scheduler.py 42.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

"""A scheduler that manages a tensor parallel GPU worker."""

18
import json
19
import logging
20
21
22
import os
import time
import warnings
Lianmin Zheng's avatar
Lianmin Zheng committed
23
from collections import deque
24
from types import SimpleNamespace
25
from typing import List, Optional, Union
26

27
import torch
28
29
import zmq

30
31
32
33
34
35
36
37
38
39
40
from sglang.global_config import global_config
from sglang.srt.configs.model_config import ModelConfig
from sglang.srt.constrained.fsm_cache import FSMCache
from sglang.srt.constrained.jump_forward import JumpForwardCache
from sglang.srt.hf_transformers_utils import get_processor, get_tokenizer
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
from sglang.srt.managers.io_struct import (
    AbortReq,
    BatchEmbeddingOut,
    BatchTokenIDOut,
    FlushCacheReq,
41
    ProfileReq,
42
43
44
45
46
47
48
49
50
51
52
53
54
    TokenizedEmbeddingReqInput,
    TokenizedGenerateReqInput,
    TokenizedRewardReqInput,
    UpdateWeightReqInput,
    UpdateWeightReqOutput,
)
from sglang.srt.managers.schedule_batch import (
    FINISH_ABORT,
    BaseFinishReason,
    ImageInputs,
    Req,
    ScheduleBatch,
)
55
56
57
58
59
from sglang.srt.managers.schedule_policy import (
    AddReqResult,
    PrefillAdder,
    SchedulePolicy,
)
60
from sglang.srt.managers.tp_worker import TpModelWorker
61
62
from sglang.srt.mem_cache.chunk_cache import ChunkCache
from sglang.srt.mem_cache.radix_cache import RadixCache
63
from sglang.srt.server_args import PortArgs, ServerArgs
64
65
66
67
68
69
from sglang.srt.utils import (
    broadcast_pyobj,
    configure_logger,
    is_generation_model,
    is_multimodal_model,
    kill_parent_process,
70
    pytorch_profile,
71
72
73
    set_random_seed,
    suppress_other_loggers,
)
74
75
76
77
from sglang.utils import get_exception_traceback

logger = logging.getLogger(__name__)

78
79
80
# Crash on warning if we are running CI tests
crash_on_warning = os.getenv("SGLANG_IS_IN_CI", "false") == "true"

81
82
83
# Test retract decode
test_retract = os.getenv("SGLANG_TEST_RETRACT", "false") == "true"

84
85
86
87
88
89
90
91
92
93
94
95

class Scheduler:
    """A scheduler that manages a tensor parallel GPU worker."""

    def __init__(
        self,
        server_args: ServerArgs,
        port_args: PortArgs,
        gpu_id: int,
        tp_rank: int,
    ):
        # Parse args
96
        self.server_args = server_args
97
98
        self.tp_rank = tp_rank
        self.tp_size = server_args.tp_size
99
100
101
102
        self.schedule_policy = server_args.schedule_policy
        self.disable_regex_jump_forward = server_args.disable_regex_jump_forward
        self.lora_paths = server_args.lora_paths
        self.max_loras_per_batch = server_args.max_loras_per_batch
103
104
105
106
107
108

        # Init inter-process communication
        context = zmq.Context(2)

        if self.tp_rank == 0:
            self.recv_from_tokenizer = context.socket(zmq.PULL)
109
            self.recv_from_tokenizer.bind(f"ipc://{port_args.scheduler_input_ipc_name}")
110
111

            self.send_to_detokenizer = context.socket(zmq.PUSH)
112
            self.send_to_detokenizer.connect(f"ipc://{port_args.detokenizer_ipc_name}")
113
        else:
114
115
            self.recv_from_tokenizer = None
            self.send_to_detokenizer = SimpleNamespace(send_pyobj=lambda x: None)
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

        # Init tokenizer
        self.model_config = ModelConfig(
            server_args.model_path,
            server_args.trust_remote_code,
            context_length=server_args.context_length,
            model_override_args=json.loads(server_args.json_model_override_args),
        )

        if server_args.skip_tokenizer_init:
            self.tokenizer = self.processor = None
        else:
            if is_multimodal_model(self.model_config.hf_config.architectures):
                self.processor = get_processor(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                )
                self.tokenizer = self.processor.tokenizer
            else:
                self.tokenizer = get_tokenizer(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                )
        self.is_generation = is_generation_model(
            self.model_config.hf_config.architectures, self.server_args.is_embedding
        )
144

145
        # Launch a tensor parallel worker
146
        self.tp_worker = TpModelWorker(
147
148
149
            gpu_id=gpu_id,
            tp_rank=tp_rank,
            server_args=server_args,
150
            nccl_port=port_args.nccl_port,
151
        )
152
        self.tp_cpu_group = self.tp_worker.model_runner.tp_group.cpu_group
153
        self.device = self.tp_worker.device
154

155
        # Get token and memory info from the model worker
156
157
158
159
160
161
162
163
        (
            self.max_total_num_tokens,
            self.max_prefill_tokens,
            self.max_running_requests,
            self.max_req_input_len,
            self.random_seed,
        ) = self.tp_worker.get_token_and_memory_info()
        set_random_seed(self.random_seed)
164
165
166
        self.pad_input_ids_func = getattr(
            self.tp_worker.model_runner.model, "pad_input_ids", None
        )
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

