scheduler.py 40.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

"""A scheduler that manages a tensor parallel GPU worker."""

18
import json
19
import logging
20
21
22
import os
import time
import warnings
23
from types import SimpleNamespace
24
from typing import List, Optional, Union
25

26
import torch
27
28
import zmq

29
30
31
32
33
34
35
36
37
38
39
from sglang.global_config import global_config
from sglang.srt.configs.model_config import ModelConfig
from sglang.srt.constrained.fsm_cache import FSMCache
from sglang.srt.constrained.jump_forward import JumpForwardCache
from sglang.srt.hf_transformers_utils import get_processor, get_tokenizer
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
from sglang.srt.managers.io_struct import (
    AbortReq,
    BatchEmbeddingOut,
    BatchTokenIDOut,
    FlushCacheReq,
40
    ProfileReq,
41
42
43
44
45
46
47
48
49
50
51
52
53
    TokenizedEmbeddingReqInput,
    TokenizedGenerateReqInput,
    TokenizedRewardReqInput,
    UpdateWeightReqInput,
    UpdateWeightReqOutput,
)
from sglang.srt.managers.schedule_batch import (
    FINISH_ABORT,
    BaseFinishReason,
    ImageInputs,
    Req,
    ScheduleBatch,
)
54
55
56
57
58
from sglang.srt.managers.schedule_policy import (
    AddReqResult,
    PrefillAdder,
    SchedulePolicy,
)
59
from sglang.srt.managers.tp_worker import TpModelWorker
60
61
from sglang.srt.mem_cache.chunk_cache import ChunkCache
from sglang.srt.mem_cache.radix_cache import RadixCache
62
from sglang.srt.server_args import PortArgs, ServerArgs
63
64
65
66
67
68
from sglang.srt.utils import (
    broadcast_pyobj,
    configure_logger,
    is_generation_model,
    is_multimodal_model,
    kill_parent_process,
69
    pytorch_profile,
70
71
72
    set_random_seed,
    suppress_other_loggers,
)
73
74
75
76
from sglang.utils import get_exception_traceback

logger = logging.getLogger(__name__)

77
78
79
# Crash on warning if we are running CI tests
crash_on_warning = os.getenv("SGLANG_IS_IN_CI", "false") == "true"

80
81
82
# Test retract decode
test_retract = os.getenv("SGLANG_TEST_RETRACT", "false") == "true"

83
84
85
86
87
88
89
90
91
92
93
94

class Scheduler:
    """A scheduler that manages a tensor parallel GPU worker."""

    def __init__(
        self,
        server_args: ServerArgs,
        port_args: PortArgs,
        gpu_id: int,
        tp_rank: int,
    ):
        # Parse args
95
        self.server_args = server_args
96
97
        self.tp_rank = tp_rank
        self.tp_size = server_args.tp_size
98
99
100
101
        self.schedule_policy = server_args.schedule_policy
        self.disable_regex_jump_forward = server_args.disable_regex_jump_forward
        self.lora_paths = server_args.lora_paths
        self.max_loras_per_batch = server_args.max_loras_per_batch
102
103
104
105
106
107

        # Init inter-process communication
        context = zmq.Context(2)

        if self.tp_rank == 0:
            self.recv_from_tokenizer = context.socket(zmq.PULL)
108
            self.recv_from_tokenizer.bind(f"ipc://{port_args.scheduler_input_ipc_name}")
109
110

            self.send_to_detokenizer = context.socket(zmq.PUSH)
111
            self.send_to_detokenizer.connect(f"ipc://{port_args.detokenizer_ipc_name}")
112
        else:
113
114
            self.recv_from_tokenizer = None
            self.send_to_detokenizer = SimpleNamespace(send_pyobj=lambda x: None)
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

        # Init tokenizer
        self.model_config = ModelConfig(
            server_args.model_path,
            server_args.trust_remote_code,
            context_length=server_args.context_length,
            model_override_args=json.loads(server_args.json_model_override_args),
        )

        if server_args.skip_tokenizer_init:
            self.tokenizer = self.processor = None
        else:
            if is_multimodal_model(self.model_config.hf_config.architectures):
                self.processor = get_processor(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                )
                self.tokenizer = self.processor.tokenizer
            else:
                self.tokenizer = get_tokenizer(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                )
        self.is_generation = is_generation_model(
            self.model_config.hf_config.architectures, self.server_args.is_embedding
        )
143

144
        # Launch a tensor parallel worker
145
        self.tp_worker = TpModelWorker(
146
147
148
            gpu_id=gpu_id,
            tp_rank=tp_rank,
            server_args=server_args,
149
            nccl_port=port_args.nccl_port,
150
        )
151
152
        self.tp_cpu_group = self.tp_worker.model_runner.tp_group.cpu_group

153
        # Get token and memory info from the model worker
154
155
156
157
158
159
160
161
        (
            self.max_total_num_tokens,
            self.max_prefill_tokens,
            self.max_running_requests,
            self.max_req_input_len,
            self.random_seed,
        ) = self.tp_worker.get_token_and_memory_info()
        set_random_seed(self.random_seed)
162
163
164
        self.pad_input_ids_func = getattr(
            self.tp_worker.model_runner.model, "pad_input_ids", None
        )
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

