
72
int64_t meta_size();
void all_reduce(fptr_t _fa, torch::Tensor& inp, torch::Tensor& out, fptr_t _reg_buffer, int64_t reg_buffer_sz_bytes);
73
std::tuple<std::vector<int64_t>, std::vector<int64_t>> get_graph_buffer_ipc_meta(fptr_t _fa);
74
void register_buffer(fptr_t _fa, const std::vector<fptr_t>& fake_ipc_ptrs);
75
76
void register_graph_buffers(
    fptr_t _fa, const std::vector<std::vector<int64_t>>& handles, const std::vector<std::vector<int64_t>>& offsets);
77
#endif
Ke Bao's avatar
Ke Bao committed
78

79
80
81
82
83
84
85
86
87
88
89
/*
 * From csrc/attention
 */
void lightning_attention_decode(
    const torch::Tensor& q,
    const torch::Tensor& k,
    const torch::Tensor& v,
    const torch::Tensor& past_kv,
    const torch::Tensor& slope,
    torch::Tensor output,
    torch::Tensor new_kv);
90
91
92
93
94
95
96
97
void cutlass_mla_decode(
    torch::Tensor const& out,
    torch::Tensor const& q_nope_and_q_pe,
    torch::Tensor const& kv_c_and_k_pe_cache,
    torch::Tensor const& seq_lens,
    torch::Tensor const& page_table,
    torch::Tensor const& workspace);
int64_t cutlass_mla_get_workspace_size(int64_t max_seq_len, int64_t num_batches, int64_t sm_count = 0);
98
99
100
101
102
103
104
105
106
107
108
/*
 * From csrc/elementwise
 */
void rmsnorm(at::Tensor& output, at::Tensor& input, at::Tensor& weight, double eps, int64_t cuda_stream);
void sgl_fused_add_rmsnorm(torch::Tensor input, torch::Tensor residual, torch::Tensor weight, double eps);
void gemma_rmsnorm(at::Tensor& output, at::Tensor& input, at::Tensor& weight, double eps, int64_t cuda_stream);
void gemma_fused_add_rmsnorm(
    at::Tensor& input, at::Tensor& residual, at::Tensor& weight, double eps, int64_t cuda_stream);
void silu_and_mul(at::Tensor& out, at::Tensor& input, int64_t cuda_stream);
void gelu_tanh_and_mul(at::Tensor& out, at::Tensor& input, int64_t cuda_stream);
void gelu_and_mul(at::Tensor& out, at::Tensor& input, int64_t cuda_stream);
109
110
111
112
113
114
115
116
117
void apply_rope_pos_ids_cos_sin_cache(
    at::Tensor q,
    at::Tensor k,
    at::Tensor q_rope,
    at::Tensor k_rope,
    at::Tensor cos_sin_cache,
    at::Tensor pos_ids,
    bool interleave,
    int64_t cuda_stream);
118