        # Print debug info
        logger.info(
            f"max_total_num_tokens={self.max_total_num_tokens}, "
            f"max_prefill_tokens={self.max_prefill_tokens}, "
            f"max_running_requests={self.max_running_requests}, "
            f"context_len={self.model_config.context_len}"
        )

        # Init cache
        self.req_to_token_pool = self.tp_worker.model_runner.req_to_token_pool
        self.token_to_kv_pool = self.tp_worker.model_runner.token_to_kv_pool

        if (
            server_args.chunked_prefill_size is not None
            and server_args.disable_radix_cache
        ):
            self.tree_cache = ChunkCache(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool=self.token_to_kv_pool,
            )
        else:
            self.tree_cache = RadixCache(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool=self.token_to_kv_pool,
                disable=server_args.disable_radix_cache,
            )
        self.tree_cache_metrics = {"total": 0, "hit": 0}
195
        self.policy = SchedulePolicy(self.schedule_policy, self.tree_cache)
196
197
198

        # Init running status
        self.waiting_queue: List[Req] = []
Lianmin Zheng's avatar
Lianmin Zheng committed
199
        self.running_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
200
        self.cur_batch: Optional[ScheduleBatch] = None
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
        self.decode_forward_ct = 0
        self.stream_interval = server_args.stream_interval
        self.num_generated_tokens = 0
        self.last_stats_tic = time.time()

        # Init chunked prefill
        self.chunked_prefill_size = server_args.chunked_prefill_size
        self.current_inflight_req = None
        self.is_mixed_chunk = (
            self.chunked_prefill_size is not None and server_args.enable_mixed_chunk
        )

        # Init the FSM cache for constrained generation
        if not server_args.skip_tokenizer_init:
            self.regex_fsm_cache = FSMCache(
                server_args.tokenizer_path,
                {
                    "tokenizer_mode": server_args.tokenizer_mode,
                    "trust_remote_code": server_args.trust_remote_code,
                },
                skip_tokenizer_init=server_args.skip_tokenizer_init,
                constrained_json_whitespace_pattern=server_args.constrained_json_whitespace_pattern,
            )
        self.jump_forward_cache = JumpForwardCache()

        # Init new token estimation
        assert (
            server_args.schedule_conservativeness >= 0
        ), "Invalid schedule_conservativeness"
        self.min_new_token_ratio = min(
            global_config.base_min_new_token_ratio
            * server_args.schedule_conservativeness,
            1.0,
        )
        self.new_token_ratio = self.min_new_token_ratio
        self.new_token_ratio_decay = global_config.new_token_ratio_decay
237
        self.batch_is_full = False
238

239
        # Init profiler
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
        if os.getenv("SGLANG_TORCH_PROFILER_DIR", "") == "":
            self.profiler = None
        else:
            self.torch_profiler_trace_dir = os.getenv("SGLANG_TORCH_PROFILER_DIR")
            logger.info(
                "Profiling enabled. Traces will be saved to: %s",
                self.torch_profiler_trace_dir,
            )
            self.profiler = torch.profiler.profile(
                activities=[
                    torch.profiler.ProfilerActivity.CPU,
                    torch.profiler.ProfilerActivity.CUDA,
                ],
                with_stack=True,
            )

256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
        # Init states for overlap schedule
        if self.server_args.enable_overlap_schedule:
            self.forward_batch_generation = (
                self.tp_worker.forward_batch_generation_non_blocking
            )
            self.resolve_next_token_ids = (
                lambda bid, x: self.tp_worker.resolve_future_token_ids(bid)
            )

            def cache_finished_req(req):
                free_delta = int(self.running_batch and req in self.cur_batch.reqs)
                self.tree_cache.cache_finished_req(req, free_delta=free_delta)

            self.cache_finished_req = cache_finished_req
        else:
            self.forward_batch_generation = self.tp_worker.forward_batch_generation
            self.resolve_next_token_ids = lambda bid, x: x.tolist()
            self.cache_finished_req = self.tree_cache.cache_finished_req

Lianmin Zheng's avatar
Lianmin Zheng committed
275
    @torch.inference_mode()
276
    def event_loop_normal(self):
277
278
        self.last_batch = None

279
        while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
280
281
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
282

283
284
285
286
287
            batch = self.get_next_batch_to_run()

            if batch:
                result = self.run_batch(batch)
                self.process_batch_result(batch, result)
288

289
290
291
292
293
294
295
296
297
298
                # Decode multiple steps to reduce the overhead
                if batch.forward_mode.is_decode():
                    for _ in range(self.server_args.num_continuous_decode_steps - 1):
                        if not self.running_batch:
                            break
                        self.update_running_batch()
                        if not self.running_batch:
                            break
                        result = self.run_batch(batch)
                        self.process_batch_result(batch, result)
Lianmin Zheng's avatar
Lianmin Zheng committed
299
300
301
            else:
                self.check_memory()
                self.new_token_ratio = global_config.init_new_token_ratio
302
303

            self.last_batch = batch
304

Lianmin Zheng's avatar
Lianmin Zheng committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
    @torch.inference_mode()
    def event_loop_overlap(self):
        result_queue = deque()

        self.last_batch = None
        self.running_batch = None

        while True:
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)

