torch_extension_cpu.cpp 13.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/* Copyright 2025 SGLang Team. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include <ATen/ATen.h>
17
#include <torch/all.h>
18
19
#include <torch/library.h>

blzheng's avatar
blzheng committed
20
#include "sgl_kernel_ops.h"
21
22
23
24
25
#include "shm.h"

// silu_and_mul
at::Tensor silu_and_mul_cpu(at::Tensor& input);

26
27
28
// l2norm
at::Tensor l2norm_cpu(at::Tensor& input, double eps);

29
30
31
32
33
34
35
// rmsnorm
at::Tensor rmsnorm_cpu(at::Tensor& input, at::Tensor& weight, double eps);

// fused_add_rmsnorm
void fused_add_rmsnorm_cpu(at::Tensor& input, at::Tensor& residual, at::Tensor& weight, double eps);

// topk
36
37
38
39
40
std::tuple<at::Tensor, at::Tensor>
topk_sigmoid_cpu(at::Tensor& hidden_states, at::Tensor& gating_output, int64_t topk, bool renormalize);
std::tuple<at::Tensor, at::Tensor>
topk_softmax_cpu(at::Tensor& hidden_states, at::Tensor& gating_output, int64_t topk, bool renormalize);

41
42
43
44
45
46
std::tuple<at::Tensor, at::Tensor> grouped_topk_cpu(
    at::Tensor& hidden_states,
    at::Tensor& gating_output,
    int64_t topk,
    bool renormalize,
    int64_t num_expert_group,
47
48
49
50
    int64_t topk_group,
    int64_t num_fused_shared_experts,
    std::optional<double> routed_scaling_factor,
    std::optional<at::Tensor> num_token_non_padded);
51
52
53
54
55
56
57
58

std::tuple<at::Tensor, at::Tensor> biased_grouped_topk_cpu(
    at::Tensor& hidden_states,
    at::Tensor& gating_output,
    at::Tensor& correction_bias,
    int64_t topk,
    bool renormalize,
    int64_t num_expert_group,
59
60
61
62
    int64_t topk_group,
    int64_t num_fused_shared_experts,
    std::optional<double> routed_scaling_factor,
    std::optional<at::Tensor> num_token_non_padded);
63
64
65
66
67

// attention
void decode_attention_cpu(
    at::Tensor& query,
    at::Tensor& k_cache,
68
69
70
71
72
    at::Tensor& v_cache,
    at::Tensor& output,
    at::Tensor& key,
    at::Tensor& value,
    at::Tensor& loc,
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
    at::Tensor& attn_logits,
    at::Tensor& req_to_token,
    at::Tensor& req_pool_indices,
    at::Tensor& seq_lens,
    double sm_scale,
    double logit_cap);

void extend_attention_cpu(
    at::Tensor& q_extend,
    at::Tensor& k_extend,
    at::Tensor& v_extend,
    at::Tensor& o_extend,
    at::Tensor& k_buffer,
    at::Tensor& v_buffer,
    at::Tensor& req_to_token,
    at::Tensor& req_pool_indices,
    at::Tensor& seq_lens,
    at::Tensor& extend_seq_lens,
    at::Tensor& extend_start_loc,
    int64_t max_len_extend,
    double sm_scale,
    double logit_cap);

// weight prepack
at::Tensor convert_weight_packed(at::Tensor& weight);

// quant
std::tuple<at::Tensor, at::Tensor> per_token_quant_int8_cpu(at::Tensor& A);

// gemm
blzheng's avatar
blzheng committed
103
104
at::Tensor
weight_packed_linear(at::Tensor& mat1, at::Tensor& mat2, const std::optional<at::Tensor>& bias, bool is_vnni);
105
106
107
108
109
110
111

// igemm
at::Tensor int8_scaled_mm_cpu(
    at::Tensor& mat1,
    at::Tensor& mat2,
    at::Tensor& scales1,
    at::Tensor& scales2,
blzheng's avatar
blzheng committed
112
    const std::optional<at::Tensor>& bias,
113
114
115
    at::ScalarType out_dtype,
    bool is_vnni);