119
120
121
/*
 * From csrc/gemm
 */
122
torch::Tensor awq_dequantize(torch::Tensor qweight, torch::Tensor scales, torch::Tensor qzeros);
Trevor Morris's avatar
Trevor Morris committed
123
124
125
126
127
128
129
void cutlass_scaled_fp4_mm(
    torch::Tensor& D,
    torch::Tensor const& A,
    torch::Tensor const& B,
    torch::Tensor const& A_sf,
    torch::Tensor const& B_sf,
    torch::Tensor const& alpha);
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
torch::Tensor int8_scaled_mm(
    const torch::Tensor& mat_a,
    const torch::Tensor& mat_b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const torch::Dtype& out_dtype,
    const c10::optional<torch::Tensor>& bias);
torch::Tensor fp8_scaled_mm(
    const torch::Tensor& mat_a,
    const torch::Tensor& mat_b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const torch::Dtype& out_dtype,
    const c10::optional<torch::Tensor>& bias);
torch::Tensor fp8_blockwise_scaled_mm(
    const torch::Tensor& mat_a,
    const torch::Tensor& mat_b,
    const torch::Tensor& scales_a,
    const torch::Tensor& scales_b,
    const torch::Dtype& out_dtype);
Trevor Morris's avatar
Trevor Morris committed
150
151
void scaled_fp4_quant(
    torch::Tensor& output, torch::Tensor const& input, torch::Tensor& output_scale, torch::Tensor const& input_scale);
152
153
154
155
156
157
158
159
void sgl_per_token_group_quant_fp8(
    at::Tensor input,
    at::Tensor output_q,
    at::Tensor output_s,
    int64_t group_size,
    double eps,
    double fp8_min,
    double fp8_max);
160
161
162
163
164
165
166
167
void sgl_per_token_group_quant_int8(
    at::Tensor input,
    at::Tensor output_q,
    at::Tensor output_s,
    int64_t group_size,
    double eps,
    double int8_min,
    double int8_max);
168
void sgl_per_tensor_quant_fp8(at::Tensor input, at::Tensor output_q, at::Tensor output_s, bool is_static);
169
void sgl_per_token_quant_fp8(at::Tensor input, at::Tensor output_q, at::Tensor output_s);
170
171
172
173
174
175
176
177
178
void bmm_fp8(
    at::Tensor A,
    at::Tensor B,
    at::Tensor D,
    at::Tensor A_scale,
    at::Tensor B_scale,
    at::Tensor workspace_buffer,
    int64_t cublas_handle,
    int64_t cuda_stream);
179

180
181
182
/*
 * From csrc/moe
 */
183
184
185
186
187
188
189
190
191
void moe_align_block_size(
    torch::Tensor topk_ids,
    int64_t num_experts,
    int64_t block_size,
    torch::Tensor sorted_token_ids,
    torch::Tensor experts_ids,
    torch::Tensor num_tokens_post_pad,
    torch::Tensor token_cnts_buffer,
    torch::Tensor cumsum_buffer);
192

193
194
195
196
197
198
void topk_softmax(
    torch::Tensor& topk_weights,
    torch::Tensor& topk_indices,
    torch::Tensor& token_expert_indices,
    torch::Tensor& gating_output);

199
200
201
std::vector<at::Tensor>
moe_fused_gate(at::Tensor& input, at::Tensor& bias, int64_t num_expert_group, int64_t topk_group, int64_t topk);

202
203
204
/*
 * From csrc/speculative
 */
205
void tree_speculative_sampling_target_only(
206
207
    at::Tensor predicts,          // mutable
    at::Tensor accept_index,      // mutable
208
209
210
211
212
213
214
215
    at::Tensor accept_token_num,  // mutable
    at::Tensor candidates,
    at::Tensor retrive_index,
    at::Tensor retrive_next_token,
    at::Tensor retrive_next_sibling,
    at::Tensor uniform_samples,
    at::Tensor target_probs,
    at::Tensor draft_probs,
216
217
    double threshold_single = 1,
    double threshold_acc = 1,
218
219
220
    bool deterministic = true,
    int64_t cuda_stream = 0);

221
222
223
224
225
void verify_tree_greedy(
    at::Tensor predicts,          // mutable
    at::Tensor accept_index,      // mutable
    at::Tensor accept_token_num,  // mutable
    at::Tensor candidates,
226
227
228
    at::Tensor retrive_index,
    at::Tensor retrive_next_token,
    at::Tensor retrive_next_sibling,
229
230
    at::Tensor target_predict,
    int64_t cuda_stream = 0);
231

232
void build_tree_kernel_efficient(
233
234
235
236
237
238
    at::Tensor parent_list,
    at::Tensor selected_index,
    at::Tensor verified_seq_len,
    at::Tensor tree_mask,
    at::Tensor positions,
    at::Tensor retrive_index,
239
240
    at::Tensor retrive_next_token,
    at::Tensor retrive_next_sibling,
241
242
243
    int64_t topk,
    int64_t depth,
    int64_t draft_token_num);
244