            batch = self.get_next_batch_to_run()
            self.cur_batch = batch
            if batch:
                result = self.run_batch(batch)
                result_queue.append((batch.copy(), result))

            if self.last_batch:
                tmp_batch, tmp_result = result_queue.popleft()
                self.process_batch_result(tmp_batch, tmp_result)
            elif batch is None:
                self.check_memory()
                self.new_token_ratio = global_config.init_new_token_ratio

            self.last_batch = batch

Lianmin Zheng's avatar
Lianmin Zheng committed
331
332
333
334
335
336
337
338
339
340
341
342
    def recv_requests(self):
        if self.tp_rank == 0:
            recv_reqs = []

            while True:
                try:
                    recv_req = self.recv_from_tokenizer.recv_pyobj(zmq.NOBLOCK)
                except zmq.ZMQError:
                    break
                recv_reqs.append(recv_req)
        else:
            recv_reqs = None
343

344
345
        if self.tp_size != 1:
            recv_reqs = broadcast_pyobj(recv_reqs, self.tp_rank, self.tp_cpu_group)
346
347
        return recv_reqs

Lianmin Zheng's avatar
Lianmin Zheng committed
348
    def process_input_requests(self, recv_reqs: List):
349
350
351
352
353
354
355
356
357
358
359
360
361
        for recv_req in recv_reqs:
            if isinstance(recv_req, TokenizedGenerateReqInput):
                self.handle_generate_request(recv_req)
            elif isinstance(
                recv_req, (TokenizedEmbeddingReqInput, TokenizedRewardReqInput)
            ):
                self.handle_embedding_request(recv_req)
            elif isinstance(recv_req, FlushCacheReq):
                self.flush_cache()
            elif isinstance(recv_req, AbortReq):
                self.abort_request(recv_req)
            elif isinstance(recv_req, UpdateWeightReqInput):
                success, message = self.update_weights(recv_req)
362
363
364
                self.send_to_detokenizer.send_pyobj(
                    UpdateWeightReqOutput(success, message)
                )
365
366
367
368
369
            elif isinstance(recv_req, ProfileReq):
                if recv_req == ProfileReq.START_PROFILE:
                    self.start_profile()
                else:
                    self.stop_profile()
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
            else:
                raise ValueError(f"Invalid request: {recv_req}")

    def handle_generate_request(
        self,
        recv_req: TokenizedGenerateReqInput,
    ):
        req = Req(
            recv_req.rid,
            recv_req.input_text,
            recv_req.input_ids,
            recv_req.sampling_params,
            lora_path=recv_req.lora_path,
        )
        req.tokenizer = self.tokenizer

        # Image inputs
        if recv_req.image_inputs is not None:
            req.image_inputs = ImageInputs.from_dict(
                recv_req.image_inputs, self.model_config.vocab_size
            )
391
            req.origin_input_ids = self.pad_input_ids_func(
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
                req.origin_input_ids_unpadded, req.image_inputs
            )

        req.return_logprob = recv_req.return_logprob
        req.top_logprobs_num = recv_req.top_logprobs_num
        req.stream = recv_req.stream
        req.logprob_start_len = recv_req.logprob_start_len

        if req.logprob_start_len == -1:
            # By default, only return the logprobs for output tokens
            req.logprob_start_len = len(recv_req.input_ids) - 1

        # Init regex FSM
        if (
            req.sampling_params.json_schema is not None
            or req.sampling_params.regex is not None
        ):
            if req.sampling_params.json_schema is not None:
                req.regex_fsm, computed_regex_string = self.regex_fsm_cache.query(
                    ("json", req.sampling_params.json_schema)
                )
            elif req.sampling_params.regex is not None:
                req.regex_fsm, computed_regex_string = self.regex_fsm_cache.query(
                    ("regex", req.sampling_params.regex)
                )
            if not self.disable_regex_jump_forward:
                req.jump_forward_map = self.jump_forward_cache.query(
                    computed_regex_string
                )

        # Truncate prompts that are too long
        if len(req.origin_input_ids) >= self.max_req_input_len:
            logger.warning(
                "Request length is longer than the KV cache pool size or "
                "the max context length. Truncated!!!"
            )
            req.origin_input_ids = req.origin_input_ids[: self.max_req_input_len]
        req.sampling_params.max_new_tokens = min(
            (
                req.sampling_params.max_new_tokens
                if req.sampling_params.max_new_tokens is not None
                else 1 << 30
            ),
            self.max_req_input_len - 1 - len(req.origin_input_ids),
        )

        self.waiting_queue.append(req)

    def handle_embedding_request(
        self,
        recv_req: Union[TokenizedEmbeddingReqInput, TokenizedRewardReqInput],
    ):
        req = Req(
            recv_req.rid,
            recv_req.input_text,
            recv_req.input_ids,
            recv_req.sampling_params,
        )
        req.tokenizer = self.tokenizer

        # Truncate prompts that are too long
        if len(req.origin_input_ids) >= self.max_req_input_len:
            logger.warning(
                "Request length is longer than the KV cache pool size or "
                "the max context length. Truncated!!!"
            )
            req.origin_input_ids = req.origin_input_ids[: self.max_req_input_len]

        self.waiting_queue.append(req)