        # Print debug info
        logger.info(
            f"max_total_num_tokens={self.max_total_num_tokens}, "
            f"max_prefill_tokens={self.max_prefill_tokens}, "
            f"max_running_requests={self.max_running_requests}, "
            f"context_len={self.model_config.context_len}"
        )

        # Init cache
        self.req_to_token_pool = self.tp_worker.model_runner.req_to_token_pool
        self.token_to_kv_pool = self.tp_worker.model_runner.token_to_kv_pool

        if (
            server_args.chunked_prefill_size is not None
            and server_args.disable_radix_cache
        ):
            self.tree_cache = ChunkCache(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool=self.token_to_kv_pool,
            )
        else:
            self.tree_cache = RadixCache(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool=self.token_to_kv_pool,
                disable=server_args.disable_radix_cache,
            )
        self.tree_cache_metrics = {"total": 0, "hit": 0}
193
        self.policy = SchedulePolicy(self.schedule_policy, self.tree_cache)
194
195
196

        # Init running status
        self.waiting_queue: List[Req] = []
Lianmin Zheng's avatar
Lianmin Zheng committed
197
        self.running_batch: Optional[ScheduleBatch] = None
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
        self.decode_forward_ct = 0
        self.stream_interval = server_args.stream_interval
        self.num_generated_tokens = 0
        self.last_stats_tic = time.time()

        # Init chunked prefill
        self.chunked_prefill_size = server_args.chunked_prefill_size
        self.current_inflight_req = None
        self.is_mixed_chunk = (
            self.chunked_prefill_size is not None and server_args.enable_mixed_chunk
        )

        # Init the FSM cache for constrained generation
        if not server_args.skip_tokenizer_init:
            self.regex_fsm_cache = FSMCache(
                server_args.tokenizer_path,
                {
                    "tokenizer_mode": server_args.tokenizer_mode,
                    "trust_remote_code": server_args.trust_remote_code,
                },
                skip_tokenizer_init=server_args.skip_tokenizer_init,
                constrained_json_whitespace_pattern=server_args.constrained_json_whitespace_pattern,
            )
        self.jump_forward_cache = JumpForwardCache()

        # Init new token estimation
        assert (
            server_args.schedule_conservativeness >= 0
        ), "Invalid schedule_conservativeness"
        self.min_new_token_ratio = min(
            global_config.base_min_new_token_ratio
            * server_args.schedule_conservativeness,
            1.0,
        )
        self.new_token_ratio = self.min_new_token_ratio
        self.new_token_ratio_decay = global_config.new_token_ratio_decay
234
        self.batch_is_full = False
235

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
        if os.getenv("SGLANG_TORCH_PROFILER_DIR", "") == "":
            self.profiler = None
        else:
            self.torch_profiler_trace_dir = os.getenv("SGLANG_TORCH_PROFILER_DIR")
            logger.info(
                "Profiling enabled. Traces will be saved to: %s",
                self.torch_profiler_trace_dir,
            )
            self.profiler = torch.profiler.profile(
                activities=[
                    torch.profiler.ProfilerActivity.CPU,
                    torch.profiler.ProfilerActivity.CUDA,
                ],
                with_stack=True,
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
252
    @torch.inference_mode()
253
    def event_loop_normal(self):
254
255
        self.last_batch = None

256
        while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
257
258
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
259

260
261
262
263
264
            batch = self.get_next_batch_to_run()

            if batch:
                result = self.run_batch(batch)
                self.process_batch_result(batch, result)
265

266
267
268
269
270
271
272
273
274
275
                # Decode multiple steps to reduce the overhead
                if batch.forward_mode.is_decode():
                    for _ in range(self.server_args.num_continuous_decode_steps - 1):
                        if not self.running_batch:
                            break
                        self.update_running_batch()
                        if not self.running_batch:
                            break
                        result = self.run_batch(batch)
                        self.process_batch_result(batch, result)
Lianmin Zheng's avatar
Lianmin Zheng committed
276
277
278
            else:
                self.check_memory()
                self.new_token_ratio = global_config.init_new_token_ratio
279
280

            self.last_batch = batch
281

Lianmin Zheng's avatar
Lianmin Zheng committed
282
283
284
285
286
287
288
289
290
291
292
293
    def recv_requests(self):
        if self.tp_rank == 0:
            recv_reqs = []

            while True:
                try:
                    recv_req = self.recv_from_tokenizer.recv_pyobj(zmq.NOBLOCK)
                except zmq.ZMQError:
                    break
                recv_reqs.append(recv_req)
        else:
            recv_reqs = None
294

295
296
        if self.tp_size != 1:
            recv_reqs = broadcast_pyobj(recv_reqs, self.tp_rank, self.tp_cpu_group)
297
298
        return recv_reqs

