test_nightly_gsm8k_eval_amd.py 7.35 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import json
import os
import unittest
import warnings
from datetime import datetime
from types import SimpleNamespace

from sglang.srt.utils import kill_process_tree
from sglang.test.run_eval import run_eval
from sglang.test.test_utils import (
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1,
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2,
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1,
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2,
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
    is_in_ci,
    popen_launch_server,
    write_github_step_summary,
)

MODEL_SCORE_THRESHOLDS = {
    "meta-llama/Llama-3.1-8B-Instruct": 0.82,
24
    "mistralai/Mistral-7B-Instruct-v0.3": 0.58,
25
26
    "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct": 0.85,
    "meta-llama/Llama-3.1-70B-Instruct": 0.95,
27
    "mistralai/Mixtral-8x7B-Instruct-v0.1": 0.64,
28
    "Qwen/Qwen2-57B-A14B-Instruct": 0.86,
29
    "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8": 0.83,
30
    "neuralmagic/Mistral-7B-Instruct-v0.3-FP8": 0.54,
31
32
33
    "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8": 0.94,
    "neuralmagic/Qwen2-72B-Instruct-FP8": 0.94,
    "neuralmagic/Qwen2-57B-A14B-Instruct-FP8": 0.86,
34
    "neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8": 0.65,
35
    "google/gemma-2-27b-it": 0.91,
36
    "neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8": 0.84,
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
}

failing_models = {
    "neuralmagic/gemma-2-2b-it-FP8",
}


def remove_failing_models(model_str):
    models = model_str.split(",")
    filtered = [m for m in models if m not in failing_models]
    return ",".join(filtered)


DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1 = remove_failing_models(
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1
)
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2 = remove_failing_models(
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2
)
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1 = remove_failing_models(
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1
)
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2 = remove_failing_models(
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2
)

63
64
65
66
67
68
69
70
NO_MOE_PADDING_MODELS = {"neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8"}
DISABLE_HF_XET_MODELS = {
    "Qwen/Qwen2-57B-A14B-Instruct",
    "neuralmagic/Qwen2-57B-A14B-Instruct-FP8",
}
TRITON_MOE_MODELS = {
    "neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8",
    "neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8",
71
72
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "mistralai/Mistral-7B-Instruct-v0.3",
73
74
}

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

def parse_models(model_string):
    return [model.strip() for model in model_string.split(",") if model.strip()]


def popen_launch_server_wrapper(base_url, model, is_tp2):
    other_args = ["--log-level-http", "warning", "--trust-remote-code"]
    if is_tp2:
        other_args.extend(["--tp", "2"])

    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_args,
    )
    return process


def write_results_to_json(model, metrics, mode="a"):
    result = {
        "timestamp": datetime.now().isoformat(),
        "model": model,
        "metrics": metrics,
        "score": metrics["score"],
    }

    existing_results = []
    if mode == "a" and os.path.exists("results.json"):
        try:
            with open("results.json", "r") as f:
                existing_results = json.load(f)
        except json.JSONDecodeError:
            existing_results = []

    if isinstance(existing_results, list):
        existing_results.append(result)
    else:
        existing_results = [result]

    with open("results.json", "w") as f:
        json.dump(existing_results, f, indent=2)


def check_model_scores(results):
    failed_models = []
    summary = " | model | score | threshold |\n"
    summary += "| ----- | ----- | --------- |\n"

    for model, score in results:
        threshold = MODEL_SCORE_THRESHOLDS.get(model)
        if threshold is None:
            print(f"Warning: No threshold defined for model {model}")
            continue

        if score < threshold:
            failed_models.append(
                f"\nScore Check Failed: {model}\n"
                f"Model {model} score ({score:.4f}) is below threshold ({threshold:.4f})"
            )

        line = f"| {model} | {score} | {threshold} |\n"
        summary += line

    print(summary)

    if is_in_ci():
        write_github_step_summary(f"### TestNightlyGsm8KEval\n{summary}")

    if failed_models:
        raise AssertionError("\n".join(failed_models))


# Do not use `CustomTestCase` since `test_mgsm_en_all_models` does not want retry
class TestNightlyGsm8KEval(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.model_groups = [
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1), False, False),
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2), False, True),
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1), True, False),
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2), True, True),
        ]
        cls.base_url = DEFAULT_URL_FOR_TEST

    def test_mgsm_en_all_models(self):
        warnings.filterwarnings(
            "ignore", category=ResourceWarning, message="unclosed.*socket"
        )
        is_first = True
        all_results = []

        for model_group, is_fp8, is_tp2 in self.model_groups:
            for model in model_group:
                with self.subTest(model=model):
170
171
172
173
174
175
                    os.environ["SGLANG_MOE_PADDING"] = (
                        "0" if model in NO_MOE_PADDING_MODELS else "1"
                    )
                    os.environ["HF_HUB_DISABLE_XET"] = (
                        "1" if model in DISABLE_HF_XET_MODELS else "0"
                    )
176
                    os.environ["SGLANG_USE_AITER"] = (
177
178
179
                        "0" if model in TRITON_MOE_MODELS else "1"
                    )

180
181
182
183
184
185
186
187
188
                    process = popen_launch_server_wrapper(self.base_url, model, is_tp2)

                    args = SimpleNamespace(
                        base_url=self.base_url,
                        model=model,
                        eval_name="mgsm_en",
                        num_examples=None,
                        num_threads=1024,
                    )
189
190
191
192
193
194
195
196
197
198
                    # Allow retries, so flaky errors are avoided.
                    threshold = MODEL_SCORE_THRESHOLDS.get(model)
                    for attempt in range(3):
                        try:
                            metrics = run_eval(args)
                            score = metrics["score"]
                            if score >= threshold:
                                break
                        except Exception as e:
                            print(f"Attempt {attempt + 1} failed with error: {e}")
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
                    print(
                        f"{'=' * 42}\n{model} - metrics={metrics} score={metrics['score']}\n{'=' * 42}\n"
                    )

                    write_results_to_json(model, metrics, "w" if is_first else "a")
                    is_first = False

                    all_results.append((model, metrics["score"]))
                    kill_process_tree(process.pid)

        try:
            with open("results.json", "r") as f:
                print("\nFinal Results from results.json:")
                print(json.dumps(json.load(f), indent=2))
        except Exception as e:
            print(f"Error reading results.json: {e}")

        # Check all scores after collecting all results
        check_model_scores(all_results)


if __name__ == "__main__":
    unittest.main()