Lianmin Zheng's avatar
Lianmin Zheng committed
462
463
464
465
466
467
468
    def print_decode_stats(self):
        num_used = self.max_total_num_tokens - (
            self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size()
        )
        throughput = self.num_generated_tokens / (time.time() - self.last_stats_tic)
        self.num_generated_tokens = 0
        self.last_stats_tic = time.time()
469
        num_running_reqs = len(self.running_batch.reqs) if self.running_batch else 0
Lianmin Zheng's avatar
Lianmin Zheng committed
470
471
        logger.info(
            f"Decode batch. "
472
            f"#running-req: {num_running_reqs}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
            f"#token: {num_used}, "
            f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
            f"gen throughput (token/s): {throughput:.2f}, "
            f"#queue-req: {len(self.waiting_queue)}"
        )

    def check_memory(self):
        available_size = (
            self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size()
        )
        if available_size != self.max_total_num_tokens:
            warnings.warn(
                "Warning: "
                f"available_size={available_size}, max_total_num_tokens={self.max_total_num_tokens}\n"
                "KV cache pool leak detected!"
            )
            exit(1) if crash_on_warning else None

        if len(self.req_to_token_pool.free_slots) != self.req_to_token_pool.size:
            warnings.warn(
                "Warning: "
                f"available req slots={len(self.req_to_token_pool.free_slots)}, "
                f"total slots={self.req_to_token_pool.size}\n"
                "Memory pool leak detected!"
            )
            exit(1) if crash_on_warning else None

500
    def get_next_batch_to_run(self):
501
        # Merge the prefill batch into the running batch
502
503
504
505
506
        if (
            self.last_batch
            and not self.last_batch.forward_mode.is_decode()
            and not self.last_batch.is_empty()
        ):
507
            if self.current_inflight_req:
508
509
510
511
512
513
                self.last_batch.filter_batch(
                    current_inflight_req=self.current_inflight_req
                )
                self.tree_cache.cache_unfinished_req(self.current_inflight_req)
                # Inflight request keeps its rid but will get a new req_pool_idx.
                self.req_to_token_pool.free(self.current_inflight_req.req_pool_idx)
514
515
516
517
518
519
                self.batch_is_full = False
            if not self.last_batch.is_empty():
                if self.running_batch is None:
                    self.running_batch = self.last_batch
                else:
                    self.running_batch.merge_batch(self.last_batch)
520
521

        # Prefill first
522
523
        new_batch = self.get_new_batch_prefill()
        if new_batch is not None:
524
            return new_batch
525

526
527
528
529
530
531
532
533
534
535
536
537
538
        # Check memory
        if self.running_batch is None:
            return

        # Run decode
        before_bs = self.running_batch.batch_size()
        self.update_running_batch()
        if not self.running_batch:
            self.batch_is_full = False
            return None
        if before_bs != self.running_batch.batch_size():
            self.batch_is_full = False
        return self.running_batch
539

Lianmin Zheng's avatar
Lianmin Zheng committed
540
541
542
543
544
545
546
    def get_new_batch_prefill(self) -> Optional[ScheduleBatch]:
        # Handle the cases where prefill is not allowed
        if (
            self.batch_is_full or len(self.waiting_queue) == 0
        ) and self.current_inflight_req is None:
            return None

Lianmin Zheng's avatar
Lianmin Zheng committed
547
        running_bs = len(self.running_batch.reqs) if self.running_batch else 0
548
        if running_bs >= self.max_running_requests:
549
            self.batch_is_full = True
550
551
552
553
554
            return None

        # Get priority queue
        prefix_computed = self.policy.calc_priority(self.waiting_queue)

Lianmin Zheng's avatar
Lianmin Zheng committed
555
        # Prefill policy
556
557
558
559
560
561
562
563
564
565
566
567
        num_mixed_running = running_bs if self.is_mixed_chunk else 0
        adder = PrefillAdder(
            self.tree_cache,
            self.running_batch,
            self.new_token_ratio,
            self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size(),
            self.max_prefill_tokens,
            self.chunked_prefill_size,
            num_mixed_running,
        )

        has_inflight = self.current_inflight_req is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
568
        if has_inflight:
569
570
571
572
573
574
575
            self.current_inflight_req.init_next_round_input(
                None if prefix_computed else self.tree_cache
            )
            self.current_inflight_req = adder.add_inflight_req(
                self.current_inflight_req
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
576
        if self.lora_paths:
577
578
579
580
581
582
583
584
            lora_set = (
                set([req.lora_path for req in self.running_batch.reqs])
                if self.running_batch is not None
                else set([])
            )

        for req in self.waiting_queue:
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
585
                self.lora_paths
586
587
588
589
590
591
592
                and len(
                    lora_set
                    | set([req.lora_path for req in adder.can_run_list])
                    | set([req.lora_path])
                )
                > self.max_loras_per_batch
            ):
593
                self.batch_is_full = True
594
595
                break

596
            if running_bs + len(adder.can_run_list) >= self.max_running_requests:
597
                self.batch_is_full = True
598
                break
599

600
601
            req.init_next_round_input(None if prefix_computed else self.tree_cache)
            res = adder.add_one_req(req)
602
603
604
            if res != AddReqResult.CONTINUE:
                if res == AddReqResult.NO_TOKEN:
                    self.batch_is_full = True
605
606
                break

Lianmin Zheng's avatar
Lianmin Zheng committed
607
        # Update waiting queue
608
        can_run_list = adder.can_run_list
Lianmin Zheng's avatar
Lianmin Zheng committed
609
610
611
612
613
        if len(can_run_list) == 0:
            return None
        self.waiting_queue = [
            x for x in self.waiting_queue if x not in set(can_run_list)
        ]
614
615
616
617
618

        if adder.new_inflight_req is not None:
            assert self.current_inflight_req is None
            self.current_inflight_req = adder.new_inflight_req

Lianmin Zheng's avatar
Lianmin Zheng committed
619
620
        if self.current_inflight_req:
            self.current_inflight_req.is_inflight_req += 1
Lianmin Zheng's avatar
Lianmin Zheng committed
621

622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
        # Print stats
        if self.tp_rank == 0:
            if isinstance(self.tree_cache, RadixCache):
                self.tree_cache_metrics["total"] += (
                    adder.log_input_tokens + adder.log_hit_tokens
                ) / 10**9
                self.tree_cache_metrics["hit"] += (adder.log_hit_tokens) / 10**9
                tree_cache_hit_rate = (
                    self.tree_cache_metrics["hit"] / self.tree_cache_metrics["total"]
                )
            else:
                tree_cache_hit_rate = 0.0

            num_used = self.max_total_num_tokens - (
                self.token_to_kv_pool.available_size()
                + self.tree_cache.evictable_size()
            )

            if num_mixed_running > 0:
                logger.info(
                    f"Prefill batch"
                    f"(mixed #running-req: {num_mixed_running}). "
                    f"#new-seq: {len(can_run_list)}, "
                    f"#new-token: {adder.log_input_tokens}, "
                    f"#cached-token: {adder.log_hit_tokens}, "
                    f"cache hit rate: {100.0 * tree_cache_hit_rate:.2f}%, "
                    f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
649
                    f"#queue-req: {len(self.waiting_queue) + has_inflight}"
650
651
652
653
654
655
656
657
658
659
                )
            else:
                logger.info(
                    f"Prefill batch. "
                    f"#new-seq: {len(can_run_list)}, "
                    f"#new-token: {adder.log_input_tokens}, "
                    f"#cached-token: {adder.log_hit_tokens}, "
                    f"cache hit rate: {100.0 * tree_cache_hit_rate:.2f}%, "
                    f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
                    f"#running-req: {running_bs}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
660
                    f"#queue-req: {len(self.waiting_queue) + has_inflight}"
661
662
                )

Lianmin Zheng's avatar
Lianmin Zheng committed
663
        # Create a new batch
664
665
666
667
668
669
        new_batch = ScheduleBatch.init_new(
            can_run_list,
            self.req_to_token_pool,
            self.token_to_kv_pool,
            self.tree_cache,
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
670
        new_batch.prepare_for_extend(self.model_config.vocab_size)
671

Lianmin Zheng's avatar
Lianmin Zheng committed
672
        # Mixed-style chunked prefill
673
674
        if self.is_mixed_chunk and self.running_batch is not None:
            self.running_batch.prepare_for_decode()
Lianmin Zheng's avatar
Lianmin Zheng committed
675
            new_batch.mix_with_running(self.running_batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
676
            new_batch.decoding_reqs = self.running_batch.reqs
677
            self.running_batch = None
Lianmin Zheng's avatar
Lianmin Zheng committed
678
679
        else:
            new_batch.decoding_reqs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
680
681
682

        return new_batch

683
    def update_running_batch(self):
684
        global test_retract
Lianmin Zheng's avatar
Lianmin Zheng committed
685
686
        batch = self.running_batch

687
688
689
690
691
        batch.filter_batch()
        if batch.is_empty():
            self.running_batch = None
            return

Lianmin Zheng's avatar
Lianmin Zheng committed
692
        # Check if decode out of memory
693
        if not batch.check_decode_mem() or (test_retract and batch.batch_size() > 10):
Lianmin Zheng's avatar
Lianmin Zheng committed
694
695
696
697
            old_ratio = self.new_token_ratio

            retracted_reqs, new_token_ratio = batch.retract_decode()
            self.new_token_ratio = new_token_ratio
698

Lianmin Zheng's avatar
Lianmin Zheng committed
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
            logger.info(
                "Decode out of memory happened. "
                f"#retracted_reqs: {len(retracted_reqs)}, "
                f"#new_token_ratio: {old_ratio:.4f} -> {self.new_token_ratio:.4f}"
            )
            self.waiting_queue.extend(retracted_reqs)
        else:
            self.new_token_ratio = max(
                self.new_token_ratio - self.new_token_ratio_decay,
                self.min_new_token_ratio,
            )

        # Check for jump-forward
        if not self.disable_regex_jump_forward:
            jump_forward_reqs = batch.check_for_jump_forward(self.pad_input_ids_func)
            self.waiting_queue.extend(jump_forward_reqs)
            if batch.is_empty():
716
717
                self.running_batch = None
                return
Lianmin Zheng's avatar
Lianmin Zheng committed
718
719
720
721
722