Lianmin Zheng's avatar
Lianmin Zheng committed
299
    def process_input_requests(self, recv_reqs: List):
300
301
302
303
304
305
306
307
308
309
310
311
312
        for recv_req in recv_reqs:
            if isinstance(recv_req, TokenizedGenerateReqInput):
                self.handle_generate_request(recv_req)
            elif isinstance(
                recv_req, (TokenizedEmbeddingReqInput, TokenizedRewardReqInput)
            ):
                self.handle_embedding_request(recv_req)
            elif isinstance(recv_req, FlushCacheReq):
                self.flush_cache()
            elif isinstance(recv_req, AbortReq):
                self.abort_request(recv_req)
            elif isinstance(recv_req, UpdateWeightReqInput):
                success, message = self.update_weights(recv_req)
313
314
315
                self.send_to_detokenizer.send_pyobj(
                    UpdateWeightReqOutput(success, message)
                )
316
317
318
319
320
            elif isinstance(recv_req, ProfileReq):
                if recv_req == ProfileReq.START_PROFILE:
                    self.start_profile()
                else:
                    self.stop_profile()
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
            else:
                raise ValueError(f"Invalid request: {recv_req}")

    def handle_generate_request(
        self,
        recv_req: TokenizedGenerateReqInput,
    ):
        req = Req(
            recv_req.rid,
            recv_req.input_text,
            recv_req.input_ids,
            recv_req.sampling_params,
            lora_path=recv_req.lora_path,
        )
        req.tokenizer = self.tokenizer

        # Image inputs
        if recv_req.image_inputs is not None:
            req.image_inputs = ImageInputs.from_dict(
                recv_req.image_inputs, self.model_config.vocab_size
            )
342
            req.origin_input_ids = self.pad_input_ids_func(
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
                req.origin_input_ids_unpadded, req.image_inputs
            )

        req.return_logprob = recv_req.return_logprob
        req.top_logprobs_num = recv_req.top_logprobs_num
        req.stream = recv_req.stream
        req.logprob_start_len = recv_req.logprob_start_len

        if req.logprob_start_len == -1:
            # By default, only return the logprobs for output tokens
            req.logprob_start_len = len(recv_req.input_ids) - 1

        # Init regex FSM
        if (
            req.sampling_params.json_schema is not None
            or req.sampling_params.regex is not None
        ):
            if req.sampling_params.json_schema is not None:
                req.regex_fsm, computed_regex_string = self.regex_fsm_cache.query(
                    ("json", req.sampling_params.json_schema)
                )
            elif req.sampling_params.regex is not None:
                req.regex_fsm, computed_regex_string = self.regex_fsm_cache.query(
                    ("regex", req.sampling_params.regex)
                )
            if not self.disable_regex_jump_forward:
                req.jump_forward_map = self.jump_forward_cache.query(
                    computed_regex_string
                )

        # Truncate prompts that are too long
        if len(req.origin_input_ids) >= self.max_req_input_len:
            logger.warning(
                "Request length is longer than the KV cache pool size or "
                "the max context length. Truncated!!!"
            )
            req.origin_input_ids = req.origin_input_ids[: self.max_req_input_len]
        req.sampling_params.max_new_tokens = min(
            (
                req.sampling_params.max_new_tokens
                if req.sampling_params.max_new_tokens is not None
                else 1 << 30
            ),
            self.max_req_input_len - 1 - len(req.origin_input_ids),
        )

        self.waiting_queue.append(req)

    def handle_embedding_request(
        self,
        recv_req: Union[TokenizedEmbeddingReqInput, TokenizedRewardReqInput],
    ):
        req = Req(
            recv_req.rid,
            recv_req.input_text,
            recv_req.input_ids,
            recv_req.sampling_params,
        )
        req.tokenizer = self.tokenizer

        # Truncate prompts that are too long
        if len(req.origin_input_ids) >= self.max_req_input_len:
            logger.warning(
                "Request length is longer than the KV cache pool size or "
                "the max context length. Truncated!!!"
            )
            req.origin_input_ids = req.origin_input_ids[: self.max_req_input_len]

        self.waiting_queue.append(req)

Lianmin Zheng's avatar
Lianmin Zheng committed
413
414
415
416
417
418
419
    def print_decode_stats(self):
        num_used = self.max_total_num_tokens - (
            self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size()
        )
        throughput = self.num_generated_tokens / (time.time() - self.last_stats_tic)
        self.num_generated_tokens = 0
        self.last_stats_tic = time.time()
420
        num_running_reqs = len(self.running_batch.reqs) if self.running_batch else 0
Lianmin Zheng's avatar
Lianmin Zheng committed
421
422
        logger.info(
            f"Decode batch. "
423
            f"#running-req: {num_running_reqs}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
            f"#token: {num_used}, "
            f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
            f"gen throughput (token/s): {throughput:.2f}, "
            f"#queue-req: {len(self.waiting_queue)}"
        )

    def check_memory(self):
        available_size = (
            self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size()
        )
        if available_size != self.max_total_num_tokens:
            warnings.warn(
                "Warning: "
                f"available_size={available_size}, max_total_num_tokens={self.max_total_num_tokens}\n"
                "KV cache pool leak detected!"
            )
            exit(1) if crash_on_warning else None

        if len(self.req_to_token_pool.free_slots) != self.req_to_token_pool.size:
            warnings.warn(
                "Warning: "
                f"available req slots={len(self.req_to_token_pool.free_slots)}, "
                f"total slots={self.req_to_token_pool.size}\n"
                "Memory pool leak detected!"
            )
            exit(1) if crash_on_warning else None

