scheduler.py 120 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
15
"""A scheduler that manages a tensor parallel GPU worker."""

16
import datetime
17
import faulthandler
18
import logging
19
import os
20
import signal
21
import sys
Lianmin Zheng's avatar
Lianmin Zheng committed
22
import threading
23
import time
24
from collections import defaultdict, deque
Lianmin Zheng's avatar
Lianmin Zheng committed
25
from concurrent import futures
26
from dataclasses import dataclass
27
from pathlib import Path
28
from types import SimpleNamespace
29
from typing import Dict, List, Optional, Tuple, Union
30

31
import psutil
32
import setproctitle
33
import torch
34
import zmq
35
from torch.distributed import barrier
36

37
from sglang.global_config import global_config
Lianmin Zheng's avatar
Lianmin Zheng committed
38
from sglang.srt.configs.model_config import ModelConfig
39
from sglang.srt.constants import GPU_MEMORY_TYPE_KV_CACHE, GPU_MEMORY_TYPE_WEIGHTS
40
41
42
43
from sglang.srt.constrained.base_grammar_backend import (
    INVALID_GRAMMAR_OBJ,
    create_grammar_backend,
)
Byron Hsu's avatar
Byron Hsu committed
44
45
46
47
48
from sglang.srt.disaggregation.decode import (
    DecodePreallocQueue,
    DecodeTransferQueue,
    SchedulerDisaggregationDecodeMixin,
)
49
from sglang.srt.disaggregation.kv_events import EventPublisherFactory, KVEventBatch
Byron Hsu's avatar
Byron Hsu committed
50
51
52
53
54
55
from sglang.srt.disaggregation.prefill import (
    PrefillBootstrapQueue,
    SchedulerDisaggregationPrefillMixin,
)
from sglang.srt.disaggregation.utils import (
    DisaggregationMode,
56
    MetadataBuffers,
Byron Hsu's avatar
Byron Hsu committed
57
    ReqToMetadataIdxAllocator,
58
    TransferBackend,
59
    prepare_abort,
Byron Hsu's avatar
Byron Hsu committed
60
)
61
from sglang.srt.distributed import get_pp_group, get_world_group
fzyzcjy's avatar
fzyzcjy committed
62
from sglang.srt.eplb.expert_distribution import get_global_expert_distribution_recorder
xm:D's avatar
xm:D committed
63
64
65
66
67
from sglang.srt.hf_transformers_utils import (
    get_processor,
    get_tokenizer,
    get_tokenizer_from_processor,
)
68
from sglang.srt.layers.dp_attention import compute_dp_attention_world_info
69
70
71
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
from sglang.srt.managers.io_struct import (
    AbortReq,
72
    CloseSessionReqInput,
73
    ExpertDistributionReq,
74
    ExpertDistributionReqOutput,
75
76
    FlushCacheReqInput,
    FlushCacheReqOutput,
77
78
    GetInternalStateReq,
    GetInternalStateReqOutput,
79
80
    GetWeightsByNameReqInput,
    GetWeightsByNameReqOutput,
81
    HealthCheckOutput,
82
83
    InitWeightsUpdateGroupReqInput,
    InitWeightsUpdateGroupReqOutput,
84
85
    LoadLoRAAdapterReqInput,
    LoadLoRAAdapterReqOutput,
86
87
    OpenSessionReqInput,
    OpenSessionReqOutput,
88
    ProfileReq,
89
90
    ProfileReqOutput,
    ProfileReqType,
91
92
93
94
    ReleaseMemoryOccupationReqInput,
    ReleaseMemoryOccupationReqOutput,
    ResumeMemoryOccupationReqInput,
    ResumeMemoryOccupationReqOutput,
95
96
    RpcReqInput,
    RpcReqOutput,
97
98
    SetInternalStateReq,
    SetInternalStateReqOutput,
99
100
    SlowDownReqInput,
    SlowDownReqOutput,
101
102
    TokenizedEmbeddingReqInput,
    TokenizedGenerateReqInput,
103
104
    UnloadLoRAAdapterReqInput,
    UnloadLoRAAdapterReqOutput,
Chayenne's avatar
Chayenne committed
105
106
    UpdateWeightFromDiskReqInput,
    UpdateWeightFromDiskReqOutput,
107
108
    UpdateWeightsFromDistributedReqInput,
    UpdateWeightsFromDistributedReqOutput,
109
110
    UpdateWeightsFromTensorReqInput,
    UpdateWeightsFromTensorReqOutput,
111
)
112
from sglang.srt.managers.mm_utils import init_embedding_cache
113
114
from sglang.srt.managers.schedule_batch import (
    FINISH_ABORT,
Mick's avatar
Mick committed
115
    MultimodalInputs,
116
117
    Req,
    ScheduleBatch,
118
    global_server_args_dict,
119
)
120
121
122
123
124
from sglang.srt.managers.schedule_policy import (
    AddReqResult,
    PrefillAdder,
    SchedulePolicy,
)
125
126
127
from sglang.srt.managers.scheduler_output_processor_mixin import (
    SchedulerOutputProcessorMixin,
)
128
from sglang.srt.managers.session_controller import Session
129
from sglang.srt.managers.tp_worker import TpModelWorker
130
from sglang.srt.managers.tp_worker_overlap_thread import TpModelWorkerClient
131
from sglang.srt.managers.utils import validate_input_length
tarinkk's avatar
tarinkk committed
132
from sglang.srt.mem_cache.chunk_cache import ChunkCache, SWAChunkCache
133
from sglang.srt.mem_cache.hiradix_cache import HiRadixCache
134
from sglang.srt.mem_cache.radix_cache import RadixCache
Hanming Lu's avatar
Hanming Lu committed
135
from sglang.srt.mem_cache.swa_radix_cache import SWARadixCache
136
from sglang.srt.metrics.collector import SchedulerMetricsCollector, SchedulerStats
Lianmin Zheng's avatar
Lianmin Zheng committed
137
from sglang.srt.model_executor.forward_batch_info import ForwardMode, PPProxyTensors
138
from sglang.srt.reasoning_parser import ReasoningParser
139
from sglang.srt.server_args import PortArgs, ServerArgs
140
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
141
from sglang.srt.torch_memory_saver_adapter import TorchMemorySaverAdapter
142
from sglang.srt.two_batch_overlap import TboDPAttentionPreparer
143
from sglang.srt.utils import (
144
    DeepEPMode,
145
    DynamicGradMode,
146
    broadcast_pyobj,
fzyzcjy's avatar
fzyzcjy committed
147
    configure_gc_logger,
148
    configure_logger,
Lianmin Zheng's avatar
Lianmin Zheng committed
149
    disable_request_logging,
150
    get_available_gpu_memory,
151
    get_bool_env_var,
152
    get_zmq_socket,
153
    is_cpu,
Lianmin Zheng's avatar
Lianmin Zheng committed
154
    kill_itself_when_parent_died,
155
    point_to_point_pyobj,
156
    pyspy_dump_schedulers,
157
158
    require_mlp_sync,
    require_mlp_tp_gather,
159
    set_gpu_proc_affinity,
160
161
162
    set_random_seed,
    suppress_other_loggers,
)
163
from sglang.utils import TypeBasedDispatcher, get_exception_traceback
164
165
166

