Unverified Commit e3a53044 authored by saienduri's avatar saienduri Committed by GitHub
Browse files

Add AMD MI300x Nightly Testing. (#5861)

parent 28b26dbf
name: Nightly Test (AMD)
on:
schedule:
- cron: '0 0 * * *'
push:
branches:
- main
paths:
- "python/sglang/version.py"
workflow_dispatch:
concurrency:
group: nightly-test-${{ github.ref }}
cancel-in-progress: true
jobs:
nightly-test:
if: github.repository == 'sgl-project/sglang' || github.event_name == 'pull_request'
runs-on: linux-mi300-gpu-2
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Setup docker
run: |
# Ensure GPU isolation if pod is part of kubernetes setup with DEVICE_FLAG.
if [ -f "/etc/podinfo/gha-render-devices" ]; then
DEVICE_FLAG=$(cat /etc/podinfo/gha-render-devices)
else
DEVICE_FLAG="--device /dev/dri"
fi
touch github_summary.md
docker pull ghcr.io/saienduri/sglang-aiter-v0.1.1:428
docker run -dt --user root --device=/dev/kfd $DEVICE_FLAG \
-v ${{ github.workspace }}:/sglang-checkout --ipc=host --group-add video \
--cap-add=SYS_PTRACE -e HF_TOKEN=${HF_TOKEN} --security-opt seccomp=unconfined \
-w /sglang-checkout --name ci_sglang \
ghcr.io/saienduri/sglang-aiter-v0.1.1:428
- name: Install dependencies
run: |
docker exec ci_sglang pip install --upgrade pip
docker exec ci_sglang pip uninstall sgl-kernel -y || true
docker exec -w /sglang-checkout/sgl-kernel ci_sglang bash -c "rm -f pyproject.toml && mv pyproject_rocm.toml pyproject.toml && python3 setup_rocm.py install"
docker exec ci_sglang pip install -e "python[dev_hip]"
docker exec -w / ci_sglang git clone https://github.com/merrymercy/human-eval.git
docker exec -w /human-eval ci_sglang pip install -e .
- name: Nightly Test
run: |
docker exec -w /sglang-checkout/test/srt -e SGLANG_IS_IN_CI=1 -e GITHUB_STEP_SUMMARY="/sglang-checkout/github_summary.md" ci_sglang python3 run_suite.py --suite nightly-amd --timeout-per-file 7200
echo "$(<github_summary.md )" >> $GITHUB_STEP_SUMMARY
......@@ -100,6 +100,9 @@ suites = {
"nightly": [
TestFile("test_nightly_gsm8k_eval.py"),
],
"nightly-amd": [
TestFile("test_nightly_gsm8k_eval_amd.py"),
],
"vllm_dependency_test": [
TestFile("test_vllm_dependency.py"),
TestFile("test_awq.py"),
......
import json
import os
import unittest
import warnings
from datetime import datetime
from types import SimpleNamespace
from sglang.srt.utils import kill_process_tree
from sglang.test.run_eval import run_eval
from sglang.test.test_utils import (
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1,
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2,
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1,
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2,
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
is_in_ci,
popen_launch_server,
write_github_step_summary,
)
MODEL_SCORE_THRESHOLDS = {
"meta-llama/Llama-3.1-8B-Instruct": 0.82,
"mistralai/Mistral-7B-Instruct-v0.3": 0.56,
"deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct": 0.85,
"meta-llama/Llama-3.1-70B-Instruct": 0.95,
"mistralai/Mixtral-8x7B-Instruct-v0.1": 0.64,
"Qwen/Qwen2-57B-A14B-Instruct": 0.86,
"neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8": 0.81,
"neuralmagic/Mistral-7B-Instruct-v0.3-FP8": 0.54,
"neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8": 0.94,
"neuralmagic/Qwen2-72B-Instruct-FP8": 0.94,
"neuralmagic/Qwen2-57B-A14B-Instruct-FP8": 0.82,
}
# Models currently failing on AMD MI300x.
failing_models = {
"google/gemma-2-27b-it",
"neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8",
"neuralmagic/gemma-2-2b-it-FP8",
"neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8",
}
def remove_failing_models(model_str):
models = model_str.split(",")
filtered = [m for m in models if m not in failing_models]
return ",".join(filtered)
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1 = remove_failing_models(
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1
)
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2 = remove_failing_models(
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2
)
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1 = remove_failing_models(
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1
)
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2 = remove_failing_models(
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2
)
def parse_models(model_string):
return [model.strip() for model in model_string.split(",") if model.strip()]
def popen_launch_server_wrapper(base_url, model, is_tp2):
other_args = ["--log-level-http", "warning", "--trust-remote-code"]
if is_tp2:
other_args.extend(["--tp", "2"])
process = popen_launch_server(
model,
base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=other_args,
)
return process
def write_results_to_json(model, metrics, mode="a"):
result = {
"timestamp": datetime.now().isoformat(),
"model": model,
"metrics": metrics,
"score": metrics["score"],
}
existing_results = []
if mode == "a" and os.path.exists("results.json"):
try:
with open("results.json", "r") as f:
existing_results = json.load(f)
except json.JSONDecodeError:
existing_results = []
if isinstance(existing_results, list):
existing_results.append(result)
else:
existing_results = [result]
with open("results.json", "w") as f:
json.dump(existing_results, f, indent=2)
def check_model_scores(results):
failed_models = []
summary = " | model | score | threshold |\n"
summary += "| ----- | ----- | --------- |\n"
for model, score in results:
threshold = MODEL_SCORE_THRESHOLDS.get(model)
if threshold is None:
print(f"Warning: No threshold defined for model {model}")
continue
if score < threshold:
failed_models.append(
f"\nScore Check Failed: {model}\n"
f"Model {model} score ({score:.4f}) is below threshold ({threshold:.4f})"
)
line = f"| {model} | {score} | {threshold} |\n"
summary += line
print(summary)
if is_in_ci():
write_github_step_summary(f"### TestNightlyGsm8KEval\n{summary}")
if failed_models:
raise AssertionError("\n".join(failed_models))
# Do not use `CustomTestCase` since `test_mgsm_en_all_models` does not want retry
class TestNightlyGsm8KEval(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls.model_groups = [
(parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1), False, False),
(parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2), False, True),
(parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1), True, False),
(parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2), True, True),
]
cls.base_url = DEFAULT_URL_FOR_TEST
def test_mgsm_en_all_models(self):
warnings.filterwarnings(
"ignore", category=ResourceWarning, message="unclosed.*socket"
)
is_first = True
all_results = []
for model_group, is_fp8, is_tp2 in self.model_groups:
for model in model_group:
with self.subTest(model=model):
process = popen_launch_server_wrapper(self.base_url, model, is_tp2)
args = SimpleNamespace(
base_url=self.base_url,
model=model,
eval_name="mgsm_en",
num_examples=None,
num_threads=1024,
)
metrics = run_eval(args)
print(
f"{'=' * 42}\n{model} - metrics={metrics} score={metrics['score']}\n{'=' * 42}\n"
)
write_results_to_json(model, metrics, "w" if is_first else "a")
is_first = False
all_results.append((model, metrics["score"]))
kill_process_tree(process.pid)
try:
with open("results.json", "r") as f:
print("\nFinal Results from results.json:")
print(json.dumps(json.load(f), indent=2))
except Exception as e:
print(f"Error reading results.json: {e}")
# Check all scores after collecting all results
check_model_scores(all_results)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment