torch_extension_cpu.cpp 10.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/* Copyright 2025 SGLang Team. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include <ATen/ATen.h>
17
#include <torch/all.h>
18
19
#include <torch/library.h>

blzheng's avatar
blzheng committed
20
#include "sgl_kernel_ops.h"
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#include "shm.h"

// silu_and_mul
at::Tensor silu_and_mul_cpu(at::Tensor& input);

// rmsnorm
at::Tensor rmsnorm_cpu(at::Tensor& input, at::Tensor& weight, double eps);

// fused_add_rmsnorm
void fused_add_rmsnorm_cpu(at::Tensor& input, at::Tensor& residual, at::Tensor& weight, double eps);

// topk
std::tuple<at::Tensor, at::Tensor> grouped_topk_cpu(
    at::Tensor& hidden_states,
    at::Tensor& gating_output,
    int64_t topk,
    bool renormalize,
    int64_t num_expert_group,
    int64_t topk_group);

std::tuple<at::Tensor, at::Tensor> biased_grouped_topk_cpu(
    at::Tensor& hidden_states,
    at::Tensor& gating_output,
    at::Tensor& correction_bias,
    int64_t topk,
    bool renormalize,
    int64_t num_expert_group,
    int64_t topk_group);

// attention
void decode_attention_cpu(
    at::Tensor& query,
    at::Tensor& k_cache,
54
55
56
57
58
    at::Tensor& v_cache,
    at::Tensor& output,
    at::Tensor& key,
    at::Tensor& value,
    at::Tensor& loc,
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    at::Tensor& attn_logits,
    at::Tensor& req_to_token,
    at::Tensor& req_pool_indices,
    at::Tensor& seq_lens,
    double sm_scale,
    double logit_cap);

void extend_attention_cpu(
    at::Tensor& q_extend,
    at::Tensor& k_extend,
    at::Tensor& v_extend,
    at::Tensor& o_extend,
    at::Tensor& k_buffer,
    at::Tensor& v_buffer,
    at::Tensor& req_to_token,
    at::Tensor& req_pool_indices,
    at::Tensor& seq_lens,
    at::Tensor& extend_seq_lens,
    at::Tensor& extend_start_loc,
    int64_t max_len_extend,
    double sm_scale,
    double logit_cap);

// weight prepack
at::Tensor convert_weight_packed(at::Tensor& weight);

// quant
std::tuple<at::Tensor, at::Tensor> per_token_quant_int8_cpu(at::Tensor& A);

// gemm
blzheng's avatar
blzheng committed
89
90
at::Tensor
weight_packed_linear(at::Tensor& mat1, at::Tensor& mat2, const std::optional<at::Tensor>& bias, bool is_vnni);
91
92
93
94
95
96
97

// igemm
at::Tensor int8_scaled_mm_cpu(
    at::Tensor& mat1,
    at::Tensor& mat2,
    at::Tensor& scales1,
    at::Tensor& scales2,
blzheng's avatar
blzheng committed
98
    const std::optional<at::Tensor>& bias,
99
100
101
    at::ScalarType out_dtype,
    bool is_vnni);

102
103
104
105
106
107
// fp8 gemm
at::Tensor fp8_scaled_mm_cpu(
    at::Tensor& mat1,
    at::Tensor& mat2,
    at::Tensor& scales2,
    std::vector<int64_t> block_size,
blzheng's avatar
blzheng committed
108
    const std::optional<at::Tensor>& bias,
109
110
111
    at::ScalarType out_dtype,
    bool is_vnni);

112
113
114
115
116
// quant + igemm
at::Tensor int8_scaled_mm_with_quant(
    at::Tensor& mat1,
    at::Tensor& mat2,
    at::Tensor& scales2,
blzheng's avatar
blzheng committed
117
    const std::optional<at::Tensor>& bias,
118
119
120
121
    at::ScalarType out_dtype,
    bool is_vnni);