451
    def get_next_batch_to_run(self):
452
        # Merge the prefill batch into the running batch
453
454
455
456
457
        if (
            self.last_batch
            and not self.last_batch.forward_mode.is_decode()
            and not self.last_batch.is_empty()
        ):
458
            if self.current_inflight_req:
459
460
461
462
463
464
                self.last_batch.filter_batch(
                    current_inflight_req=self.current_inflight_req
                )
                self.tree_cache.cache_unfinished_req(self.current_inflight_req)
                # Inflight request keeps its rid but will get a new req_pool_idx.
                self.req_to_token_pool.free(self.current_inflight_req.req_pool_idx)
465
466
467
468
469
470
                self.batch_is_full = False
            if not self.last_batch.is_empty():
                if self.running_batch is None:
                    self.running_batch = self.last_batch
                else:
                    self.running_batch.merge_batch(self.last_batch)
471
472

        # Prefill first
473
474
        new_batch = self.get_new_batch_prefill()
        if new_batch is not None:
475
            return new_batch
476

477
478
479
480
481
482
483
484
485
486
487
488
489
        # Check memory
        if self.running_batch is None:
            return

        # Run decode
        before_bs = self.running_batch.batch_size()
        self.update_running_batch()
        if not self.running_batch:
            self.batch_is_full = False
            return None
        if before_bs != self.running_batch.batch_size():
            self.batch_is_full = False
        return self.running_batch
490

Lianmin Zheng's avatar
Lianmin Zheng committed
491
492
493
494
495
496
497
    def get_new_batch_prefill(self) -> Optional[ScheduleBatch]:
        # Handle the cases where prefill is not allowed
        if (
            self.batch_is_full or len(self.waiting_queue) == 0
        ) and self.current_inflight_req is None:
            return None

Lianmin Zheng's avatar
Lianmin Zheng committed
498
        running_bs = len(self.running_batch.reqs) if self.running_batch else 0
499
        if running_bs >= self.max_running_requests:
500
            self.batch_is_full = True
501
502
503
504
505
            return None

        # Get priority queue
        prefix_computed = self.policy.calc_priority(self.waiting_queue)

Lianmin Zheng's avatar
Lianmin Zheng committed
506
        # Prefill policy
507
508
509
510
511
512
513
514
515
516
517
518
        num_mixed_running = running_bs if self.is_mixed_chunk else 0
        adder = PrefillAdder(
            self.tree_cache,
            self.running_batch,
            self.new_token_ratio,
            self.token_to_kv_pool.available_size() + self.tree_cache.evictable_size(),
            self.max_prefill_tokens,
            self.chunked_prefill_size,
            num_mixed_running,
        )

        has_inflight = self.current_inflight_req is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
519
        if has_inflight:
520
521
522
523
524
525
526
            self.current_inflight_req.init_next_round_input(
                None if prefix_computed else self.tree_cache
            )
            self.current_inflight_req = adder.add_inflight_req(
                self.current_inflight_req
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
527
        if self.lora_paths:
528
529
530
531
532
533
534
535
            lora_set = (
                set([req.lora_path for req in self.running_batch.reqs])
                if self.running_batch is not None
                else set([])
            )

        for req in self.waiting_queue:
            if (
Lianmin Zheng's avatar
Lianmin Zheng committed
536
                self.lora_paths
537
538
539
540
541
542
543
                and len(
                    lora_set
                    | set([req.lora_path for req in adder.can_run_list])
                    | set([req.lora_path])
                )
                > self.max_loras_per_batch
            ):
544
                self.batch_is_full = True
545
546
                break

547
            if running_bs + len(adder.can_run_list) >= self.max_running_requests:
548
                self.batch_is_full = True
549
                break
550

551
552
            req.init_next_round_input(None if prefix_computed else self.tree_cache)
            res = adder.add_one_req(req)
553
554
555
            if res != AddReqResult.CONTINUE:
                if res == AddReqResult.NO_TOKEN:
                    self.batch_is_full = True
556
557
                break

Lianmin Zheng's avatar
Lianmin Zheng committed
558
        # Update waiting queue
559
        can_run_list = adder.can_run_list
Lianmin Zheng's avatar
Lianmin Zheng committed
560
561
562
563
564
        if len(can_run_list) == 0:
            return None
        self.waiting_queue = [
            x for x in self.waiting_queue if x not in set(can_run_list)
        ]
565
566
567
568
569

        if adder.new_inflight_req is not None:
            assert self.current_inflight_req is None
            self.current_inflight_req = adder.new_inflight_req