        # Update batch tensors
        batch.prepare_for_decode()

    def run_batch(self, batch: ScheduleBatch):
723
        if self.is_generation:
Lianmin Zheng's avatar
Lianmin Zheng committed
724
            if batch.forward_mode.is_decode() or batch.extend_num_tokens != 0:
725
                model_worker_batch = batch.get_model_worker_batch()
726
                logits_output, next_token_ids = self.forward_batch_generation(
727
                    model_worker_batch
728
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
729
730
731
            else:
                logits_output = None
                if self.tokenizer is not None:
732
733
734
                    next_token_ids = torch.full(
                        (batch.batch_size(),), self.tokenizer.eos_token_id
                    )
Lianmin Zheng's avatar
Lianmin Zheng committed
735
                else:
736
                    next_token_ids = torch.full((batch.batch_size(),), 0)
737
            batch.output_ids = next_token_ids
738
            ret = logits_output, next_token_ids, model_worker_batch.bid
Lianmin Zheng's avatar
Lianmin Zheng committed
739
740
741
742
        else:  # embedding or reward model
            assert batch.extend_num_tokens != 0
            model_worker_batch = batch.get_model_worker_batch()
            embeddings = self.tp_worker.forward_batch_embedding(model_worker_batch)
743
            ret = embeddings, model_worker_batch.bid
744
        return ret
Lianmin Zheng's avatar
Lianmin Zheng committed
745
746
747
748

    def process_batch_result(self, batch: ScheduleBatch, result):
        if batch.forward_mode.is_decode():
            self.process_batch_result_decode(batch, result)
749
750
            if batch.is_empty():
                self.running_batch = None
Lianmin Zheng's avatar
Lianmin Zheng committed
751
752
753
754
755
        else:
            self.process_batch_result_prefill(batch, result)

    def process_batch_result_prefill(self, batch: ScheduleBatch, result):
        if self.is_generation:
756
            logits_output, next_token_ids, bid = result
757
            if batch.return_logprob:
758
759
760
761
                # Move logprobs to cpu
                if logits_output.next_token_logprobs is not None:
                    logits_output.next_token_logprobs = (
                        logits_output.next_token_logprobs[
762
                            torch.arange(len(next_token_ids), device=self.device),
763
764
765
766
767
768
769
770
771
772
                            next_token_ids,
                        ].tolist()
                    )
                    logits_output.input_token_logprobs = (
                        logits_output.input_token_logprobs.tolist()
                    )
                    logits_output.normalized_prompt_logprobs = (
                        logits_output.normalized_prompt_logprobs.tolist()
                    )

773
            next_token_ids = self.resolve_next_token_ids(bid, next_token_ids)
774
775
776
777

            # Check finish conditions
            logprob_pt = 0
            for i, req in enumerate(batch.reqs):
778
779
780
                if req.is_inflight_req > 0:
                    req.is_inflight_req -= 1
                else:
781
782
783
784
785
                    # Inflight reqs' prefill is not finished
                    req.completion_tokens_wo_jump_forward += 1
                    req.output_ids.append(next_token_ids[i])
                    req.check_finished()

786
                    if req.finished():
Lianmin Zheng's avatar
Lianmin Zheng committed
787
                        self.cache_finished_req(req)
788
789
790
                    elif not batch.decoding_reqs or req not in batch.decoding_reqs:
                        self.tree_cache.cache_unfinished_req(req)

791
792
793
794
795
796
797
798
799
                    if req.regex_fsm is not None:
                        req.regex_fsm_state = req.regex_fsm.get_next_state(
                            req.regex_fsm_state, next_token_ids[i]
                        )

                    if req.return_logprob:
                        logprob_pt += self.add_logprob_return_values(
                            i, req, logprob_pt, next_token_ids, logits_output
                        )
Lianmin Zheng's avatar
Lianmin Zheng committed
800
        else:  # embedding or reward model
801
            assert batch.extend_num_tokens != 0
802
803
            embeddings, bid = result
            embeddings = embeddings.tolist()
804
805
806
807

            # Check finish conditions
            for i, req in enumerate(batch.reqs):
                req.embedding = embeddings[i]
808
809
810
                if req.is_inflight_req > 0:
                    req.is_inflight_req -= 1
                else:
811
812
813
814
815
816
                    # Inflight reqs' prefill is not finished
                    # dummy output token for embedding models
                    req.output_ids.append(0)
                    req.check_finished()

                if req.finished():
Lianmin Zheng's avatar
Lianmin Zheng committed
817
                    self.cache_finished_req(req)
818
819
820
                else:
                    self.tree_cache.cache_unfinished_req(req)

821
        self.stream_output(batch.reqs)
822

Lianmin Zheng's avatar
Lianmin Zheng committed
823
    def process_batch_result_decode(self, batch: ScheduleBatch, result):
824
        logits_output, next_token_ids, bid = result
Lianmin Zheng's avatar
Lianmin Zheng committed
825
826
827
        self.num_generated_tokens += len(batch.reqs)

        # Move logprobs to cpu
828
        if batch.return_logprob:
Lianmin Zheng's avatar
Lianmin Zheng committed
829
            next_token_logprobs = logits_output.next_token_logprobs[
830
                torch.arange(len(next_token_ids), device=self.device),
Lianmin Zheng's avatar
Lianmin Zheng committed
831
832
833
                next_token_ids,
            ].tolist()

834
        next_token_ids = self.resolve_next_token_ids(bid, next_token_ids)
Lianmin Zheng's avatar
Lianmin Zheng committed
835

836
837
        self.token_to_kv_pool.free_group_begin()

