torch_extension_cpu.cpp 10.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/* Copyright 2025 SGLang Team. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include <ATen/ATen.h>
17
#include <torch/all.h>
18
19
#include <torch/library.h>

blzheng's avatar
blzheng committed
20
#include "sgl_kernel_ops.h"
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#include "shm.h"

// silu_and_mul
at::Tensor silu_and_mul_cpu(at::Tensor& input);

// rmsnorm
at::Tensor rmsnorm_cpu(at::Tensor& input, at::Tensor& weight, double eps);

// fused_add_rmsnorm
void fused_add_rmsnorm_cpu(at::Tensor& input, at::Tensor& residual, at::Tensor& weight, double eps);

// topk
std::tuple<at::Tensor, at::Tensor> grouped_topk_cpu(
    at::Tensor& hidden_states,
    at::Tensor& gating_output,
    int64_t topk,
    bool renormalize,
    int64_t num_expert_group,
    int64_t topk_group);

std::tuple<at::Tensor, at::Tensor> biased_grouped_topk_cpu(
    at::Tensor& hidden_states,
    at::Tensor& gating_output,
    at::Tensor& correction_bias,
    int64_t topk,
    bool renormalize,
    int64_t num_expert_group,
    int64_t topk_group);

// attention
void decode_attention_cpu(
    at::Tensor& query,
    at::Tensor& k_cache,
54
55
56
57
58
    at::Tensor& v_cache,
    at::Tensor& output,
    at::Tensor& key,
    at::Tensor& value,
    at::Tensor& loc,
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    at::Tensor& attn_logits,
    at::Tensor& req_to_token,
    at::Tensor& req_pool_indices,
    at::Tensor& seq_lens,
    double sm_scale,
    double logit_cap);

void extend_attention_cpu(
    at::Tensor& q_extend,
    at::Tensor& k_extend,
    at::Tensor& v_extend,
    at::Tensor& o_extend,
    at::Tensor& k_buffer,
    at::Tensor& v_buffer,
    at::Tensor& req_to_token,
    at::Tensor& req_pool_indices,
    at::Tensor& seq_lens,
    at::Tensor& extend_seq_lens,
    at::Tensor& extend_start_loc,
    int64_t max_len_extend,
    double sm_scale,
    double logit_cap);

// weight prepack
at::Tensor convert_weight_packed(at::Tensor& weight);

// quant
std::tuple<at::Tensor, at::Tensor> per_token_quant_int8_cpu(at::Tensor& A);

// gemm
blzheng's avatar
blzheng committed
89
90
at::Tensor
weight_packed_linear(at::Tensor& mat1, at::Tensor& mat2, const std::optional<at::Tensor>& bias, bool is_vnni);
91
92
93
94
95
96
97

// igemm
at::Tensor int8_scaled_mm_cpu(
    at::Tensor& mat1,
    at::Tensor& mat2,
    at::Tensor& scales1,
    at::Tensor& scales2,
blzheng's avatar
blzheng committed
98
    const std::optional<at::Tensor>& bias,
99
100
101
    at::ScalarType out_dtype,
    bool is_vnni);

102
103
104
105
106
107
// fp8 gemm
at::Tensor fp8_scaled_mm_cpu(
    at::Tensor& mat1,
    at::Tensor& mat2,
    at::Tensor& scales2,
    std::vector<int64_t> block_size,
blzheng's avatar
blzheng committed
108
    const std::optional<at::Tensor>& bias,
109
110
111
    at::ScalarType out_dtype,
    bool is_vnni);

112
113
114
115
116
// quant + igemm
at::Tensor int8_scaled_mm_with_quant(
    at::Tensor& mat1,
    at::Tensor& mat2,
    at::Tensor& scales2,
blzheng's avatar
blzheng committed
117
    const std::optional<at::Tensor>& bias,
118
119
120
121
    at::ScalarType out_dtype,
    bool is_vnni);