logger = logging.getLogger(__name__)

167
# Test retract decode for debugging purposes
168
169
TEST_RETRACT = get_bool_env_var("SGLANG_TEST_RETRACT")
RECORD_STEP_TIME = get_bool_env_var("SGLANG_RECORD_STEP_TIME")
170
GRAMMAR_TIMEOUT = float(os.environ.get("SGLANG_GRAMMAR_TIMEOUT", 300))
171

172
173
_is_cpu = is_cpu()

174

175
176
@dataclass
class GenerationBatchResult:
177
178
179
    logits_output: Optional[LogitsProcessorOutput]
    pp_hidden_states_proxy_tensors: Optional[torch.Tensor]
    next_token_ids: Optional[List[int]]
180
181
    extend_input_len_per_req: List[int]
    extend_logprob_start_len_per_req: List[int]
182
    bid: int
183
    can_run_cuda_graph: bool
184
185
186
187
188
189
190
191


@dataclass
class EmbeddingBatchResult:
    embeddings: torch.Tensor
    bid: int


192
193
194
195
196
197
198
199
200
201
202
203
class KvMetrics:
    def __init__(self):
        self.request_active_slots = None
        self.request_total_slots = None
        self.kv_active_blocks = None
        self.kv_total_blocks = None
        self.num_requests_waiting = None
        self.gpu_cache_usage_perc = None
        self.gpu_prefix_cache_hit_rate = None
        self.data_parallel_rank = None


204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
class IdleSleeper:
    """
    In setups which have long inactivity periods it is desirable to reduce
    system power consumption when sglang does nothing. This would lead not only
    to power savings, but also to more CPU thermal headroom when a request
    eventually comes. This is important in cases when multiple GPUs are connected
    as each GPU would otherwise pin one thread at 100% CPU usage.

    The simplest solution is to use zmq.Poller on all sockets that may receive
    data that needs handling immediately.
    """

    def __init__(self, sockets):
        self.poller = zmq.Poller()
        for s in sockets:
            self.poller.register(s, zmq.POLLIN)

    def maybe_sleep(self):
        self.poller.poll(1000)


Byron Hsu's avatar
Byron Hsu committed
225
226
227
228
229
class Scheduler(
    SchedulerOutputProcessorMixin,
    SchedulerDisaggregationDecodeMixin,
    SchedulerDisaggregationPrefillMixin,
):
230
231
232
233
234
235
236
237
    """A scheduler that manages a tensor parallel GPU worker."""