116
117
118
119
120
121
// fp8 gemm
at::Tensor fp8_scaled_mm_cpu(
    at::Tensor& mat1,
    at::Tensor& mat2,
    at::Tensor& scales2,
    std::vector<int64_t> block_size,
blzheng's avatar
blzheng committed
122
    const std::optional<at::Tensor>& bias,
123
124
125
    at::ScalarType out_dtype,
    bool is_vnni);

126
127
128
129
130
// quant + igemm
at::Tensor int8_scaled_mm_with_quant(
    at::Tensor& mat1,
    at::Tensor& mat2,
    at::Tensor& scales2,
blzheng's avatar
blzheng committed
131
    const std::optional<at::Tensor>& bias,
132
133
134
135
    at::ScalarType out_dtype,
    bool is_vnni);

// bmm
blzheng's avatar
blzheng committed
136
void bmm_cpu(at::Tensor& out, at::Tensor& mat1, at::Tensor& mat2, bool is_vnni, const std::optional<at::Tensor>& scale);
137
138
139
140
141
142
143
144
145
146

// fused moe
at::Tensor fused_experts_cpu(
    at::Tensor& hidden_states,
    at::Tensor& w1,
    at::Tensor& w2,
    at::Tensor& topk_weights,
    at::Tensor& topk_ids,
    bool inplace,
    bool use_int8_w8a8,
147
    bool use_fp8_w8a16,
blzheng's avatar
blzheng committed
148
149
    const std::optional<at::Tensor>& w1_scale,
    const std::optional<at::Tensor>& w2_scale,
150
    const std::optional<std::vector<int64_t>> block_size,
blzheng's avatar
blzheng committed
151
152
    const std::optional<at::Tensor>& a1_scale,
    const std::optional<at::Tensor>& a2_scale,
153
154
155
156
157
158
159
160
161
162
    bool is_vnni);

at::Tensor shared_expert_cpu(
    at::Tensor& hidden_states,
    at::Tensor& w1,
    at::Tensor& w2,
    at::Tensor& fused_experts_out,
    double routed_scaling_factor,
    bool inplace,
    bool use_int8_w8a8,
163
    bool use_fp8_w8a16,
blzheng's avatar
blzheng committed
164
165
166
167
168
    const std::optional<at::Tensor>& w1_scale,
    const std::optional<at::Tensor>& w2_scale,
    const std::optional<std::vector<int64_t>> block_size,
    const std::optional<at::Tensor>& a1_scale,
    const std::optional<at::Tensor>& a2_scale,
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    bool is_vnni);

// weight absorption
std::tuple<at::Tensor, at::Tensor, at::Tensor> qkv_proj_with_rope(
    at::Tensor& hidden_states,
    at::Tensor& q_a_proj_weight,
    at::Tensor& q_b_proj_weight,
    at::Tensor& kv_a_proj_weight,
    at::Tensor& w_kc,
    at::Tensor& q_a_layernorm_weight,
    at::Tensor& kv_a_layernorm_weight,
    at::Tensor& positions,
    at::Tensor& cos_sin_cache,
    double eps,
    bool use_int8_w8a8,
184
    bool use_fp8_w8a16,
blzheng's avatar
blzheng committed
185
186
187
    std::optional<at::Tensor> q_a_proj_scale,
    std::optional<at::Tensor> q_b_proj_scale,
    std::optional<at::Tensor> kv_a_proj_scale,
188
189
    bool is_vnni,
    std::optional<std::vector<int64_t>> block_size);
190