Lianmin Zheng's avatar
Lianmin Zheng committed
570
571
        if self.current_inflight_req:
            self.current_inflight_req.is_inflight_req += 1
Lianmin Zheng's avatar
Lianmin Zheng committed
572

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
        # Print stats
        if self.tp_rank == 0:
            if isinstance(self.tree_cache, RadixCache):
                self.tree_cache_metrics["total"] += (
                    adder.log_input_tokens + adder.log_hit_tokens
                ) / 10**9
                self.tree_cache_metrics["hit"] += (adder.log_hit_tokens) / 10**9
                tree_cache_hit_rate = (
                    self.tree_cache_metrics["hit"] / self.tree_cache_metrics["total"]
                )
            else:
                tree_cache_hit_rate = 0.0

            num_used = self.max_total_num_tokens - (
                self.token_to_kv_pool.available_size()
                + self.tree_cache.evictable_size()
            )

            if num_mixed_running > 0:
                logger.info(
                    f"Prefill batch"
                    f"(mixed #running-req: {num_mixed_running}). "
                    f"#new-seq: {len(can_run_list)}, "
                    f"#new-token: {adder.log_input_tokens}, "
                    f"#cached-token: {adder.log_hit_tokens}, "
                    f"cache hit rate: {100.0 * tree_cache_hit_rate:.2f}%, "
                    f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
600
                    f"#queue-req: {len(self.waiting_queue) + has_inflight}"
601
602
603
604
605
606
607
608
609
610
                )
            else:
                logger.info(
                    f"Prefill batch. "
                    f"#new-seq: {len(can_run_list)}, "
                    f"#new-token: {adder.log_input_tokens}, "
                    f"#cached-token: {adder.log_hit_tokens}, "
                    f"cache hit rate: {100.0 * tree_cache_hit_rate:.2f}%, "
                    f"token usage: {num_used / self.max_total_num_tokens:.2f}, "
                    f"#running-req: {running_bs}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
611
                    f"#queue-req: {len(self.waiting_queue) + has_inflight}"
612
613
                )

Lianmin Zheng's avatar
Lianmin Zheng committed
614
        # Create a new batch
615
616
617
618
619
620
        new_batch = ScheduleBatch.init_new(
            can_run_list,
            self.req_to_token_pool,
            self.token_to_kv_pool,
            self.tree_cache,
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
621
        new_batch.prepare_for_extend(self.model_config.vocab_size)
622

Lianmin Zheng's avatar
Lianmin Zheng committed
623
        # Mixed-style chunked prefill
624
625
        if self.is_mixed_chunk and self.running_batch is not None:
            self.running_batch.prepare_for_decode()
Lianmin Zheng's avatar
Lianmin Zheng committed
626
            new_batch.mix_with_running(self.running_batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
627
            new_batch.decoding_reqs = self.running_batch.reqs
628
            self.running_batch = None
Lianmin Zheng's avatar
Lianmin Zheng committed
629
630
        else:
            new_batch.decoding_reqs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
631
632
633

        return new_batch

634
    def update_running_batch(self):
635
        global test_retract
Lianmin Zheng's avatar
Lianmin Zheng committed
636
637
        batch = self.running_batch

638
639
640
641
642
        batch.filter_batch()
        if batch.is_empty():
            self.running_batch = None
            return

Lianmin Zheng's avatar
Lianmin Zheng committed
643
        # Check if decode out of memory
644
        if not batch.check_decode_mem() or (test_retract and batch.batch_size() > 10):
Lianmin Zheng's avatar
Lianmin Zheng committed
645
646
647
648
            old_ratio = self.new_token_ratio

            retracted_reqs, new_token_ratio = batch.retract_decode()
            self.new_token_ratio = new_token_ratio
649

Lianmin Zheng's avatar
Lianmin Zheng committed
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
            logger.info(
                "Decode out of memory happened. "
                f"#retracted_reqs: {len(retracted_reqs)}, "
                f"#new_token_ratio: {old_ratio:.4f} -> {self.new_token_ratio:.4f}"
            )
            self.waiting_queue.extend(retracted_reqs)
        else:
            self.new_token_ratio = max(
                self.new_token_ratio - self.new_token_ratio_decay,
                self.min_new_token_ratio,
            )

        # Check for jump-forward
        if not self.disable_regex_jump_forward:
            jump_forward_reqs = batch.check_for_jump_forward(self.pad_input_ids_func)
            self.waiting_queue.extend(jump_forward_reqs)
            if batch.is_empty():
667
668
                self.running_batch = None
                return
Lianmin Zheng's avatar
Lianmin Zheng committed
669
670
671
672
673