// bmm
blzheng's avatar
blzheng committed
122
void bmm_cpu(at::Tensor& out, at::Tensor& mat1, at::Tensor& mat2, bool is_vnni, const std::optional<at::Tensor>& scale);
123
124
125
126
127
128
129
130
131
132

// fused moe
at::Tensor fused_experts_cpu(
    at::Tensor& hidden_states,
    at::Tensor& w1,
    at::Tensor& w2,
    at::Tensor& topk_weights,
    at::Tensor& topk_ids,
    bool inplace,
    bool use_int8_w8a8,
blzheng's avatar
blzheng committed
133
134
135
136
    const std::optional<at::Tensor>& w1_scale,
    const std::optional<at::Tensor>& w2_scale,
    const std::optional<at::Tensor>& a1_scale,
    const std::optional<at::Tensor>& a2_scale,
137
138
139
140
141
142
143
144
145
146
    bool is_vnni);

at::Tensor shared_expert_cpu(
    at::Tensor& hidden_states,
    at::Tensor& w1,
    at::Tensor& w2,
    at::Tensor& fused_experts_out,
    double routed_scaling_factor,
    bool inplace,
    bool use_int8_w8a8,
147
    bool use_fp8_w8a16,
blzheng's avatar
blzheng committed
148
149
150
151
152
    const std::optional<at::Tensor>& w1_scale,
    const std::optional<at::Tensor>& w2_scale,
    const std::optional<std::vector<int64_t>> block_size,
    const std::optional<at::Tensor>& a1_scale,
    const std::optional<at::Tensor>& a2_scale,
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    bool is_vnni);

// weight absorption
std::tuple<at::Tensor, at::Tensor, at::Tensor> qkv_proj_with_rope(
    at::Tensor& hidden_states,
    at::Tensor& q_a_proj_weight,
    at::Tensor& q_b_proj_weight,
    at::Tensor& kv_a_proj_weight,
    at::Tensor& w_kc,
    at::Tensor& q_a_layernorm_weight,
    at::Tensor& kv_a_layernorm_weight,
    at::Tensor& positions,
    at::Tensor& cos_sin_cache,
    double eps,
    bool use_int8_w8a8,
168
    bool use_fp8_w8a16,
blzheng's avatar
blzheng committed
169
170
171
    std::optional<at::Tensor> q_a_proj_scale,
    std::optional<at::Tensor> q_b_proj_scale,
    std::optional<at::Tensor> kv_a_proj_scale,
172
173
    bool is_vnni,
    std::optional<std::vector<int64_t>> block_size);
174
175

// shared memory init
blzheng's avatar
blzheng committed
176
void initialize(int64_t size, int64_t rank);
177
178

// shared mmeory all_reduce
blzheng's avatar
blzheng committed
179
180
void shm_allreduce(
    at::Tensor& data, c10::intrusive_ptr<c10d::ProcessGroup> process_group, c10::intrusive_ptr<c10d::ReduceOp> op);
181
182

// shared memory all_gather
blzheng's avatar
blzheng committed
183
at::Tensor shm_allgather(at::Tensor& data, c10::intrusive_ptr<c10d::ProcessGroup> process_group, int64_t dim);
184
185
186
187
188

// rope
std::tuple<at::Tensor, at::Tensor>
rotary_position_embedding_cpu(at::Tensor& t_pos, at::Tensor& q_pe, at::Tensor& k_pe, at::Tensor& t_emb_pos);

blzheng's avatar
blzheng committed
189
TORCH_LIBRARY_FRAGMENT(sgl_kernel, m) {
190
  // activation
blzheng's avatar
blzheng committed
191
192
  m.def("silu_and_mul_cpu(Tensor input) -> Tensor");
  m.impl("silu_and_mul_cpu", torch::kCPU, &silu_and_mul_cpu);
193
194