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
std::tuple<at::Tensor, at::Tensor, at::Tensor> qkv_proj_with_rope_fused_weight(
    at::Tensor& hidden_states,
    at::Tensor& qkv_a_proj_weight,
    at::Tensor& q_b_proj_weight,
    at::Tensor& w_kc,
    at::Tensor& q_a_layernorm_weight,
    at::Tensor& kv_a_layernorm_weight,
    at::Tensor& positions,
    at::Tensor& cos_sin_cache,
    double eps,
    bool use_int8_w8a8,
    bool use_fp8_w8a16,
    std::optional<at::Tensor> qkv_a_proj_scale,
    std::optional<at::Tensor> q_b_proj_scale,
    bool is_vnni,
    std::optional<std::vector<int64_t>> block_size,
    int64_t q_lora_rank,
    int64_t kv_lora_rank,
    int64_t qk_rope_head_dim);

211
// shared memory init
blzheng's avatar
blzheng committed
212
void initialize(int64_t size, int64_t rank);
213
214

// shared mmeory all_reduce
215
void shm_allreduce(at::Tensor& data, int64_t op);
216
217

// shared memory all_gather
218
at::Tensor shm_allgather(at::Tensor& data, int64_t dim);
219
220

// rope
221
222
223
224
225
226
227
std::tuple<at::Tensor, at::Tensor> rotary_embedding_cpu(
    at::Tensor& positions,
    at::Tensor& query,
    at::Tensor& key,
    int64_t head_size,
    at::Tensor& cos_sin_cache,
    bool is_neox);
228

229
230
231
// CPU and memory binding
std::string init_cpu_threads_env(const std::string& cpu_ids);

blzheng's avatar
blzheng committed
232
TORCH_LIBRARY_FRAGMENT(sgl_kernel, m) {
233
  // activation
blzheng's avatar
blzheng committed
234
235
  m.def("silu_and_mul_cpu(Tensor input) -> Tensor");
  m.impl("silu_and_mul_cpu", torch::kCPU, &silu_and_mul_cpu);
236
237

  // norm
blzheng's avatar
blzheng committed
238
239
  m.def("rmsnorm_cpu(Tensor input, Tensor weight, float eps) -> Tensor");
  m.impl("rmsnorm_cpu", torch::kCPU, &rmsnorm_cpu);
240
241
  m.def("l2norm_cpu(Tensor input, float eps) -> Tensor");
  m.impl("l2norm_cpu", torch::kCPU, &l2norm_cpu);
blzheng's avatar
blzheng committed
242
243
  m.def("fused_add_rmsnorm_cpu(Tensor input, Tensor residual, Tensor weight, float eps) -> ()");
  m.impl("fused_add_rmsnorm_cpu", torch::kCPU, &fused_add_rmsnorm_cpu);
244
245

  // topk
246
247
248
249
  m.def("topk_sigmoid_cpu(Tensor hidden_states, Tensor gating_output, int topk, bool renormalize) -> (Tensor, Tensor)");
  m.impl("topk_sigmoid_cpu", torch::kCPU, &topk_sigmoid_cpu);
  m.def("topk_softmax_cpu(Tensor hidden_states, Tensor gating_output, int topk, bool renormalize) -> (Tensor, Tensor)");
  m.impl("topk_softmax_cpu", torch::kCPU, &topk_softmax_cpu);
blzheng's avatar
blzheng committed
250
251
  m.def(
      "grouped_topk_cpu(Tensor hidden_states, Tensor gating_output, int topk, bool renormalize, int num_expert_group, "
252
253
      "int topk_group, int num_fused_shared_experts, float? routed_scaling_factor, Tensor? num_token_non_padded) -> "
      "(Tensor, Tensor)");
blzheng's avatar
blzheng committed
254
  m.impl("grouped_topk_cpu", torch::kCPU, &grouped_topk_cpu);
255
256

  // biased group topk
blzheng's avatar
blzheng committed
257
258
  m.def(
      "biased_grouped_topk_cpu(Tensor hidden_states, Tensor gating_output, Tensor correction_bias, int topk, bool "
259
260
      "renormalize, int num_expert_group, int topk_group, int num_fused_shared_experts, float? routed_scaling_factor, "
      "Tensor? num_token_non_padded) -> (Tensor, Tensor)");
blzheng's avatar
blzheng committed
261
  m.impl("biased_grouped_topk_cpu", torch::kCPU, &biased_grouped_topk_cpu);
262
263