// bmm
blzheng's avatar
blzheng committed
122
void bmm_cpu(at::Tensor& out, at::Tensor& mat1, at::Tensor& mat2, bool is_vnni, const std::optional<at::Tensor>& scale);
123
124
125
126
127
128
129
130
131
132

// fused moe
at::Tensor fused_experts_cpu(
    at::Tensor& hidden_states,
    at::Tensor& w1,
    at::Tensor& w2,
    at::Tensor& topk_weights,
    at::Tensor& topk_ids,
    bool inplace,
    bool use_int8_w8a8,
blzheng's avatar
blzheng committed
133
134
135
136
    const std::optional<at::Tensor>& w1_scale,
    const std::optional<at::Tensor>& w2_scale,
    const std::optional<at::Tensor>& a1_scale,
    const std::optional<at::Tensor>& a2_scale,
137
138
139
140
141
142
143
144
145
146
    bool is_vnni);

at::Tensor shared_expert_cpu(
    at::Tensor& hidden_states,
    at::Tensor& w1,
    at::Tensor& w2,
    at::Tensor& fused_experts_out,
    double routed_scaling_factor,
    bool inplace,
    bool use_int8_w8a8,
147
    bool use_fp8_w8a16,
blzheng's avatar
blzheng committed
148
149
150
151
152
    const std::optional<at::Tensor>& w1_scale,
    const std::optional<at::Tensor>& w2_scale,
    const std::optional<std::vector<int64_t>> block_size,
    const std::optional<at::Tensor>& a1_scale,
    const std::optional<at::Tensor>& a2_scale,
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    bool is_vnni);

// weight absorption
std::tuple<at::Tensor, at::Tensor, at::Tensor> qkv_proj_with_rope(
    at::Tensor& hidden_states,
    at::Tensor& q_a_proj_weight,
    at::Tensor& q_b_proj_weight,
    at::Tensor& kv_a_proj_weight,
    at::Tensor& w_kc,
    at::Tensor& q_a_layernorm_weight,
    at::Tensor& kv_a_layernorm_weight,
    at::Tensor& positions,
    at::Tensor& cos_sin_cache,
    double eps,
    bool use_int8_w8a8,
blzheng's avatar
blzheng committed
168
169
170
    std::optional<at::Tensor> q_a_proj_scale,
    std::optional<at::Tensor> q_b_proj_scale,
    std::optional<at::Tensor> kv_a_proj_scale,
171
172
173
    bool is_vnni);

// shared memory init
blzheng's avatar
blzheng committed
174
void initialize(int64_t size, int64_t rank);
175
176

// shared mmeory all_reduce
blzheng's avatar
blzheng committed
177
178
void shm_allreduce(
    at::Tensor& data, c10::intrusive_ptr<c10d::ProcessGroup> process_group, c10::intrusive_ptr<c10d::ReduceOp> op);
179
180

// shared memory all_gather
blzheng's avatar
blzheng committed
181
at::Tensor shm_allgather(at::Tensor& data, c10::intrusive_ptr<c10d::ProcessGroup> process_group, int64_t dim);
182
183
184
185
186

// rope
std::tuple<at::Tensor, at::Tensor>
rotary_position_embedding_cpu(at::Tensor& t_pos, at::Tensor& q_pe, at::Tensor& k_pe, at::Tensor& t_emb_pos);

blzheng's avatar
blzheng committed
187
TORCH_LIBRARY_FRAGMENT(sgl_kernel, m) {
188
  // activation
blzheng's avatar
blzheng committed
189
190
  m.def("silu_and_mul_cpu(Tensor input) -> Tensor");
  m.impl("silu_and_mul_cpu", torch::kCPU, &silu_and_mul_cpu);
191
192

