test_nightly_gsm8k_eval_amd.py 6.08 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import json
import os
import unittest
import warnings
from datetime import datetime
from types import SimpleNamespace

from sglang.srt.utils import kill_process_tree
from sglang.test.run_eval import run_eval
from sglang.test.test_utils import (
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1,
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2,
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1,
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2,
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
    is_in_ci,
    popen_launch_server,
    write_github_step_summary,
)

MODEL_SCORE_THRESHOLDS = {
    "meta-llama/Llama-3.1-8B-Instruct": 0.82,
    "mistralai/Mistral-7B-Instruct-v0.3": 0.56,
    "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct": 0.85,
    "meta-llama/Llama-3.1-70B-Instruct": 0.95,
Sai Enduri's avatar
Sai Enduri committed
27
    "mistralai/Mixtral-8x7B-Instruct-v0.1": 0.62,
28
29
30
    "Qwen/Qwen2-57B-A14B-Instruct": 0.86,
    "neuralmagic/Meta-Llama-3.1-8B-Instruct-FP8": 0.81,
    "neuralmagic/Mistral-7B-Instruct-v0.3-FP8": 0.54,
Sai Enduri's avatar
Sai Enduri committed
31
32
    "neuralmagic/Meta-Llama-3.1-70B-Instruct-FP8": 0.93,
    "neuralmagic/Qwen2-72B-Instruct-FP8": 0.93,
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    "neuralmagic/Qwen2-57B-A14B-Instruct-FP8": 0.82,
}

# Models currently failing on AMD MI300x.
failing_models = {
    "google/gemma-2-27b-it",
    "neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8",
    "neuralmagic/gemma-2-2b-it-FP8",
    "neuralmagic/Mixtral-8x7B-Instruct-v0.1-FP8",
}


def remove_failing_models(model_str):
    models = model_str.split(",")
    filtered = [m for m in models if m not in failing_models]
    return ",".join(filtered)


DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1 = remove_failing_models(
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1
)
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2 = remove_failing_models(
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2
)
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1 = remove_failing_models(
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1
)
DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2 = remove_failing_models(
    DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2
)


def parse_models(model_string):
    return [model.strip() for model in model_string.split(",") if model.strip()]


def popen_launch_server_wrapper(base_url, model, is_tp2):
    other_args = ["--log-level-http", "warning", "--trust-remote-code"]
    if is_tp2:
        other_args.extend(["--tp", "2"])

    process = popen_launch_server(
        model,
        base_url,
        timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
        other_args=other_args,
    )
    return process


def write_results_to_json(model, metrics, mode="a"):
    result = {
        "timestamp": datetime.now().isoformat(),
        "model": model,
        "metrics": metrics,
        "score": metrics["score"],
    }

    existing_results = []
    if mode == "a" and os.path.exists("results.json"):
        try:
            with open("results.json", "r") as f:
                existing_results = json.load(f)
        except json.JSONDecodeError:
            existing_results = []

    if isinstance(existing_results, list):
        existing_results.append(result)
    else:
        existing_results = [result]

    with open("results.json", "w") as f:
        json.dump(existing_results, f, indent=2)


def check_model_scores(results):
    failed_models = []
    summary = " | model | score | threshold |\n"
    summary += "| ----- | ----- | --------- |\n"

    for model, score in results:
        threshold = MODEL_SCORE_THRESHOLDS.get(model)
        if threshold is None:
            print(f"Warning: No threshold defined for model {model}")
            continue

        if score < threshold:
            failed_models.append(
                f"\nScore Check Failed: {model}\n"
                f"Model {model} score ({score:.4f}) is below threshold ({threshold:.4f})"
            )

        line = f"| {model} | {score} | {threshold} |\n"
        summary += line

    print(summary)

    if is_in_ci():
        write_github_step_summary(f"### TestNightlyGsm8KEval\n{summary}")

    if failed_models:
        raise AssertionError("\n".join(failed_models))


# Do not use `CustomTestCase` since `test_mgsm_en_all_models` does not want retry
class TestNightlyGsm8KEval(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.model_groups = [
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP1), False, False),
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_TP2), False, True),
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP1), True, False),
            (parse_models(DEFAULT_MODEL_NAME_FOR_NIGHTLY_EVAL_FP8_TP2), True, True),
        ]
        cls.base_url = DEFAULT_URL_FOR_TEST

    def test_mgsm_en_all_models(self):
        warnings.filterwarnings(
            "ignore", category=ResourceWarning, message="unclosed.*socket"
        )
        is_first = True
        all_results = []

        for model_group, is_fp8, is_tp2 in self.model_groups:
            for model in model_group:
                with self.subTest(model=model):
                    process = popen_launch_server_wrapper(self.base_url, model, is_tp2)

                    args = SimpleNamespace(
                        base_url=self.base_url,
                        model=model,
                        eval_name="mgsm_en",
                        num_examples=None,
                        num_threads=1024,
                    )

                    metrics = run_eval(args)
                    print(
                        f"{'=' * 42}\n{model} - metrics={metrics} score={metrics['score']}\n{'=' * 42}\n"
                    )

                    write_results_to_json(model, metrics, "w" if is_first else "a")
                    is_first = False

                    all_results.append((model, metrics["score"]))
                    kill_process_tree(process.pid)

        try:
            with open("results.json", "r") as f:
                print("\nFinal Results from results.json:")
                print(json.dumps(json.load(f), indent=2))
        except Exception as e:
            print(f"Error reading results.json: {e}")

        # Check all scores after collecting all results
        check_model_scores(all_results)


if __name__ == "__main__":
    unittest.main()