  // decode
blzheng's avatar
blzheng committed
264
  m.def(
265
266
267
      "decode_attention_cpu(Tensor query, Tensor k_cache, Tensor v_cahce, Tensor output, Tensor key, Tensor value, "
      "Tensor loc, Tensor attn_logits, Tensor req_to_token, Tensor req_pool_indices, Tensor seq_lens, float sm_scale, "
      "float logit_cap) -> ()");
blzheng's avatar
blzheng committed
268
  m.impl("decode_attention_cpu", torch::kCPU, &decode_attention_cpu);
269
270

  // extend
blzheng's avatar
blzheng committed
271
272
273
274
275
  m.def(
      "extend_attention_cpu(Tensor q_extend, Tensor k_extend, Tensor v_extend, Tensor o_extend, Tensor k_buffer, "
      "Tensor v_buffer, Tensor req_to_token, Tensor req_pool_indices, Tensor seq_lens, Tensor extend_seq_lens, Tensor "
      "extend_start_loc, int max_len_extend, float sm_scale, float logit_cap) -> ()");
  m.impl("extend_attention_cpu", torch::kCPU, &extend_attention_cpu);
276
277

  // weight prepack
blzheng's avatar
blzheng committed
278
279
  m.def("convert_weight_packed(Tensor weight) -> Tensor");
  m.impl("convert_weight_packed", torch::kCPU, &convert_weight_packed);
280
281

  // quant
blzheng's avatar
blzheng committed
282
283
  m.def("per_token_quant_int8_cpu(Tensor A) -> (Tensor, Tensor)");
  m.impl("per_token_quant_int8_cpu", torch::kCPU, &per_token_quant_int8_cpu);
284
285

  // gemm
blzheng's avatar
blzheng committed
286
287
  m.def("weight_packed_linear(Tensor mat1, Tensor mat2, Tensor? bias, bool is_vnni) -> Tensor");
  m.impl("weight_packed_linear", torch::kCPU, &weight_packed_linear);
288
289

  // igemm
blzheng's avatar
blzheng committed
290
291
292
293
  m.def(
      "int8_scaled_mm_cpu(Tensor mat1, Tensor mat2, Tensor scales1, Tensor scales2, Tensor? bias, ScalarType "
      "out_dtype, bool is_vnni) -> Tensor");
  m.impl("int8_scaled_mm_cpu", torch::kCPU, &int8_scaled_mm_cpu);
294

295
  // fp8 gemm
blzheng's avatar
blzheng committed
296
297
298
299
  m.def(
      "fp8_scaled_mm_cpu(Tensor mat1, Tensor mat2, Tensor scales2, int[] block_size, Tensor? bias, ScalarType "
      "out_dtype, bool is_vnni) -> Tensor");
  m.impl("fp8_scaled_mm_cpu", torch::kCPU, &fp8_scaled_mm_cpu);
300

301
302
  // quant + igemm
  m.def(
blzheng's avatar
blzheng committed
303
304
305
      "int8_scaled_mm_with_quant(Tensor mat1, Tensor mat2, Tensor scales2, Tensor? bias, ScalarType out_dtype, bool "
      "is_vnni) -> Tensor");
  m.impl("int8_scaled_mm_with_quant", torch::kCPU, &int8_scaled_mm_with_quant);
306
307

  // bmm
blzheng's avatar
blzheng committed
308
309
  m.def("bmm_cpu(Tensor out, Tensor mat1, Tensor mat2, bool is_vnni, Tensor? scale) -> ()");
  m.impl("bmm_cpu", torch::kCPU, &bmm_cpu);
310
311

  // moe
blzheng's avatar
blzheng committed
312
313
  m.def(
      "fused_experts_cpu(Tensor hidden_states, Tensor w1, Tensor w2, Tensor topk_weights, Tensor topk_ids, bool "
314
315
      "inplace, bool use_int8_w8a8, bool use_fp8_w8a16, Tensor? w1_scale, Tensor? w2_scale, int[]? block_size, Tensor? "
      "a1_scale, Tensor? a2_scale, bool "
blzheng's avatar
blzheng committed
316
317
      "is_vnni) -> Tensor");
  m.impl("fused_experts_cpu", torch::kCPU, &fused_experts_cpu);
318
319

