test_openai_server.py 33.9 KB
Newer Older
1
2
3
"""
python3 -m unittest test_openai_server.TestOpenAIServer.test_batch
python3 -m unittest test_openai_server.TestOpenAIServer.test_completion
4

5
"""
Chayenne's avatar
Chayenne committed
6

7
import json
8
import re
9
import time
10
import unittest
11
12

import openai
13
import requests
14

yichuan~'s avatar
yichuan~ committed
15
from sglang.srt.hf_transformers_utils import get_tokenizer
16
from sglang.srt.utils import kill_process_tree
17
from sglang.test.test_utils import (
18
    DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST,
Lianmin Zheng's avatar
Lianmin Zheng committed
19
    DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
20
21
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
22
    CustomTestCase,
23
24
    popen_launch_server,
)
25
26


27
class TestOpenAIServer(CustomTestCase):
28
29
    @classmethod
    def setUpClass(cls):
Lianmin Zheng's avatar
Lianmin Zheng committed
30
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
31
        cls.base_url = DEFAULT_URL_FOR_TEST
32
33
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
34
35
36
37
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
38
        )
39
        cls.base_url += "/v1"
Lianmin Zheng's avatar
Lianmin Zheng committed
40
        cls.tokenizer = get_tokenizer(DEFAULT_SMALL_MODEL_NAME_FOR_TEST)
41
42
43

    @classmethod
    def tearDownClass(cls):
44
        kill_process_tree(cls.process.pid)
45

yichuan~'s avatar
yichuan~ committed
46
    def run_completion(
47
        self, echo, logprobs, use_list_input, parallel_sample_num, token_input
yichuan~'s avatar
yichuan~ committed
48
    ):
49
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
50
        prompt = "The capital of France is"
yichuan~'s avatar
yichuan~ committed
51
52
53
54
55
56
        if token_input:
            prompt_input = self.tokenizer.encode(prompt)
            num_prompt_tokens = len(prompt_input)
        else:
            prompt_input = prompt
            num_prompt_tokens = len(self.tokenizer.encode(prompt))
57
58

        if use_list_input:
yichuan~'s avatar
yichuan~ committed
59
            prompt_arg = [prompt_input, prompt_input]
60
            num_choices = len(prompt_arg)
yichuan~'s avatar
yichuan~ committed
61
            num_prompt_tokens *= 2
62
        else:
yichuan~'s avatar
yichuan~ committed
63
            prompt_arg = prompt_input
64
65
            num_choices = 1

66
67
        response = client.completions.create(
            model=self.model,
68
            prompt=prompt_arg,
yichuan~'s avatar
yichuan~ committed
69
            temperature=0,
70
71
72
            max_tokens=32,
            echo=echo,
            logprobs=logprobs,
yichuan~'s avatar
yichuan~ committed
73
            n=parallel_sample_num,
74
        )
75

yichuan~'s avatar
yichuan~ committed
76
        assert len(response.choices) == num_choices * parallel_sample_num
77

Cody Yu's avatar
Cody Yu committed
78
        if echo:
79
            text = response.choices[0].text
80
            assert text.startswith(prompt)
yichuan~'s avatar
yichuan~ committed
81

Cody Yu's avatar
Cody Yu committed
82
        if logprobs:
83
84
85
            assert response.choices[0].logprobs
            assert isinstance(response.choices[0].logprobs.tokens[0], str)
            assert isinstance(response.choices[0].logprobs.top_logprobs[1], dict)
86
            ret_num_top_logprobs = len(response.choices[0].logprobs.top_logprobs[1])
87

88
            # FIXME: Sometimes, some top_logprobs are missing in the return value. The reason is that some output id maps to the same output token and duplicate in the map
89
            # assert ret_num_top_logprobs == logprobs, f"{ret_num_top_logprobs} vs {logprobs}"
yichuan~'s avatar
yichuan~ committed
90
            assert ret_num_top_logprobs > 0
91

92
93
94
            # when echo=True and request.logprobs>0, logprob_start_len is 0, so the first token's logprob would be None.
            if not echo:
                assert response.choices[0].logprobs.token_logprobs[0]
yichuan~'s avatar
yichuan~ committed
95

96
97
        assert response.id
        assert response.created
yichuan~'s avatar
yichuan~ committed
98
99
100
        assert (
            response.usage.prompt_tokens == num_prompt_tokens
        ), f"{response.usage.prompt_tokens} vs {num_prompt_tokens}"
101
102
103
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens > 0

104
    def run_completion_stream(
105
        self, echo, logprobs, use_list_input, parallel_sample_num, token_input
106
    ):
107
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
108
        prompt = "The capital of France is"
yichuan~'s avatar
yichuan~ committed
109
        if token_input:
110
111
            prompt_input = self.tokenizer.encode(prompt)
            num_prompt_tokens = len(prompt_input)
yichuan~'s avatar
yichuan~ committed
112
        else:
113
114
115
116
117
118
119
120
121
122
123
            prompt_input = prompt
            num_prompt_tokens = len(self.tokenizer.encode(prompt))

        if use_list_input:
            prompt_arg = [prompt_input, prompt_input]
            num_choices = len(prompt_arg)
            num_prompt_tokens *= 2
        else:
            prompt_arg = prompt_input
            num_choices = 1

124
125
        generator = client.completions.create(
            model=self.model,
yichuan~'s avatar
yichuan~ committed
126
127
            prompt=prompt_arg,
            temperature=0,
128
129
130
131
            max_tokens=32,
            echo=echo,
            logprobs=logprobs,
            stream=True,
132
            stream_options={"include_usage": True},
133
            n=parallel_sample_num,
134
135
        )

136
        is_firsts = {}
137
        for response in generator:
138
139
            usage = response.usage
            if usage is not None:
140
141
142
                assert usage.prompt_tokens > 0
                assert usage.completion_tokens > 0
                assert usage.total_tokens > 0
143
                continue
144
145
146
147

            index = response.choices[0].index
            is_first = is_firsts.get(index, True)

148
            if logprobs:
149
150
                assert response.choices[0].logprobs
                assert isinstance(response.choices[0].logprobs.tokens[0], str)
151
                if not (is_first and echo):
152
153
                    assert isinstance(
                        response.choices[0].logprobs.top_logprobs[0], dict
154
                    )
155
156
157
                    ret_num_top_logprobs = len(
                        response.choices[0].logprobs.top_logprobs[0]
                    )
158
                    # FIXME: Sometimes, some top_logprobs are missing in the return value. The reason is that some output id maps to the same output token and duplicate in the map
159
                    # assert ret_num_top_logprobs == logprobs, f"{ret_num_top_logprobs} vs {logprobs}"
160
                    assert ret_num_top_logprobs > 0
161

162
            if is_first:
163
                if echo:
yichuan~'s avatar
yichuan~ committed
164
165
                    assert response.choices[0].text.startswith(
                        prompt
166
167
                    ), f"{response.choices[0].text} and all args {echo} {logprobs} {token_input} {is_first}"
                is_firsts[index] = False
168
169
            assert response.id
            assert response.created
170

171
172
173
174
175
        for index in [i for i in range(parallel_sample_num * num_choices)]:
            assert not is_firsts.get(
                index, True
            ), f"index {index} is not found in the response"

176
    def run_chat_completion(self, logprobs, parallel_sample_num):
177
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
178
179
180
181
        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
Ying Sheng's avatar
Ying Sheng committed
182
183
184
185
                {
                    "role": "user",
                    "content": "What is the capital of France? Answer in a few words.",
                },
186
187
188
189
            ],
            temperature=0,
            logprobs=logprobs is not None and logprobs > 0,
            top_logprobs=logprobs,
yichuan~'s avatar
yichuan~ committed
190
            n=parallel_sample_num,
191
        )
Ying Sheng's avatar
Ying Sheng committed
192