  // norm
blzheng's avatar
blzheng committed
195
196
197
198
  m.def("rmsnorm_cpu(Tensor input, Tensor weight, float eps) -> Tensor");
  m.impl("rmsnorm_cpu", torch::kCPU, &rmsnorm_cpu);
  m.def("fused_add_rmsnorm_cpu(Tensor input, Tensor residual, Tensor weight, float eps) -> ()");
  m.impl("fused_add_rmsnorm_cpu", torch::kCPU, &fused_add_rmsnorm_cpu);
199
200

  // topk
blzheng's avatar
blzheng committed
201
202
203
204
  m.def(
      "grouped_topk_cpu(Tensor hidden_states, Tensor gating_output, int topk, bool renormalize, int num_expert_group, "
      "int topk_group) -> (Tensor, Tensor)");
  m.impl("grouped_topk_cpu", torch::kCPU, &grouped_topk_cpu);
205
206

  // biased group topk
blzheng's avatar
blzheng committed
207
208
209
210
  m.def(
      "biased_grouped_topk_cpu(Tensor hidden_states, Tensor gating_output, Tensor correction_bias, int topk, bool "
      "renormalize, int num_expert_group, int topk_group) -> (Tensor, Tensor)");
  m.impl("biased_grouped_topk_cpu", torch::kCPU, &biased_grouped_topk_cpu);
211
212

  // decode
blzheng's avatar
blzheng committed
213
  m.def(
214
215
216
      "decode_attention_cpu(Tensor query, Tensor k_cache, Tensor v_cahce, Tensor output, Tensor key, Tensor value, "
      "Tensor loc, Tensor attn_logits, Tensor req_to_token, Tensor req_pool_indices, Tensor seq_lens, float sm_scale, "
      "float logit_cap) -> ()");
blzheng's avatar
blzheng committed
217
  m.impl("decode_attention_cpu", torch::kCPU, &decode_attention_cpu);
218
219

  // extend
blzheng's avatar
blzheng committed
220
221
222
223
224
  m.def(
      "extend_attention_cpu(Tensor q_extend, Tensor k_extend, Tensor v_extend, Tensor o_extend, Tensor k_buffer, "
      "Tensor v_buffer, Tensor req_to_token, Tensor req_pool_indices, Tensor seq_lens, Tensor extend_seq_lens, Tensor "
      "extend_start_loc, int max_len_extend, float sm_scale, float logit_cap) -> ()");
  m.impl("extend_attention_cpu", torch::kCPU, &extend_attention_cpu);
225
226

  // weight prepack
blzheng's avatar
blzheng committed
227
228
  m.def("convert_weight_packed(Tensor weight) -> Tensor");
  m.impl("convert_weight_packed", torch::kCPU, &convert_weight_packed);
229
230

  // quant
blzheng's avatar
blzheng committed
231
232
  m.def("per_token_quant_int8_cpu(Tensor A) -> (Tensor, Tensor)");
  m.impl("per_token_quant_int8_cpu", torch::kCPU, &per_token_quant_int8_cpu);
233
234

  // gemm
blzheng's avatar
blzheng committed
235
236
  m.def("weight_packed_linear(Tensor mat1, Tensor mat2, Tensor? bias, bool is_vnni) -> Tensor");
  m.impl("weight_packed_linear", torch::kCPU, &weight_packed_linear);
237
238

  // igemm
blzheng's avatar
blzheng committed
239
240
241
242
  m.def(
      "int8_scaled_mm_cpu(Tensor mat1, Tensor mat2, Tensor scales1, Tensor scales2, Tensor? bias, ScalarType "
      "out_dtype, bool is_vnni) -> Tensor");
  m.impl("int8_scaled_mm_cpu", torch::kCPU, &int8_scaled_mm_cpu);
243

244
  // fp8 gemm
blzheng's avatar
blzheng committed
245
246
247
248
  m.def(
      "fp8_scaled_mm_cpu(Tensor mat1, Tensor mat2, Tensor scales2, int[] block_size, Tensor? bias, ScalarType "
      "out_dtype, bool is_vnni) -> Tensor");
  m.impl("fp8_scaled_mm_cpu", torch::kCPU, &fp8_scaled_mm_cpu);
249