  // norm
blzheng's avatar
blzheng committed
193
194
195
196
  m.def("rmsnorm_cpu(Tensor input, Tensor weight, float eps) -> Tensor");
  m.impl("rmsnorm_cpu", torch::kCPU, &rmsnorm_cpu);
  m.def("fused_add_rmsnorm_cpu(Tensor input, Tensor residual, Tensor weight, float eps) -> ()");
  m.impl("fused_add_rmsnorm_cpu", torch::kCPU, &fused_add_rmsnorm_cpu);
197
198

  // topk
blzheng's avatar
blzheng committed
199
200
201
202
  m.def(
      "grouped_topk_cpu(Tensor hidden_states, Tensor gating_output, int topk, bool renormalize, int num_expert_group, "
      "int topk_group) -> (Tensor, Tensor)");
  m.impl("grouped_topk_cpu", torch::kCPU, &grouped_topk_cpu);
203
204

  // biased group topk
blzheng's avatar
blzheng committed
205
206
207
208
  m.def(
      "biased_grouped_topk_cpu(Tensor hidden_states, Tensor gating_output, Tensor correction_bias, int topk, bool "
      "renormalize, int num_expert_group, int topk_group) -> (Tensor, Tensor)");
  m.impl("biased_grouped_topk_cpu", torch::kCPU, &biased_grouped_topk_cpu);
209
210

  // decode
blzheng's avatar
blzheng committed
211
212
213
214
  m.def(
      "decode_attention_cpu(Tensor query, Tensor output, Tensor k_cache, Tensor v_cahce, Tensor attn_logits, Tensor "
      "req_to_token, Tensor req_pool_indices, Tensor seq_lens, float sm_scale, float logit_cap) -> ()");
  m.impl("decode_attention_cpu", torch::kCPU, &decode_attention_cpu);
215
216

  // extend
blzheng's avatar
blzheng committed
217
218
219
220
221
  m.def(
      "extend_attention_cpu(Tensor q_extend, Tensor k_extend, Tensor v_extend, Tensor o_extend, Tensor k_buffer, "
      "Tensor v_buffer, Tensor req_to_token, Tensor req_pool_indices, Tensor seq_lens, Tensor extend_seq_lens, Tensor "
      "extend_start_loc, int max_len_extend, float sm_scale, float logit_cap) -> ()");
  m.impl("extend_attention_cpu", torch::kCPU, &extend_attention_cpu);
222
223

  // weight prepack
blzheng's avatar
blzheng committed
224
225
  m.def("convert_weight_packed(Tensor weight) -> Tensor");
  m.impl("convert_weight_packed", torch::kCPU, &convert_weight_packed);
226
227

  // quant
blzheng's avatar
blzheng committed
228
229
  m.def("per_token_quant_int8_cpu(Tensor A) -> (Tensor, Tensor)");
  m.impl("per_token_quant_int8_cpu", torch::kCPU, &per_token_quant_int8_cpu);
230
231

  // gemm
blzheng's avatar
blzheng committed
232
233
  m.def("weight_packed_linear(Tensor mat1, Tensor mat2, Tensor? bias, bool is_vnni) -> Tensor");
  m.impl("weight_packed_linear", torch::kCPU, &weight_packed_linear);
234
235

  // igemm
blzheng's avatar
blzheng committed
236
237
238
239
  m.def(
      "int8_scaled_mm_cpu(Tensor mat1, Tensor mat2, Tensor scales1, Tensor scales2, Tensor? bias, ScalarType "
      "out_dtype, bool is_vnni) -> Tensor");
  m.impl("int8_scaled_mm_cpu", torch::kCPU, &int8_scaled_mm_cpu);
240

241
  // fp8 gemm
blzheng's avatar
blzheng committed
242
243
244
245
  m.def(
      "fp8_scaled_mm_cpu(Tensor mat1, Tensor mat2, Tensor scales2, int[] block_size, Tensor? bias, ScalarType "
      "out_dtype, bool is_vnni) -> Tensor");
  m.impl("fp8_scaled_mm_cpu", torch::kCPU, &fp8_scaled_mm_cpu);
246