193
194
195
196
197
198
199
200
201
202
203
        if logprobs:
            assert isinstance(
                response.choices[0].logprobs.content[0].top_logprobs[0].token, str
            )

            ret_num_top_logprobs = len(
                response.choices[0].logprobs.content[0].top_logprobs
            )
            assert (
                ret_num_top_logprobs == logprobs
            ), f"{ret_num_top_logprobs} vs {logprobs}"
Ying Sheng's avatar
Ying Sheng committed
204

yichuan~'s avatar
yichuan~ committed
205
        assert len(response.choices) == parallel_sample_num
206
207
208
209
210
211
212
213
        assert response.choices[0].message.role == "assistant"
        assert isinstance(response.choices[0].message.content, str)
        assert response.id
        assert response.created
        assert response.usage.prompt_tokens > 0
        assert response.usage.completion_tokens > 0
        assert response.usage.total_tokens > 0

214
    def run_chat_completion_stream(self, logprobs, parallel_sample_num=1):
215
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
216
217
218
219
220
221
222
223
224
225
        generator = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {"role": "user", "content": "What is the capital of France?"},
            ],
            temperature=0,
            logprobs=logprobs is not None and logprobs > 0,
            top_logprobs=logprobs,
            stream=True,
226
            stream_options={"include_usage": True},
227
            n=parallel_sample_num,
228
229
        )

230
        is_firsts = {}
231
        for response in generator:
232
233
            usage = response.usage
            if usage is not None:
234
235
236
                assert usage.prompt_tokens > 0
                assert usage.completion_tokens > 0
                assert usage.total_tokens > 0
237
238
                continue

239
            index = response.choices[0].index
240
            data = response.choices[0].delta
241

242
            if is_firsts.get(index, True):
243
                assert data.role == "assistant"
244
                is_firsts[index] = False
245
246
247
                continue

            if logprobs:
248
                assert response.choices[0].logprobs
yichuan~'s avatar
yichuan~ committed
249
250
                assert isinstance(
                    response.choices[0].logprobs.content[0].top_logprobs[0].token, str
251
                )
yichuan~'s avatar
yichuan~ committed
252
253
                assert isinstance(
                    response.choices[0].logprobs.content[0].top_logprobs, list
254
                )
yichuan~'s avatar
yichuan~ committed
255
256
257
258
259
260
                ret_num_top_logprobs = len(
                    response.choices[0].logprobs.content[0].top_logprobs
                )
                assert (
                    ret_num_top_logprobs == logprobs
                ), f"{ret_num_top_logprobs} vs {logprobs}"
261

262
263
264
265
266
267
            assert (
                isinstance(data.content, str)
                or isinstance(data.reasoning_content, str)
                or len(data.tool_calls) > 0
                or response.choices[0].finish_reason
            )
268
269
270
            assert response.id
            assert response.created

271
272
273
274
275
        for index in [i for i in range(parallel_sample_num)]:
            assert not is_firsts.get(
                index, True
            ), f"index {index} is not found in the response"

276
    def _create_batch(self, mode, client):
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
        if mode == "completion":
            input_file_path = "complete_input.jsonl"
            # write content to input file
            content = [
                {
                    "custom_id": "request-1",
                    "method": "POST",
                    "url": "/v1/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-instruct",
                        "prompt": "List 3 names of famous soccer player: ",
                        "max_tokens": 20,
                    },
                },
                {
                    "custom_id": "request-2",
                    "method": "POST",
                    "url": "/v1/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-instruct",
                        "prompt": "List 6 names of famous basketball player:  ",
                        "max_tokens": 40,
                    },
                },
                {
                    "custom_id": "request-3",
                    "method": "POST",
                    "url": "/v1/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-instruct",
                        "prompt": "List 6 names of famous tenniss player:  ",
                        "max_tokens": 40,
                    },
                },
            ]

        else:
            input_file_path = "chat_input.jsonl"
            content = [
                {
                    "custom_id": "request-1",
                    "method": "POST",
                    "url": "/v1/chat/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-0125",
                        "messages": [
                            {
                                "role": "system",
                                "content": "You are a helpful assistant.",
                            },
                            {
                                "role": "user",
                                "content": "Hello! List 3 NBA players and tell a story",
                            },
                        ],
                        "max_tokens": 30,
                    },
                },
                {
                    "custom_id": "request-2",
                    "method": "POST",
                    "url": "/v1/chat/completions",
                    "body": {
                        "model": "gpt-3.5-turbo-0125",
                        "messages": [
                            {"role": "system", "content": "You are an assistant. "},
                            {
                                "role": "user",
                                "content": "Hello! List three capital and tell a story",
                            },
                        ],
                        "max_tokens": 50,
                    },
                },
            ]
352

353
354
355
        with open(input_file_path, "w") as file:
            for line in content:
                file.write(json.dumps(line) + "\n")
356

357
358
359
360
361
362
363
364
365
366
367
368
        with open(input_file_path, "rb") as file:
            uploaded_file = client.files.create(file=file, purpose="batch")
        if mode == "completion":
            endpoint = "/v1/completions"
        elif mode == "chat":
            endpoint = "/v1/chat/completions"
        completion_window = "24h"
        batch_job = client.batches.create(
            input_file_id=uploaded_file.id,
            endpoint=endpoint,
            completion_window=completion_window,
        )
369

370
        return batch_job, content, uploaded_file
371
372
373

    def run_batch(self, mode):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
374
        batch_job, content, uploaded_file = self._create_batch(mode=mode, client=client)
375

376
377
378
379
380
381
        while batch_job.status not in ["completed", "failed", "cancelled"]:
            time.sleep(3)
            print(
                f"Batch job status: {batch_job.status}...trying again in 3 seconds..."
            )
            batch_job = client.batches.retrieve(batch_job.id)
382
383
384
        assert (
            batch_job.status == "completed"
        ), f"Batch job status is not completed: {batch_job.status}"
385
386
387
388
389
390
        assert batch_job.request_counts.completed == len(content)
        assert batch_job.request_counts.failed == 0
        assert batch_job.request_counts.total == len(content)

        result_file_id = batch_job.output_file_id
        file_response = client.files.content(result_file_id)
yichuan~'s avatar
yichuan~ committed
391
392
393
394
395
396
        result_content = file_response.read().decode("utf-8")  # Decode bytes to string
        results = [
            json.loads(line)
            for line in result_content.split("\n")
            if line.strip() != ""
        ]
397
        assert len(results) == len(content)
398
399
400
        for delete_fid in [uploaded_file.id, result_file_id]:
            del_pesponse = client.files.delete(delete_fid)
            assert del_pesponse.deleted
401

402
403
    def run_cancel_batch(self, mode):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
404
        batch_job, _, uploaded_file = self._create_batch(mode=mode, client=client)
405
406
407
408
409
410
411
412
413
414
415
416
417
418

        assert batch_job.status not in ["cancelling", "cancelled"]

        batch_job = client.batches.cancel(batch_id=batch_job.id)
        assert batch_job.status == "cancelling"

        while batch_job.status not in ["failed", "cancelled"]:
            batch_job = client.batches.retrieve(batch_job.id)
            print(
                f"Batch job status: {batch_job.status}...trying again in 3 seconds..."
            )
            time.sleep(3)

        assert batch_job.status == "cancelled"
419
420
        del_response = client.files.delete(uploaded_file.id)
        assert del_response.deleted
421

422
    def test_completion(self):
423
424
425
426
427
428
429
430
431
432
433
434
        for echo in [False, True]:
            for logprobs in [None, 5]:
                for use_list_input in [True, False]:
                    for parallel_sample_num in [1, 2]:
                        for token_input in [False, True]:
                            self.run_completion(
                                echo,
                                logprobs,
                                use_list_input,
                                parallel_sample_num,
                                token_input,
                            )
435
436

    def test_completion_stream(self):
437
        # parallel sampling and list input are not supported in streaming mode
438
439
440
441
442
443
444
445
446
447
448
449
        for echo in [False, True]:
            for logprobs in [None, 5]:
                for use_list_input in [True, False]:
                    for parallel_sample_num in [1, 2]:
                        for token_input in [False, True]:
                            self.run_completion_stream(
                                echo,
                                logprobs,
                                use_list_input,
                                parallel_sample_num,
                                token_input,
                            )
450

451
    def test_chat_completion(self):
452
453
454
        for logprobs in [None, 5]:
            for parallel_sample_num in [1, 2]:
                self.run_chat_completion(logprobs, parallel_sample_num)
455
456

    def test_chat_completion_stream(self):
457
458
459
        for logprobs in [None, 5]:
            for parallel_sample_num in [1, 2]:
                self.run_chat_completion_stream(logprobs, parallel_sample_num)
460