        # Update batch tensors
        batch.prepare_for_decode()

    def run_batch(self, batch: ScheduleBatch):
674
        if self.is_generation:
Lianmin Zheng's avatar
Lianmin Zheng committed
675
            if batch.forward_mode.is_decode() or batch.extend_num_tokens != 0:
676
                model_worker_batch = batch.get_model_worker_batch()
677
                logits_output, next_token_ids = self.tp_worker.forward_batch_generation(
678
                    model_worker_batch
679
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
680
681
682
            else:
                logits_output = None
                if self.tokenizer is not None:
683
684
685
                    next_token_ids = torch.full(
                        (batch.batch_size(),), self.tokenizer.eos_token_id
                    )
Lianmin Zheng's avatar
Lianmin Zheng committed
686
                else:
687
                    next_token_ids = torch.full((batch.batch_size(),), 0)
688
            batch.output_ids = next_token_ids
689
            ret = logits_output, next_token_ids
Lianmin Zheng's avatar
Lianmin Zheng committed
690
691
692
693
        else:  # embedding or reward model
            assert batch.extend_num_tokens != 0
            model_worker_batch = batch.get_model_worker_batch()
            embeddings = self.tp_worker.forward_batch_embedding(model_worker_batch)
694
695
            ret = embeddings
        return ret
Lianmin Zheng's avatar
Lianmin Zheng committed
696
697
698
699

    def process_batch_result(self, batch: ScheduleBatch, result):
        if batch.forward_mode.is_decode():
            self.process_batch_result_decode(batch, result)
700
701
            if batch.is_empty():
                self.running_batch = None
Lianmin Zheng's avatar
Lianmin Zheng committed
702
703
704
705
706
707
        else:
            self.process_batch_result_prefill(batch, result)

    def process_batch_result_prefill(self, batch: ScheduleBatch, result):
        if self.is_generation:
            logits_output, next_token_ids = result
708
709
710
711
            if batch.sampling_info.penalizer_orchestrator:
                batch.sampling_info.penalizer_orchestrator.cumulate_output_tokens(
                    next_token_ids
                )
712

Lianmin Zheng's avatar
Lianmin Zheng committed
713
            if logits_output:
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
                # Move logprobs to cpu
                if logits_output.next_token_logprobs is not None:
                    logits_output.next_token_logprobs = (
                        logits_output.next_token_logprobs[
                            torch.arange(
                                len(next_token_ids), device=next_token_ids.device
                            ),
                            next_token_ids,
                        ].tolist()
                    )
                    logits_output.input_token_logprobs = (
                        logits_output.input_token_logprobs.tolist()
                    )
                    logits_output.normalized_prompt_logprobs = (
                        logits_output.normalized_prompt_logprobs.tolist()
                    )

Lianmin Zheng's avatar
Lianmin Zheng committed
731
            next_token_ids = next_token_ids.tolist()
732
733
734
735

            # Check finish conditions
            logprob_pt = 0
            for i, req in enumerate(batch.reqs):
736
737
738
                if req.is_inflight_req > 0:
                    req.is_inflight_req -= 1
                else:
739
740
741
742
743
                    # Inflight reqs' prefill is not finished
                    req.completion_tokens_wo_jump_forward += 1
                    req.output_ids.append(next_token_ids[i])
                    req.check_finished()

744
745
746
747
748
                    if req.finished():
                        self.tree_cache.cache_finished_req(req)
                    elif not batch.decoding_reqs or req not in batch.decoding_reqs:
                        self.tree_cache.cache_unfinished_req(req)

749
750
751
752
753
754
755
756
757
                if req.regex_fsm is not None:
                    req.regex_fsm_state = req.regex_fsm.get_next_state(
                        req.regex_fsm_state, next_token_ids[i]
                    )

                if req.return_logprob:
                    logprob_pt += self.add_logprob_return_values(
                        i, req, logprob_pt, next_token_ids, logits_output
                    )
Lianmin Zheng's avatar
Lianmin Zheng committed
758
        else:  # embedding or reward model
759
            assert batch.extend_num_tokens != 0
760
            embeddings = result.tolist()
761
762
763
764

            # Check finish conditions
            for i, req in enumerate(batch.reqs):
                req.embedding = embeddings[i]
765
766
767
                if req.is_inflight_req > 0:
                    req.is_inflight_req -= 1
                else:
768
769
770
771
772
773
774
775
776
777
                    # Inflight reqs' prefill is not finished
                    # dummy output token for embedding models
                    req.output_ids.append(0)
                    req.check_finished()

                if req.finished():
                    self.tree_cache.cache_finished_req(req)
                else:
                    self.tree_cache.cache_unfinished_req(req)

778
        self.stream_output(batch)
779

Lianmin Zheng's avatar
Lianmin Zheng committed
780
781
    def process_batch_result_decode(self, batch: ScheduleBatch, result):
        logits_output, next_token_ids = result
782
783
784
785
        if batch.sampling_info.penalizer_orchestrator:
            batch.sampling_info.penalizer_orchestrator.cumulate_output_tokens(
                next_token_ids
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
        self.num_generated_tokens += len(batch.reqs)

        # Move logprobs to cpu
        if logits_output.next_token_logprobs is not None:
            next_token_logprobs = logits_output.next_token_logprobs[
                torch.arange(len(next_token_ids), device=next_token_ids.device),
                next_token_ids,
            ].tolist()

        next_token_ids = next_token_ids.tolist()