  // weight absorption
blzheng's avatar
blzheng committed
320
321
322
  m.def(
      "qkv_proj_with_rope(Tensor hidden_states, Tensor q_a_proj_weight, Tensor q_b_proj_weight, Tensor "
      "kv_a_proj_weight, Tensor w_kc, Tensor q_a_layernorm_weight, Tensor kv_a_layernorm_weight, Tensor positions, "
323
324
325
      "Tensor cos_sin_cache, float eps, bool use_int8_w8a8, bool use_fp8_w8a16, Tensor? q_a_proj_scale, Tensor? "
      "q_b_proj_scale, Tensor? "
      "kv_a_proj_scale, bool is_vnni, int[]? block_size) -> (Tensor, Tensor, Tensor)");
blzheng's avatar
blzheng committed
326
  m.impl("qkv_proj_with_rope", torch::kCPU, &qkv_proj_with_rope);
327
328
329
330
331
332
333
334
  m.def(
      "qkv_proj_with_rope_fused_weight(Tensor hidden_states, Tensor qkv_a_proj_weight, Tensor q_b_proj_weight, "
      "Tensor w_kc, Tensor q_a_layernorm_weight, Tensor kv_a_layernorm_weight, Tensor positions, "
      "Tensor cos_sin_cache, float eps, bool use_int8_w8a8, bool use_fp8_w8a16, Tensor? qkv_a_proj_scale, Tensor? "
      "q_b_proj_scale,"
      "bool is_vnni, int[]? block_size, int q_lora_rank, int kv_lora_rank,"
      "int qk_rope_head_dim) -> (Tensor, Tensor, Tensor)");
  m.impl("qkv_proj_with_rope_fused_weight", torch::kCPU, &qkv_proj_with_rope_fused_weight);
335
336

  // shared expert
blzheng's avatar
blzheng committed
337
338
339
340
341
  m.def(
      "shared_expert_cpu(Tensor hidden_states, Tensor w1, Tensor w2, Tensor fused_experts_out, float "
      "routed_scaling_factor, bool inplace, bool use_int8_w8a8, bool use_fp8_w8a16, Tensor? w1_scale, Tensor? "
      "w2_scale, int[]? block_size, Tensor? a1_scale, Tensor? a2_scale, bool is_vnni) -> Tensor");
  m.impl("shared_expert_cpu", torch::kCPU, &shared_expert_cpu);
342
343

  // all reduce
blzheng's avatar
blzheng committed
344
  m.def("initialize(int size, int rank) -> ()");
345
  m.def("shm_allreduce(Tensor data, int reduce_op) -> ()");
blzheng's avatar
blzheng committed
346
  m.impl("shm_allreduce", torch::kCPU, &shm_allreduce);
347
  m.def("shm_allgather(Tensor data, int dim) -> Tensor");
blzheng's avatar
blzheng committed
348
  m.impl("shm_allgather", torch::kCPU, &shm_allgather);
349
350

  // rope
351
352
353
354
  m.def(
      "rotary_embedding_cpu(Tensor positions, Tensor query, Tensor key, int head_size, Tensor cos_sin_cache, "
      "bool is_neox) -> (Tensor, Tensor)");
  m.impl("rotary_embedding_cpu", torch::kCPU, &rotary_embedding_cpu);
355
356
357
358
359
360
361

  // CPU and memory binding
  m.def("init_cpu_threads_env(str cpu_ids) -> str");
}

TORCH_LIBRARY_IMPL(sgl_kernel, CatchAll, m) {
  m.impl("init_cpu_threads_env", init_cpu_threads_env);
362
  m.impl("initialize", &initialize);
363
}
blzheng's avatar
blzheng committed
364
365

REGISTER_EXTENSION(common_ops)