461
462
463
464
    def test_batch(self):
        for mode in ["completion", "chat"]:
            self.run_batch(mode)

465
    def test_cancel_batch(self):
466
467
468
        for mode in ["completion", "chat"]:
            self.run_cancel_batch(mode)

469
    def test_regex(self):
470
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

        regex = (
            r"""\{\n"""
            + r"""   "name": "[\w]+",\n"""
            + r"""   "population": [\d]+\n"""
            + r"""\}"""
        )

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {"role": "user", "content": "Introduce the capital of France."},
            ],
            temperature=0,
            max_tokens=128,
            extra_body={"regex": regex},
        )
        text = response.choices[0].message.content

        try:
            js_obj = json.loads(text)
        except (TypeError, json.decoder.JSONDecodeError):
            print("JSONDecodeError", text)
            raise
        assert isinstance(js_obj["name"], str)
        assert isinstance(js_obj["population"], int)

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    def test_penalty(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {"role": "user", "content": "Introduce the capital of France."},
            ],
            temperature=0,
            max_tokens=32,
            frequency_penalty=1.0,
        )
        text = response.choices[0].message.content
        assert isinstance(text, str)

515
516
517
518
    def test_response_prefill(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        response = client.chat.completions.create(
519
            model="meta-llama/Llama-3.1-8B-Instruct",
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
            messages=[
                {"role": "system", "content": "You are a helpful AI assistant"},
                {
                    "role": "user",
                    "content": """
Extract the name, size, price, and color from this product description as a JSON object:

<description>
The SmartHome Mini is a compact smart home assistant available in black or white for only $49.99. At just 5 inches wide, it lets you control lights, thermostats, and other connected devices via voice or app—no matter where you place it in your home. This affordable little hub brings convenient hands-free control to your smart devices.
</description>
""",
                },
                {
                    "role": "assistant",
                    "content": "{\n",
                },
            ],
            temperature=0,
538
            extra_body={"continue_final_message": True},
539
540
541
542
543
544
545
546
        )

        assert (
            response.choices[0]
            .message.content.strip()
            .startswith('"name": "SmartHome Mini",')
        )

547
548
549
550
551
552
    def test_model_list(self):
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        models = list(client.models.list())
        assert len(models) == 1
        assert isinstance(getattr(models[0], "max_model_len", None), int)

553

554
555
556
557
# -------------------------------------------------------------------------
#    EBNF Test Class: TestOpenAIServerEBNF
#    Launches the server with xgrammar, has only EBNF tests
# -------------------------------------------------------------------------
558
class TestOpenAIServerEBNF(CustomTestCase):
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"

        # passing xgrammar specifically
        other_args = ["--grammar-backend", "xgrammar"]
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=other_args,
        )
        cls.base_url += "/v1"
        cls.tokenizer = get_tokenizer(DEFAULT_SMALL_MODEL_NAME_FOR_TEST)

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def test_ebnf(self):
        """
        Ensure we can pass `ebnf` to the local openai server
        and that it enforces the grammar.
        """
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        ebnf_grammar = r"""
        root ::= "Hello" | "Hi" | "Hey"
        """
        pattern = re.compile(r"^(Hello|Hi|Hey)[.!?]*\s*$")

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful EBNF test bot."},
                {"role": "user", "content": "Say a greeting (Hello, Hi, or Hey)."},
            ],
            temperature=0,
            max_tokens=32,
            extra_body={"ebnf": ebnf_grammar},
        )
        text = response.choices[0].message.content.strip()
        self.assertTrue(len(text) > 0, "Got empty text from EBNF generation")
        self.assertRegex(text, pattern, f"Text '{text}' doesn't match EBNF choices")

    def test_ebnf_strict_json(self):
        """
        A stricter EBNF that produces exactly {"name":"Alice"} format
        with no trailing punctuation or extra fields.
        """
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        ebnf_grammar = r"""
        root    ::= "{" pair "}"
        pair    ::= "\"name\"" ":" string
        string  ::= "\"" [A-Za-z]+ "\""
        """
        pattern = re.compile(r'^\{"name":"[A-Za-z]+"\}$')

        response = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "EBNF mini-JSON generator."},
                {
                    "role": "user",
                    "content": "Generate single key JSON with only letters.",
                },
            ],
            temperature=0,
            max_tokens=64,
            extra_body={"ebnf": ebnf_grammar},
        )
        text = response.choices[0].message.content.strip()
        self.assertTrue(len(text) > 0, "Got empty text from EBNF strict JSON test")
        self.assertRegex(
            text, pattern, f"Text '{text}' not matching the EBNF strict JSON shape"
        )