        # Check finish condition
        for i, (req, next_token_id) in enumerate(zip(batch.reqs, next_token_ids)):
            req.completion_tokens_wo_jump_forward += 1
            req.output_ids.append(next_token_id)
            req.check_finished()

            if req.regex_fsm is not None:
                req.regex_fsm_state = req.regex_fsm.get_next_state(
                    req.regex_fsm_state, next_token_id
                )

            if req.finished():
                self.tree_cache.cache_finished_req(req)

            if req.return_logprob:
                req.output_token_logprobs.append(
                    (next_token_logprobs[i], next_token_id)
                )
                if req.top_logprobs_num > 0:
                    req.output_top_logprobs.append(logits_output.output_top_logprobs[i])

818
        self.stream_output(batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
819

820
821
822
823
        self.decode_forward_ct = (self.decode_forward_ct + 1) % (1 << 30)
        if self.tp_rank == 0 and self.decode_forward_ct % 40 == 0:
            self.print_decode_stats()

824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
    def add_logprob_return_values(
        self,
        i: int,
        req: Req,
        pt: int,
        next_token_ids: List[int],
        output: LogitsProcessorOutput,
    ):
        """Attach logprobs to the return values."""
        req.output_token_logprobs.append(
            (output.next_token_logprobs[i], next_token_ids[i])
        )

        # If logprob_start_len > 0, then first logprob_start_len prompt tokens will be ignored.
        num_input_logprobs = req.extend_input_len - req.extend_logprob_start_len

        if req.normalized_prompt_logprob is None:
            req.normalized_prompt_logprob = output.normalized_prompt_logprobs[i]

        if req.input_token_logprobs is None:
            input_token_logprobs = output.input_token_logprobs[
                pt : pt + num_input_logprobs - 1 - req.last_update_decode_tokens
            ]
            input_token_ids = req.fill_ids[
                len(req.fill_ids)
                - num_input_logprobs
                + 1 : len(req.fill_ids)
                - req.last_update_decode_tokens
            ]
            req.input_token_logprobs = list(zip(input_token_logprobs, input_token_ids))

            if (
                req.logprob_start_len == 0
            ):  # The first token does not have logprob, pad it.
                req.input_token_logprobs = [
                    (None, req.fill_ids[0])
                ] + req.input_token_logprobs

        if req.last_update_decode_tokens != 0:
            # Some decode tokens are re-computed in an extend batch
            req.output_token_logprobs.extend(
                list(
                    zip(
                        output.input_token_logprobs[
                            pt
                            + num_input_logprobs
                            - 1
                            - req.last_update_decode_tokens : pt
                            + num_input_logprobs
                            - 1
                        ],
                        req.fill_ids[
                            len(req.fill_ids)
                            - req.last_update_decode_tokens : len(req.fill_ids)
                        ],
                    )
                )
            )

        if req.top_logprobs_num > 0:
            if req.input_top_logprobs is None:
                req.input_top_logprobs = output.input_top_logprobs[i]
                if req.logprob_start_len == 0:
                    req.input_top_logprobs = [None] + req.input_top_logprobs

            if req.last_update_decode_tokens != 0:
                req.output_top_logprobs.extend(
                    output.input_top_logprobs[i][-req.last_update_decode_tokens :]
                )
            req.output_top_logprobs.append(output.output_top_logprobs[i])

        return num_input_logprobs

897
    def stream_output(self, batch: ScheduleBatch):
898
899
900
901
902
903
904
905
906
907
        output_rids = []
        output_meta_info = []
        output_finished_reason: List[BaseFinishReason] = []
        if self.is_generation:
            output_vids = []
            decoded_texts = []
            output_read_ids = []
            output_read_offsets = []
            output_skip_special_tokens = []
            output_spaces_between_special_tokens = []
908
            output_no_stop_trim = []
Lianmin Zheng's avatar
Lianmin Zheng committed
909
        else:  # embedding or reward model
910
911
            output_embeddings = []

Lianmin Zheng's avatar
Lianmin Zheng committed
912
913
        is_stream_iter = self.decode_forward_ct % self.stream_interval == 0

914
        for req in batch.reqs:
915
            if req.finished() or (
Lianmin Zheng's avatar
Lianmin Zheng committed
916
                req.stream and (is_stream_iter or len(req.output_ids) == 1)
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
            ):
                output_rids.append(req.rid)
                output_finished_reason.append(req.finished_reason)
                if self.is_generation:
                    output_vids.append(req.vid)
                    decoded_texts.append(req.decoded_text)
                    read_ids, read_offset = req.init_incremental_detokenize()
                    output_read_ids.append(read_ids)
                    output_read_offsets.append(read_offset)
                    output_skip_special_tokens.append(
                        req.sampling_params.skip_special_tokens
                    )
                    output_spaces_between_special_tokens.append(
                        req.sampling_params.spaces_between_special_tokens
                    )
932
                    output_no_stop_trim.append(req.sampling_params.no_stop_trim)
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958