Lianmin Zheng's avatar
Lianmin Zheng committed
838
839
        # Check finish condition
        for i, (req, next_token_id) in enumerate(zip(batch.reqs, next_token_ids)):
Lianmin Zheng's avatar
Lianmin Zheng committed
840
841
842
            if self.server_args.enable_overlap_schedule and req.finished():
                continue

Lianmin Zheng's avatar
Lianmin Zheng committed
843
844
845
846
847
848
849
850
851
852
            req.completion_tokens_wo_jump_forward += 1
            req.output_ids.append(next_token_id)
            req.check_finished()

            if req.regex_fsm is not None:
                req.regex_fsm_state = req.regex_fsm.get_next_state(
                    req.regex_fsm_state, next_token_id
                )

            if req.finished():
Lianmin Zheng's avatar
Lianmin Zheng committed
853
                self.cache_finished_req(req)
Lianmin Zheng's avatar
Lianmin Zheng committed
854
855
856
857
858
859
860
861

            if req.return_logprob:
                req.output_token_logprobs.append(
                    (next_token_logprobs[i], next_token_id)
                )
                if req.top_logprobs_num > 0:
                    req.output_top_logprobs.append(logits_output.output_top_logprobs[i])

862
        self.stream_output(batch.reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
863

864
865
        self.token_to_kv_pool.free_group_end()

866
867
868
869
        self.decode_forward_ct = (self.decode_forward_ct + 1) % (1 << 30)
        if self.tp_rank == 0 and self.decode_forward_ct % 40 == 0:
            self.print_decode_stats()

870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
    def add_logprob_return_values(
        self,
        i: int,
        req: Req,
        pt: int,
        next_token_ids: List[int],
        output: LogitsProcessorOutput,
    ):
        """Attach logprobs to the return values."""
        req.output_token_logprobs.append(
            (output.next_token_logprobs[i], next_token_ids[i])
        )

        # If logprob_start_len > 0, then first logprob_start_len prompt tokens will be ignored.
        num_input_logprobs = req.extend_input_len - req.extend_logprob_start_len

        if req.normalized_prompt_logprob is None:
            req.normalized_prompt_logprob = output.normalized_prompt_logprobs[i]

        if req.input_token_logprobs is None:
            input_token_logprobs = output.input_token_logprobs[
                pt : pt + num_input_logprobs - 1 - req.last_update_decode_tokens
            ]
            input_token_ids = req.fill_ids[
                len(req.fill_ids)
                - num_input_logprobs
                + 1 : len(req.fill_ids)
                - req.last_update_decode_tokens
            ]
            req.input_token_logprobs = list(zip(input_token_logprobs, input_token_ids))

            if (
                req.logprob_start_len == 0
            ):  # The first token does not have logprob, pad it.
                req.input_token_logprobs = [
                    (None, req.fill_ids[0])
                ] + req.input_token_logprobs

        if req.last_update_decode_tokens != 0:
            # Some decode tokens are re-computed in an extend batch
            req.output_token_logprobs.extend(
                list(
                    zip(
                        output.input_token_logprobs[
                            pt
                            + num_input_logprobs
                            - 1
                            - req.last_update_decode_tokens : pt
                            + num_input_logprobs
                            - 1
                        ],
                        req.fill_ids[
                            len(req.fill_ids)
                            - req.last_update_decode_tokens : len(req.fill_ids)
                        ],
                    )
                )
            )

        if req.top_logprobs_num > 0:
            if req.input_top_logprobs is None:
                req.input_top_logprobs = output.input_top_logprobs[i]
                if req.logprob_start_len == 0:
                    req.input_top_logprobs = [None] + req.input_top_logprobs

            if req.last_update_decode_tokens != 0:
                req.output_top_logprobs.extend(
                    output.input_top_logprobs[i][-req.last_update_decode_tokens :]
                )
            req.output_top_logprobs.append(output.output_top_logprobs[i])

        return num_input_logprobs

943
    def stream_output(self, reqs: List[Req]):
944
945
946
947
948
949
950
951
952
953
        output_rids = []
        output_meta_info = []
        output_finished_reason: List[BaseFinishReason] = []
        if self.is_generation:
            output_vids = []
            decoded_texts = []
            output_read_ids = []
            output_read_offsets = []
            output_skip_special_tokens = []
            output_spaces_between_special_tokens = []
954
            output_no_stop_trim = []
Lianmin Zheng's avatar
Lianmin Zheng committed
955
        else:  # embedding or reward model
956
957
            output_embeddings = []

Lianmin Zheng's avatar
Lianmin Zheng committed
958
959
        is_stream_iter = self.decode_forward_ct % self.stream_interval == 0

960
        for req in reqs:
961
            if req.finished() or (
Lianmin Zheng's avatar
Lianmin Zheng committed
962
                req.stream and (is_stream_iter or len(req.output_ids) == 1)
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
            ):
                output_rids.append(req.rid)
                output_finished_reason.append(req.finished_reason)
                if self.is_generation:
                    output_vids.append(req.vid)
                    decoded_texts.append(req.decoded_text)
                    read_ids, read_offset = req.init_incremental_detokenize()
                    output_read_ids.append(read_ids)
                    output_read_offsets.append(read_offset)
                    output_skip_special_tokens.append(
                        req.sampling_params.skip_special_tokens
                    )
                    output_spaces_between_special_tokens.append(
                        req.sampling_params.spaces_between_special_tokens
                    )
978
                    output_no_stop_trim.append(req.sampling_params.no_stop_trim)
979
980
981
982
983