639
class TestOpenAIEmbedding(CustomTestCase):
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"

        # Configure embedding-specific args
        other_args = ["--is-embedding", "--enable-metrics"]
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
            other_args=other_args,
        )
        cls.base_url += "/v1"

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def test_embedding_single(self):
        """Test single embedding request"""
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        response = client.embeddings.create(model=self.model, input="Hello world")
        self.assertEqual(len(response.data), 1)
        self.assertTrue(len(response.data[0].embedding) > 0)

    def test_embedding_batch(self):
        """Test batch embedding request"""
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)
        response = client.embeddings.create(
            model=self.model, input=["Hello world", "Test text"]
        )
        self.assertEqual(len(response.data), 2)
        self.assertTrue(len(response.data[0].embedding) > 0)
        self.assertTrue(len(response.data[1].embedding) > 0)

678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
    def test_empty_string_embedding(self):
        """Test embedding an empty string."""

        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        # Text embedding example with empty string
        text = ""
        # Expect a BadRequestError for empty input
        with self.assertRaises(openai.BadRequestError) as cm:
            client.embeddings.create(
                model=self.model,
                input=text,
            )
        # check the status code
        self.assertEqual(cm.exception.status_code, 400)

694

695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
class TestOpenAIServerIgnoreEOS(CustomTestCase):
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"
        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
        )
        cls.base_url += "/v1"
        cls.tokenizer = get_tokenizer(DEFAULT_SMALL_MODEL_NAME_FOR_TEST)

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def test_ignore_eos(self):
        """
        Test that ignore_eos=True allows generation to continue beyond EOS token
        and reach the max_tokens limit.
        """
        client = openai.Client(api_key=self.api_key, base_url=self.base_url)

        max_tokens = 200

        response_default = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": "Count from 1 to 20."},
            ],
            temperature=0,
            max_tokens=max_tokens,
            extra_body={"ignore_eos": False},
        )

        response_ignore_eos = client.chat.completions.create(
            model=self.model,
            messages=[
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": "Count from 1 to 20."},
            ],
            temperature=0,
            max_tokens=max_tokens,
            extra_body={"ignore_eos": True},
        )

        default_tokens = len(
            self.tokenizer.encode(response_default.choices[0].message.content)
        )
        ignore_eos_tokens = len(
            self.tokenizer.encode(response_ignore_eos.choices[0].message.content)
        )

        # Check if ignore_eos resulted in more tokens or exactly max_tokens
        # The ignore_eos response should either:
        # 1. Have more tokens than the default response (if default stopped at EOS before max_tokens)
        # 2. Have exactly max_tokens (if it reached the max_tokens limit)
        self.assertTrue(
            ignore_eos_tokens > default_tokens or ignore_eos_tokens >= max_tokens,
            f"ignore_eos did not generate more tokens: {ignore_eos_tokens} vs {default_tokens}",
        )

        self.assertEqual(
            response_ignore_eos.choices[0].finish_reason,
            "length",
            f"Expected finish_reason='length' for ignore_eos=True, got {response_ignore_eos.choices[0].finish_reason}",
        )


768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
class TestOpenAIV1Score(CustomTestCase):
    @classmethod
    def setUpClass(cls):
        cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.api_key = "sk-123456"

        cls.process = popen_launch_server(
            cls.model,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            api_key=cls.api_key,
        )
        cls.base_url += "/v1/score"
        cls.tokenizer = get_tokenizer(DEFAULT_SMALL_MODEL_NAME_FOR_TEST)