245
246
247
void segment_packbits(
    at::Tensor x, at::Tensor input_indptr, at::Tensor output_indptr, at::Tensor y, int64_t cuda_stream);

248
249
250
/*
 * From FlashInfer
 */
251
252
253
254
255
256
257
258
void min_p_sampling_from_probs(
    at::Tensor probs,
    at::Tensor uniform_samples,
    at::Tensor samples,
    std::optional<at::Tensor> maybe_min_p_arr,
    double min_p_val,
    bool deterministic,
    int64_t cuda_stream);
259

260
261
262
263
264
void top_k_renorm_probs(
    at::Tensor probs,
    at::Tensor renorm_probs,
    std::optional<at::Tensor> maybe_top_k_arr,
    int64_t top_k_val,
265
    int64_t cuda_stream);
266

267
268
269
270
271
272
void top_p_renorm_probs(
    at::Tensor probs,
    at::Tensor renorm_probs,
    std::optional<at::Tensor> maybe_top_p_arr,
    double top_p_val,
    int64_t cuda_stream);
273

274
275
276
277
278
279
280
281
282
283
284
void top_k_top_p_sampling_from_probs(
    at::Tensor probs,
    at::Tensor uniform_samples,
    at::Tensor samples,
    at::Tensor success,
    std::optional<at::Tensor> maybe_top_k_arr,
    double top_k_val,
    std::optional<at::Tensor> maybe_top_p_arr,
    double top_p_val,
    bool deterministic,
    int64_t cuda_stream);
285

286
287
288
289
290
291
292
293
294
void top_p_sampling_from_probs(
    at::Tensor probs,
    at::Tensor uniform_samples,
    at::Tensor samples,
    at::Tensor success,
    std::optional<at::Tensor> maybe_top_p_arr,
    double top_p_val,
    bool deterministic,
    int64_t cuda_stream);
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340

namespace flash {
/*
 * From fa2 sparse
 */
std::vector<at::Tensor> mha_fwd_sparse(
    at::Tensor& q,        // batch_size x seqlen_q x num_heads x head_size
    const at::Tensor& k,  // batch_size x seqlen_k x num_heads_k x head_size
    const at::Tensor& v,  // batch_size x seqlen_k x num_heads_k x head_size
    const at::Tensor& block_count,
    const at::Tensor& block_offset,
    const at::Tensor& column_count,
    const at::Tensor& column_index,
    const std::optional<at::Tensor>& out_,           // batch_size x seqlen_q x num_heads x head_size
    const std::optional<at::Tensor>& alibi_slopes_,  // num_heads or batch_size x num_heads
    const double p_dropout,
    const double softmax_scale,
    bool is_causal,
    const double softcap,
    const bool return_softmax,
    std::optional<at::Generator> gen_);

std::vector<at::Tensor> mha_varlen_fwd_sparse(
    at::Tensor& q,        // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
    const at::Tensor& k,  // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i.
    const at::Tensor& v,  // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i.
    const at::Tensor& block_count,
    const at::Tensor& block_offset,
    const at::Tensor& column_count,
    const at::Tensor& column_index,
    const c10::optional<at::Tensor>& out_,  // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
    const at::Tensor& cu_seqlens_q,         // b+1
    const at::Tensor& cu_seqlens_k,         // b+1
    const c10::optional<at::Tensor>&
        seqused_k,  // b. If given, only this many elements of each batch element's keys are used.
    const c10::optional<at::Tensor>& alibi_slopes_,  // num_heads or b x num_heads
    int64_t max_seqlen_q,
    const int64_t max_seqlen_k,
    const double p_dropout,
    const double softmax_scale,
    const bool zero_tensors,
    bool is_causal,
    const double softcap,
    const bool return_softmax,
    c10::optional<at::Generator> gen_);
}  // namespace flash