247
248
  // quant + igemm
  m.def(
blzheng's avatar
blzheng committed
249
250
251
      "int8_scaled_mm_with_quant(Tensor mat1, Tensor mat2, Tensor scales2, Tensor? bias, ScalarType out_dtype, bool "
      "is_vnni) -> Tensor");
  m.impl("int8_scaled_mm_with_quant", torch::kCPU, &int8_scaled_mm_with_quant);
252
253

  // bmm
blzheng's avatar
blzheng committed
254
255
  m.def("bmm_cpu(Tensor out, Tensor mat1, Tensor mat2, bool is_vnni, Tensor? scale) -> ()");
  m.impl("bmm_cpu", torch::kCPU, &bmm_cpu);
256
257

  // moe
blzheng's avatar
blzheng committed
258
259
260
261
262
  m.def(
      "fused_experts_cpu(Tensor hidden_states, Tensor w1, Tensor w2, Tensor topk_weights, Tensor topk_ids, bool "
      "inplace, bool use_int8_w8a8, Tensor? w1_scale, Tensor? w2_scale, Tensor? a1_scale, Tensor? a2_scale, bool "
      "is_vnni) -> Tensor");
  m.impl("fused_experts_cpu", torch::kCPU, &fused_experts_cpu);
263
264

  // weight absorption
blzheng's avatar
blzheng committed
265
266
267
268
269
270
  m.def(
      "qkv_proj_with_rope(Tensor hidden_states, Tensor q_a_proj_weight, Tensor q_b_proj_weight, Tensor "
      "kv_a_proj_weight, Tensor w_kc, Tensor q_a_layernorm_weight, Tensor kv_a_layernorm_weight, Tensor positions, "
      "Tensor cos_sin_cache, float eps, bool use_int8_w8a8, Tensor? q_a_proj_scale, Tensor? q_b_proj_scale, Tensor? "
      "kv_a_proj_scale, bool is_vnni) -> (Tensor, Tensor, Tensor)");
  m.impl("qkv_proj_with_rope", torch::kCPU, &qkv_proj_with_rope);
271
272

  // shared expert
blzheng's avatar
blzheng committed
273
274
275
276
277
  m.def(
      "shared_expert_cpu(Tensor hidden_states, Tensor w1, Tensor w2, Tensor fused_experts_out, float "
      "routed_scaling_factor, bool inplace, bool use_int8_w8a8, bool use_fp8_w8a16, Tensor? w1_scale, Tensor? "
      "w2_scale, int[]? block_size, Tensor? a1_scale, Tensor? a2_scale, bool is_vnni) -> Tensor");
  m.impl("shared_expert_cpu", torch::kCPU, &shared_expert_cpu);
278
279

  // all reduce
blzheng's avatar
blzheng committed
280
281
282
283
284
285
286
287
  m.def("initialize(int size, int rank) -> ()");
  m.impl("initialize", torch::kCPU, &initialize);
  m.def(
      "shm_allreduce(Tensor data, __torch__.torch.classes.c10d.ProcessGroup process_group, "
      "__torch__.torch.classes.c10d.ReduceOp reduce_op) -> ()");
  m.impl("shm_allreduce", torch::kCPU, &shm_allreduce);
  m.def("shm_allgather(Tensor data, __torch__.torch.classes.c10d.ProcessGroup process_group, int dim) -> Tensor");
  m.impl("shm_allgather", torch::kCPU, &shm_allgather);
288
289

  // rope
blzheng's avatar
blzheng committed
290
291
  m.def("rotary_position_embedding_cpu(Tensor t_pos, Tensor q_pe, Tensor k_pe, Tensor t_emb_pos) -> (Tensor, Tensor)");
  m.impl("rotary_position_embedding_cpu", torch::kCPU, &rotary_position_embedding_cpu);
292
}
blzheng's avatar
blzheng committed
293
294

REGISTER_EXTENSION(common_ops)