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

    def run_score(
        self, query, items, label_token_ids, apply_softmax=False, item_first=False
    ):
        response = requests.post(
            self.base_url,
            headers={
                "Authorization": f"Bearer {self.api_key}",
                "Content-Type": "application/json",
            },
            json={
                "model": self.model,
                "query": query,
                "items": items,
                "label_token_ids": label_token_ids,
                "apply_softmax": apply_softmax,
                "item_first": item_first,
            },
        )
        return response.json()

    def test_score_text_input(self):
        """Test scoring with text input"""
        query = "The capital of France is"
        items = ["Paris", "London", "Berlin"]

        # Get valid token IDs from the tokenizer
        label_token_ids = []
        for item in items:
            token_ids = self.tokenizer.encode(item, add_special_tokens=False)
            if not token_ids:
                self.fail(f"Failed to encode item: {item}")
            label_token_ids.append(token_ids[0])

        response = self.run_score(query, items, label_token_ids, apply_softmax=True)

        # Handle error responses
        if response.get("type") == "BadRequestError":
            self.fail(f"Score request failed with error: {response['message']}")

        # Verify response structure
        self.assertIn("scores", response, "Response should have a 'scores' field")
        self.assertIsInstance(response["scores"], list, "scores should be a list")
        self.assertEqual(
            len(response["scores"]),
            len(items),
            "Number of scores should match number of items",
        )

        # Each score should be a list of floats in the order of label_token_ids
        for i, score_list in enumerate(response["scores"]):
            self.assertIsInstance(score_list, list, f"Score {i} should be a list")
            self.assertEqual(
                len(score_list),
                len(label_token_ids),
                f"Score {i} length should match label_token_ids",
            )
            self.assertTrue(
                all(isinstance(v, float) for v in score_list),
                f"Score {i} values should be floats",
            )
            self.assertAlmostEqual(
                sum(score_list),
                1.0,
                places=6,
                msg=f"Score {i} probabilities should sum to 1",
            )

    def test_score_token_input(self):
        """Test scoring with token IDs input"""
        query = "The capital of France is"
        items = ["Paris", "London", "Berlin"]

        # Get valid token IDs
        query_ids = self.tokenizer.encode(query, add_special_tokens=False)
        item_ids = [
            self.tokenizer.encode(item, add_special_tokens=False) for item in items
        ]
        label_token_ids = [
            ids[0] for ids in item_ids if ids
        ]  # Get first token ID of each item

        response = self.run_score(
            query_ids, item_ids, label_token_ids, apply_softmax=True
        )

        # Handle error responses
        if response.get("type") == "BadRequestError":
            self.fail(f"Score request failed with error: {response['message']}")

        # Verify response structure
        self.assertIn("scores", response, "Response should have a 'scores' field")
        self.assertIsInstance(response["scores"], list, "scores should be a list")
        self.assertEqual(
            len(response["scores"]),
            len(items),
            "Number of scores should match number of items",
        )

        # Each score should be a list of floats in the order of label_token_ids
        for i, score_list in enumerate(response["scores"]):
            self.assertIsInstance(score_list, list, f"Score {i} should be a list")
            self.assertEqual(
                len(score_list),
                len(label_token_ids),
                f"Score {i} length should match label_token_ids",
            )
            self.assertTrue(
                all(isinstance(v, float) for v in score_list),
                f"Score {i} values should be floats",
            )
            self.assertAlmostEqual(
                sum(score_list),
                1.0,
                places=6,
                msg=f"Score {i} probabilities should sum to 1",
            )

    def test_score_error_handling(self):
        """Test error handling for invalid inputs"""
        query = "The capital of France is"
        items = ["Paris", "London", "Berlin"]

        # Test with invalid token ID
        response = requests.post(
            self.base_url,
            headers={
                "Authorization": f"Bearer {self.api_key}",
                "Content-Type": "application/json",
            },
            json={
                "model": self.model,
                "query": query,
                "items": items,
                "label_token_ids": [999999],  # Invalid token ID
                "apply_softmax": True,
            },
        )
        self.assertEqual(response.status_code, 400)
        error_response = response.json()
        self.assertEqual(error_response["type"], "BadRequestError")
        self.assertIn("Token ID 999999 is out of vocabulary", error_response["message"])


931
if __name__ == "__main__":
Lianmin Zheng's avatar
Lianmin Zheng committed
932
    unittest.main()