                    meta_info = {
                        "prompt_tokens": len(req.origin_input_ids),
                        "completion_tokens": len(req.output_ids),
                        "completion_tokens_wo_jump_forward": req.completion_tokens_wo_jump_forward,
                        "finish_reason": (
                            req.finished_reason.to_json()
                            if req.finished_reason is not None
                            else None
                        ),
                    }
                    if req.return_logprob:
                        (
                            meta_info["input_token_logprobs"],
                            meta_info["output_token_logprobs"],
                            meta_info["input_top_logprobs"],
                            meta_info["output_top_logprobs"],
                            meta_info["normalized_prompt_logprob"],
                        ) = (
                            req.input_token_logprobs,
                            req.output_token_logprobs,
                            req.input_top_logprobs,
                            req.output_top_logprobs,
                            req.normalized_prompt_logprob,
                        )
                    output_meta_info.append(meta_info)
Lianmin Zheng's avatar
Lianmin Zheng committed
959
                else:  # embedding or reward model
960
961
962
963
964
965
966
967
968
                    output_embeddings.append(req.embedding)
                    meta_info = {
                        "prompt_tokens": len(req.origin_input_ids),
                    }
                    output_meta_info.append(meta_info)

        # Send to detokenizer
        if output_rids:
            if self.is_generation:
969
                self.send_to_detokenizer.send_pyobj(
970
971
972
973
974
975
976
977
978
979
                    BatchTokenIDOut(
                        output_rids,
                        output_vids,
                        decoded_texts,
                        output_read_ids,
                        output_read_offsets,
                        output_skip_special_tokens,
                        output_spaces_between_special_tokens,
                        output_meta_info,
                        output_finished_reason,
980
                        output_no_stop_trim,
981
982
                    )
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
983
            else:  # embedding or reward model
984
                self.send_to_detokenizer.send_pyobj(
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
                    BatchEmbeddingOut(
                        output_rids,
                        output_embeddings,
                        output_meta_info,
                        output_finished_reason,
                    )
                )

    def flush_cache(self):
        if len(self.waiting_queue) == 0 and (
            self.running_batch is None or len(self.running_batch.reqs) == 0
        ):
            self.tree_cache.reset()
            self.tree_cache_metrics = {"total": 0, "hit": 0}
            self.regex_fsm_cache.reset()
            self.req_to_token_pool.clear()
            self.token_to_kv_pool.clear()
            torch.cuda.empty_cache()
            logger.info("Cache flushed successfully!")
            if_success = True
        else:
            logging.warning(
                f"Cache not flushed because there are pending requests. "
                f"#queue-req: {len(self.waiting_queue)}, "
                f"#running-req: {0 if self.running_batch is None else len(self.running_batch.reqs)}"
            )
            if_success = False
        return if_success

    def abort_request(self, recv_req: AbortReq):
        # Delete requests in the waiting queue
        to_del = None
        for i, req in enumerate(self.waiting_queue):
            if req.rid == recv_req.rid:
                to_del = i
                break

        if to_del is not None:
            del self.waiting_queue[to_del]

        # Delete requests in the running batch
        if self.running_batch:
            for req in self.running_batch.reqs:
                if req.rid == recv_req.rid:
                    req.finished_reason = FINISH_ABORT()
                    break

    def update_weights(self, recv_req: UpdateWeightReqInput):
        success, message = self.tp_worker.update_weights(recv_req)
        if success:
            flash_cache_success = self.flush_cache()
            assert flash_cache_success, "Cache flush failed after updating weights"
        else:
            logger.error(message)
        return success, message

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
    def start_profile(self) -> None:
        if self.profiler is None:
            raise RuntimeError("Profiler is not enabled.")
        self.profiler.start()

    def stop_profile(self) -> None:
        if self.profiler is None:
            raise RuntimeError("Profiler is not enabled.")
        self.profiler.stop()
        self.profiler.export_chrome_trace(
            self.torch_profiler_trace_dir + "/" + str(time.time()) + ".trace.json.gz"
        )
        logger.info("Profiler is done")

1055
1056
1057
1058
1059
1060

def run_scheduler_process(
    server_args: ServerArgs,
    port_args: PortArgs,
    gpu_id: int,
    tp_rank: int,
1061
    dp_rank: Optional[int],
1062
    pipe_writer,
1063
):
1064
1065
1066
1067
1068
    if dp_rank is None:
        configure_logger(server_args, prefix=f" TP{tp_rank}")
    else:
        configure_logger(server_args, prefix=f" DP{dp_rank} TP{tp_rank}")

1069
    suppress_other_loggers()
1070
1071
1072
1073

    try:
        scheduler = Scheduler(server_args, port_args, gpu_id, tp_rank)
        pipe_writer.send("ready")
1074
        scheduler.event_loop_normal()
1075
1076
1077
1078
    except Exception:
        msg = get_exception_traceback()
        logger.error(msg)
        kill_parent_process()