                    meta_info = {
                        "prompt_tokens": len(req.origin_input_ids),
                        "completion_tokens": len(req.output_ids),
                        "completion_tokens_wo_jump_forward": req.completion_tokens_wo_jump_forward,
984
                        "cached_tokens": req.cached_tokens,
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
                        "finish_reason": (
                            req.finished_reason.to_json()
                            if req.finished_reason is not None
                            else None
                        ),
                    }
                    if req.return_logprob:
                        (
                            meta_info["input_token_logprobs"],
                            meta_info["output_token_logprobs"],
                            meta_info["input_top_logprobs"],
                            meta_info["output_top_logprobs"],
                            meta_info["normalized_prompt_logprob"],
                        ) = (
                            req.input_token_logprobs,
                            req.output_token_logprobs,
                            req.input_top_logprobs,
                            req.output_top_logprobs,
                            req.normalized_prompt_logprob,
                        )
                    output_meta_info.append(meta_info)
Lianmin Zheng's avatar
Lianmin Zheng committed
1006
                else:  # embedding or reward model
1007
1008
1009
1010
1011
1012
1013
1014
1015
                    output_embeddings.append(req.embedding)
                    meta_info = {
                        "prompt_tokens": len(req.origin_input_ids),
                    }
                    output_meta_info.append(meta_info)

        # Send to detokenizer
        if output_rids:
            if self.is_generation:
1016
                self.send_to_detokenizer.send_pyobj(
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
                    BatchTokenIDOut(
                        output_rids,
                        output_vids,
                        decoded_texts,
                        output_read_ids,
                        output_read_offsets,
                        output_skip_special_tokens,
                        output_spaces_between_special_tokens,
                        output_meta_info,
                        output_finished_reason,
1027
                        output_no_stop_trim,
1028
1029
                    )
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
1030
            else:  # embedding or reward model
1031
                self.send_to_detokenizer.send_pyobj(
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
                    BatchEmbeddingOut(
                        output_rids,
                        output_embeddings,
                        output_meta_info,
                        output_finished_reason,
                    )
                )

    def flush_cache(self):
        if len(self.waiting_queue) == 0 and (
            self.running_batch is None or len(self.running_batch.reqs) == 0
        ):
            self.tree_cache.reset()
            self.tree_cache_metrics = {"total": 0, "hit": 0}
            self.regex_fsm_cache.reset()
            self.req_to_token_pool.clear()
            self.token_to_kv_pool.clear()
            torch.cuda.empty_cache()
            logger.info("Cache flushed successfully!")
            if_success = True
        else:
            logging.warning(
                f"Cache not flushed because there are pending requests. "
                f"#queue-req: {len(self.waiting_queue)}, "
                f"#running-req: {0 if self.running_batch is None else len(self.running_batch.reqs)}"
            )
            if_success = False
        return if_success

    def abort_request(self, recv_req: AbortReq):
        # Delete requests in the waiting queue
        to_del = None
        for i, req in enumerate(self.waiting_queue):
            if req.rid == recv_req.rid:
                to_del = i
                break

        if to_del is not None:
            del self.waiting_queue[to_del]

        # Delete requests in the running batch
        if self.running_batch:
            for req in self.running_batch.reqs:
1075
                if req.rid == recv_req.rid and not req.finished():
1076
                    req.finished_reason = FINISH_ABORT()
Lianmin Zheng's avatar
Lianmin Zheng committed
1077
                    self.cache_finished_req(req)
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
                    break

    def update_weights(self, recv_req: UpdateWeightReqInput):
        success, message = self.tp_worker.update_weights(recv_req)
        if success:
            flash_cache_success = self.flush_cache()
            assert flash_cache_success, "Cache flush failed after updating weights"
        else:
            logger.error(message)
        return success, message

1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
    def start_profile(self) -> None:
        if self.profiler is None:
            raise RuntimeError("Profiler is not enabled.")
        self.profiler.start()

    def stop_profile(self) -> None:
        if self.profiler is None:
            raise RuntimeError("Profiler is not enabled.")
        self.profiler.stop()
        self.profiler.export_chrome_trace(
            self.torch_profiler_trace_dir + "/" + str(time.time()) + ".trace.json.gz"
        )
        logger.info("Profiler is done")

1103
1104
1105
1106
1107
1108

def run_scheduler_process(
    server_args: ServerArgs,
    port_args: PortArgs,
    gpu_id: int,
    tp_rank: int,
1109
    dp_rank: Optional[int],
1110
    pipe_writer,
1111
):
1112
1113
1114
1115
1116
    if dp_rank is None:
        configure_logger(server_args, prefix=f" TP{tp_rank}")
    else:
        configure_logger(server_args, prefix=f" DP{dp_rank} TP{tp_rank}")

1117
    suppress_other_loggers()
1118
1119
1120
1121

    try:
        scheduler = Scheduler(server_args, port_args, gpu_id, tp_rank)
        pipe_writer.send("ready")
Lianmin Zheng's avatar
Lianmin Zheng committed
1122
1123
1124
1125
        if server_args.enable_overlap_schedule:
            scheduler.event_loop_overlap()
        else:
            scheduler.event_loop_normal()
1126
1127
1128
1129
    except Exception:
        msg = get_exception_traceback()
        logger.error(msg)
        kill_parent_process()