"vscode:/vscode.git/clone" did not exist on "7b821bbbce311982a6c1f4d63bab95186817600c"
openai_api_completions.ipynb 11.3 KB
Newer Older
Chayenne's avatar
Chayenne committed
1
2
3
4
5
6
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Lianmin Zheng's avatar
Lianmin Zheng committed
7
    "# OpenAI APIs - Completions\n",
Chayenne's avatar
Chayenne committed
8
    "\n",
9
10
    "SGLang provides OpenAI-compatible APIs to enable a smooth transition from OpenAI services to self-hosted local models.\n",
    "A complete reference for the API is available in the [OpenAI API Reference](https://platform.openai.com/docs/api-reference).\n",
11
    "\n",
12
    "This tutorial covers the following popular APIs:\n",
Chayenne's avatar
Chayenne committed
13
14
15
    "\n",
    "- `chat/completions`\n",
    "- `completions`\n",
16
    "\n",
simveit's avatar
simveit committed
17
    "Check out other tutorials to learn about [vision APIs](https://docs.sglang.ai/backend/openai_api_vision.html) for vision-language models and [embedding APIs](https://docs.sglang.ai/backend/openai_api_embeddings.html) for embedding models."
Chayenne's avatar
Chayenne committed
18
19
20
21
22
23
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
24
    "## Launch A Server\n",
Chayenne's avatar
Chayenne committed
25
    "\n",
26
    "Launch the server in your terminal and wait for it to initialize."
Chayenne's avatar
Chayenne committed
27
28
29
30
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
31
   "execution_count": null,
32
   "metadata": {},
Chayenne's avatar
Chayenne committed
33
   "outputs": [],
Chayenne's avatar
Chayenne committed
34
   "source": [
35
36
37
38
39
40
41
42
43
    "from sglang.test.test_utils import is_in_ci\n",
    "\n",
    "if is_in_ci():\n",
    "    from patch import launch_server_cmd\n",
    "else:\n",
    "    from sglang.utils import launch_server_cmd\n",
    "\n",
    "from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
    "\n",
Chayenne's avatar
Chayenne committed
44
    "\n",
45
    "server_process, port = launch_server_cmd(\n",
46
    "    \"python3 -m sglang.launch_server --model-path qwen/qwen2.5-0.5b-instruct --host 0.0.0.0 --mem-fraction-static 0.8\"\n",
Chayenne's avatar
Chayenne committed
47
48
    ")\n",
    "\n",
49
50
    "wait_for_server(f\"http://localhost:{port}\")\n",
    "print(f\"Server started on http://localhost:{port}\")"
Chayenne's avatar
Chayenne committed
51
52
   ]
  },
53
54
55
56
57
58
59
60
61
62
63
64
65
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Chat Completions\n",
    "\n",
    "### Usage\n",
    "\n",
    "The server fully implements the OpenAI API.\n",
    "It will automatically apply the chat template specified in the Hugging Face tokenizer, if one is available.\n",
    "You can also specify a custom chat template with `--chat-template` when launching the server."
   ]
  },
Chayenne's avatar
Chayenne committed
66
67
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
68
   "execution_count": null,
69
   "metadata": {},
Chayenne's avatar
Chayenne committed
70
   "outputs": [],
Chayenne's avatar
Chayenne committed
71
72
73
   "source": [
    "import openai\n",
    "\n",
74
    "client = openai.Client(base_url=f\"http://127.0.0.1:{port}/v1\", api_key=\"None\")\n",
Chayenne's avatar
Chayenne committed
75
76
    "\n",
    "response = client.chat.completions.create(\n",
77
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
Chayenne's avatar
Chayenne committed
78
79
80
81
82
83
    "    messages=[\n",
    "        {\"role\": \"user\", \"content\": \"List 3 countries and their capitals.\"},\n",
    "    ],\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    ")\n",
84
85
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
86
87
88
89
90
91
92
93
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
94
    "The chat completions API accepts OpenAI Chat Completions API's parameters. Refer to [OpenAI Chat Completions API](https://platform.openai.com/docs/api-reference/chat/create) for more details.\n",
Chayenne's avatar
Chayenne committed
95
    "\n",
96
97
98
99
    "SGLang extends the standard API with the `extra_body` parameter, allowing for additional customization. One key option within `extra_body` is `chat_template_kwargs`, which can be used to pass arguments to the chat template processor.\n",
    "\n",
    "#### Enabling Model Thinking/Reasoning\n",
    "\n",
100
101
102
103
    "You can use `chat_template_kwargs` to enable or disable the model's internal thinking or reasoning process output. Set `\"enable_thinking\": True` within `chat_template_kwargs` to include the reasoning steps in the response. This requires launching the server with a compatible reasoning parser.\n",
    "\n",
    "**Reasoning Parser Options:**\n",
    "- `--reasoning-parser deepseek-r1`: For DeepSeek-R1 family models (R1, R1-0528, R1-Distill)\n",
104
105
    "- `--reasoning-parser qwen3`: For both standard Qwen3 models that support `enable_thinking` parameter and Qwen3-Thinking models\n",