250
251
  // quant + igemm
  m.def(
blzheng's avatar
blzheng committed
252
253
254
      "int8_scaled_mm_with_quant(Tensor mat1, Tensor mat2, Tensor scales2, Tensor? bias, ScalarType out_dtype, bool "
      "is_vnni) -> Tensor");
  m.impl("int8_scaled_mm_with_quant", torch::kCPU, &int8_scaled_mm_with_quant);
255
256

  // bmm
blzheng's avatar
blzheng committed
257
258
  m.def("bmm_cpu(Tensor out, Tensor mat1, Tensor mat2, bool is_vnni, Tensor? scale) -> ()");
  m.impl("bmm_cpu", torch::kCPU, &bmm_cpu);
259
260

  // moe
blzheng's avatar
blzheng committed
261
262
263
264
265
  m.def(
      "fused_experts_cpu(Tensor hidden_states, Tensor w1, Tensor w2, Tensor topk_weights, Tensor topk_ids, bool "
      "inplace, bool use_int8_w8a8, Tensor? w1_scale, Tensor? w2_scale, Tensor? a1_scale, Tensor? a2_scale, bool "
      "is_vnni) -> Tensor");
  m.impl("fused_experts_cpu", torch::kCPU, &fused_experts_cpu);
266
267

  // weight absorption
blzheng's avatar
blzheng committed
268
269
270
  m.def(
      "qkv_proj_with_rope(Tensor hidden_states, Tensor q_a_proj_weight, Tensor q_b_proj_weight, Tensor "
      "kv_a_proj_weight, Tensor w_kc, Tensor q_a_layernorm_weight, Tensor kv_a_layernorm_weight, Tensor positions, "
271
272
273
      "Tensor cos_sin_cache, float eps, bool use_int8_w8a8, bool use_fp8_w8a16, Tensor? q_a_proj_scale, Tensor? "
      "q_b_proj_scale, Tensor? "
      "kv_a_proj_scale, bool is_vnni, int[]? block_size) -> (Tensor, Tensor, Tensor)");
blzheng's avatar
blzheng committed
274
  m.impl("qkv_proj_with_rope", torch::kCPU, &qkv_proj_with_rope);
275
276

  // shared expert
blzheng's avatar
blzheng committed
277
278
279
280
281
  m.def(
      "shared_expert_cpu(Tensor hidden_states, Tensor w1, Tensor w2, Tensor fused_experts_out, float "
      "routed_scaling_factor, bool inplace, bool use_int8_w8a8, bool use_fp8_w8a16, Tensor? w1_scale, Tensor? "
      "w2_scale, int[]? block_size, Tensor? a1_scale, Tensor? a2_scale, bool is_vnni) -> Tensor");
  m.impl("shared_expert_cpu", torch::kCPU, &shared_expert_cpu);
282
283

  // all reduce
blzheng's avatar
blzheng committed
284
285
286
287
288
289
290
291
  m.def("initialize(int size, int rank) -> ()");
  m.impl("initialize", torch::kCPU, &initialize);
  m.def(
      "shm_allreduce(Tensor data, __torch__.torch.classes.c10d.ProcessGroup process_group, "
      "__torch__.torch.classes.c10d.ReduceOp reduce_op) -> ()");
  m.impl("shm_allreduce", torch::kCPU, &shm_allreduce);
  m.def("shm_allgather(Tensor data, __torch__.torch.classes.c10d.ProcessGroup process_group, int dim) -> Tensor");
  m.impl("shm_allgather", torch::kCPU, &shm_allgather);
292
293

  // rope
blzheng's avatar
blzheng committed
294
295
  m.def("rotary_position_embedding_cpu(Tensor t_pos, Tensor q_pe, Tensor k_pe, Tensor t_emb_pos) -> (Tensor, Tensor)");
  m.impl("rotary_position_embedding_cpu", torch::kCPU, &rotary_position_embedding_cpu);
296
}
blzheng's avatar
blzheng committed
297
298

REGISTER_EXTENSION(common_ops)