    "- `--reasoning-parser qwen3-thinking`: For Qwen3-Thinking models, force reasoning version of qwen3 parser\n",
106
    "- `--reasoning-parser kimi`: For Kimi thinking models\n",
107
108
109
110
    "\n",
    "Here's an example demonstrating how to enable thinking and retrieve the reasoning content separately (using `separate_reasoning: True`):\n",
    "\n",
    "```python\n",
111
    "# For Qwen3 models with enable_thinking support:\n",
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    "# python3 -m sglang.launch_server --model-path QwQ/Qwen3-32B-250415 --reasoning-parser qwen3 ...\n",
    "\n",
    "from openai import OpenAI\n",
    "\n",
    "# Modify OpenAI's API key and API base to use SGLang's API server.\n",
    "openai_api_key = \"EMPTY\"\n",
    "openai_api_base = f\"http://127.0.0.1:{port}/v1\" # Use the correct port\n",
    "\n",
    "client = OpenAI(\n",
    "    api_key=openai_api_key,\n",
    "    base_url=openai_api_base,\n",
    ")\n",
    "\n",
    "model = \"QwQ/Qwen3-32B-250415\" # Use the model loaded by the server\n",
    "messages = [{\"role\": \"user\", \"content\": \"9.11 and 9.8, which is greater?\"}]\n",
    "\n",
    "response = client.chat.completions.create(\n",
    "    model=model,\n",
    "    messages=messages,\n",
    "    extra_body={\n",
132
    "        \"chat_template_kwargs\": {\"enable_thinking\": True},\n",
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    "        \"separate_reasoning\": True\n",
    "    }\n",
    ")\n",
    "\n",
    "print(\"response.choices[0].message.reasoning_content: \\n\", response.choices[0].message.reasoning_content)\n",
    "print(\"response.choices[0].message.content: \\n\", response.choices[0].message.content)\n",
    "```\n",
    "\n",
    "**Example Output:**\n",
    "\n",
    "```\n",
    "response.choices[0].message.reasoning_content: \n",
    " Okay, so I need to figure out which number is greater between 9.11 and 9.8. Hmm, let me think. Both numbers start with 9, right? So the whole number part is the same. That means I need to look at the decimal parts to determine which one is bigger.\n",
    "...\n",
    "Therefore, after checking multiple methods—aligning decimals, subtracting, converting to fractions, and using a real-world analogy—it's clear that 9.8 is greater than 9.11.\n",
    "\n",
    "response.choices[0].message.content: \n",
    " To determine which number is greater between **9.11** and **9.8**, follow these steps:\n",
    "...\n",
    "**Answer**:  \n",
    "9.8 is greater than 9.11.\n",
    "```\n",
    "\n",
    "Setting `\"enable_thinking\": False` (or omitting it) will result in `reasoning_content` being `None`.\n",
    "\n",
158
    "**Note for Qwen3-Thinking models:** These models always generate thinking content and do not support the `enable_thinking` parameter. Use `--reasoning-parser qwen3-thinking` or `--reasoning-parser qwen3` to parse the thinking content.\n",
159
    "\n",
160
    "Here is an example of a detailed chat completion request using standard OpenAI parameters:"
Chayenne's avatar
Chayenne committed
161
162
163
164
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
165
   "execution_count": null,
166
   "metadata": {},
Chayenne's avatar
Chayenne committed
167
   "outputs": [],
Chayenne's avatar
Chayenne committed
168
169
   "source": [
    "response = client.chat.completions.create(\n",
170
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
Chayenne's avatar
Chayenne committed
171
172
173
174
175
176
177
178
179
180
181
182
183
    "    messages=[\n",
    "        {\n",
    "            \"role\": \"system\",\n",
    "            \"content\": \"You are a knowledgeable historian who provides concise responses.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"Tell me about ancient Rome\"},\n",
    "        {\n",
    "            \"role\": \"assistant\",\n",
    "            \"content\": \"Ancient Rome was a civilization centered in Italy.\",\n",
    "        },\n",
    "        {\"role\": \"user\", \"content\": \"What were their major achievements?\"},\n",
    "    ],\n",
    "    temperature=0.3,  # Lower temperature for more focused responses\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
184
    "    max_tokens=128,  # Reasonable length for a concise response\n",
Chayenne's avatar
Chayenne committed
185
186
187
188
189
190
191
    "    top_p=0.95,  # Slightly higher for better fluency\n",
    "    presence_penalty=0.2,  # Mild penalty to avoid repetition\n",
    "    frequency_penalty=0.2,  # Mild penalty for more natural language\n",
    "    n=1,  # Single response is usually more stable\n",
    "    seed=42,  # Keep for reproducibility\n",
    ")\n",
    "\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
192
193
194
195
196
197
198
    "print_highlight(response.choices[0].message.content)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Chayenne's avatar
Chayenne committed
199
    "Streaming mode is also supported."
Lianmin Zheng's avatar
Lianmin Zheng committed
200
201
202
203
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
204
   "execution_count": null,
205
   "metadata": {},
Chayenne's avatar
Chayenne committed
206
   "outputs": [],
Lianmin Zheng's avatar
Lianmin Zheng committed
207
208
   "source": [
    "stream = client.chat.completions.create(\n",
209
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
Lianmin Zheng's avatar
Lianmin Zheng committed
210
211
212
213
214
215
    "    messages=[{\"role\": \"user\", \"content\": \"Say this is a test\"}],\n",
    "    stream=True,\n",
    ")\n",
    "for chunk in stream:\n",
    "    if chunk.choices[0].delta.content is not None:\n",
    "        print(chunk.choices[0].delta.content, end=\"\")"
Chayenne's avatar
Chayenne committed
216
217
218
219
220
221
222
223
224
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Completions\n",
    "\n",
    "### Usage\n",
225
    "Completions API is similar to Chat Completions API, but without the `messages` parameter or chat templates."
Chayenne's avatar
Chayenne committed
226
227
228
229
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
230
   "execution_count": null,
231
   "metadata": {},
Chayenne's avatar
Chayenne committed
232
   "outputs": [],
Chayenne's avatar
Chayenne committed
233
234
   "source": [
    "response = client.completions.create(\n",
235
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
Chayenne's avatar
Chayenne committed
236
237
238
239
240
241
    "    prompt=\"List 3 countries and their capitals.\",\n",
    "    temperature=0,\n",
    "    max_tokens=64,\n",
    "    n=1,\n",
    "    stop=None,\n",
    ")\n",
242
243
    "\n",
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
244
245
246
247
248
249
250
251
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Parameters\n",
    "\n",
252
    "The completions API accepts OpenAI Completions API's parameters.  Refer to [OpenAI Completions API](https://platform.openai.com/docs/api-reference/completions/create) for more details.\n",
Chayenne's avatar
Chayenne committed
253
254
255
256
257
258
    "\n",
    "Here is an example of a detailed completions request:"
   ]
  },
  {
   "cell_type": "code",
Chayenne's avatar
Chayenne committed
259
   "execution_count": null,
260
   "metadata": {},
Chayenne's avatar
Chayenne committed
261
   "outputs": [],
Chayenne's avatar
Chayenne committed
262
263
   "source": [
    "response = client.completions.create(\n",
264
    "    model=\"qwen/qwen2.5-0.5b-instruct\",\n",
Chayenne's avatar
Chayenne committed
265
266
267
268
269
270
271
272
273
274
275
    "    prompt=\"Write a short story about a space explorer.\",\n",
    "    temperature=0.7,  # Moderate temperature for creative writing\n",
    "    max_tokens=150,  # Longer response for a story\n",
    "    top_p=0.9,  # Balanced diversity in word choice\n",
    "    stop=[\"\\n\\n\", \"THE END\"],  # Multiple stop sequences\n",
    "    presence_penalty=0.3,  # Encourage novel elements\n",
    "    frequency_penalty=0.3,  # Reduce repetitive phrases\n",
    "    n=1,  # Generate one completion\n",
    "    seed=123,  # For reproducible results\n",
    ")\n",
    "\n",
276
    "print_highlight(f\"Response: {response}\")"
Chayenne's avatar
Chayenne committed
277
278
   ]
  },
Lianmin Zheng's avatar
Lianmin Zheng committed
279
280
281
282
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
283
    "## Structured Outputs (JSON, Regex, EBNF)\n",
284
    "\n",
285
    "For OpenAI compatible structured outputs API, refer to [Structured Outputs](https://docs.sglang.ai/backend/structured_outputs.html#OpenAI-Compatible-API) for more details.\n"
286
287
   ]
  },
Chayenne's avatar
Chayenne committed
288
289
  {
   "cell_type": "code",
290
291
   "execution_count": null,
   "metadata": {},
Lianmin Zheng's avatar
Lianmin Zheng committed
292
   "outputs": [],
Chayenne's avatar
Chayenne committed
293
   "source": [
294
    "terminate_process(server_process)"
Chayenne's avatar
Chayenne committed
295
296
297
298
   ]
  }
 ],
 "metadata": {
Chayenne's avatar
Chayenne committed
299
300
301
302
303
304
305
306
307
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
308
   "pygments_lexer": "ipython3"
Chayenne's avatar
Chayenne committed
309
310
311
312
313
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}