    def __init__(
        self,
        server_args: ServerArgs,
        port_args: PortArgs,
        gpu_id: int,
        tp_rank: int,
238
        pp_rank: int,
239
        dp_rank: Optional[int],
240
241
    ):
        # Parse args
242
        self.server_args = server_args
243
        self.tp_rank = tp_rank
244
        self.pp_rank = pp_rank
245
        self.dp_rank = dp_rank
246
        self.tp_size = server_args.tp_size
247
248
        self.pp_size = server_args.pp_size
        self.dp_size = server_args.dp_size
249
        self.schedule_policy = server_args.schedule_policy
250
        self.enable_lora = server_args.enable_lora
251
        self.max_loras_per_batch = server_args.max_loras_per_batch
252
        self.enable_overlap = not server_args.disable_overlap_schedule
253
        self.skip_tokenizer_init = server_args.skip_tokenizer_init
254
        self.enable_metrics = server_args.enable_metrics
255
256
257
        self.enable_metrics_for_all_schedulers = (
            server_args.enable_metrics_for_all_schedulers
        )
258
        self.enable_kv_cache_events = server_args.kv_events_config is not None
259
        self.stream_interval = server_args.stream_interval
260
261
262
        self.spec_algorithm = SpeculativeAlgorithm.from_string(
            server_args.speculative_algorithm
        )
263
264
        self.gpu_id = gpu_id
        self.enable_hierarchical_cache = server_args.enable_hierarchical_cache
265
        self.enable_hicache_storage = server_args.hicache_storage_backend is not None
Lianmin Zheng's avatar
Lianmin Zheng committed
266
        self.page_size = server_args.page_size
267
268
        self.dp_size = server_args.dp_size
        self.attn_tp_rank, self.attn_tp_size, self.attn_dp_rank = (
269
270
271
272
273
274
275
276
            compute_dp_attention_world_info(
                server_args.enable_dp_attention,
                self.tp_rank,
                self.tp_size,
                self.dp_size,
            )
        )

277
278
        # Init inter-process communication
        context = zmq.Context(2)
279
280
        self.idle_sleeper = None

281
        if self.pp_rank == 0 and self.attn_tp_rank == 0:
282
            self.recv_from_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
283
                context, zmq.PULL, port_args.scheduler_input_ipc_name, False
284
            )
285
            self.send_to_tokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
286
                context, zmq.PUSH, port_args.tokenizer_ipc_name, False
287
            )
288

289
            if server_args.skip_tokenizer_init:
290
                # Directly send to the TokenizerManager
291
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
292
                    context, zmq.PUSH, port_args.tokenizer_ipc_name, False
293
294
                )
            else:
295
                # Send to the DetokenizerManager
296
                self.send_to_detokenizer = get_zmq_socket(
Lianmin Zheng's avatar
Lianmin Zheng committed
297
                    context, zmq.PUSH, port_args.detokenizer_ipc_name, False
298
                )
299
300
301
302

            self.recv_from_rpc = get_zmq_socket(
                context, zmq.DEALER, port_args.rpc_ipc_name, False
            )
303
304
305
306
307
308
309
            if self.server_args.sleep_on_idle:
                self.idle_sleeper = IdleSleeper(
                    [
                        self.recv_from_tokenizer,
                        self.recv_from_rpc,
                    ]
                )
310
        else:
311
            self.recv_from_tokenizer = None
312
            self.recv_from_rpc = None
313
314
            self.send_to_tokenizer = SimpleNamespace(send_pyobj=lambda x: None)
            self.send_to_detokenizer = SimpleNamespace(send_pyobj=lambda x: None)
315

316
317
318
319
320
        if self.current_scheduler_metrics_enabled():
            self.send_metrics_from_scheduler = get_zmq_socket(
                context, zmq.PUSH, port_args.metrics_ipc_name, False
            )

321
        # Init tokenizer
322
        self.init_tokenizer()
323

324
325
326
327
328
329
330
331
332
        # Set reasoning_parser and think_end_id if --reasoning_parser is enabled
        if self.server_args.reasoning_parser and self.tokenizer:
            reasoning_parser = ReasoningParser(
                model_type=self.server_args.reasoning_parser, stream_reasoning=False
            )
            self.tokenizer.think_end_id = self.tokenizer.encode(
                reasoning_parser.detector.think_end_token, add_special_tokens=False
            )[0]

333
334
335
336
        # Check whether overlap can be enabled
        if not self.is_generation:
            self.enable_overlap = False
            logger.info("Overlap scheduler is disabled for embedding models.")
337

338
        # Launch a tensor parallel worker
339
        if self.enable_overlap:
340
            TpWorkerClass = TpModelWorkerClient
341
342
        else:
            TpWorkerClass = TpModelWorker
343

344
        self.tp_worker = TpWorkerClass(
345
            server_args=server_args,
346
347
            gpu_id=gpu_id,
            tp_rank=tp_rank,
348
            pp_rank=pp_rank,
349
            dp_rank=dp_rank,
350
            nccl_port=port_args.nccl_port,
351
        )
352

353
        # Launch a draft worker for speculative decoding
354
355
356
357
358
359
360
361
362
363
364
365
366
367
        if self.spec_algorithm.is_eagle():
            from sglang.srt.speculative.eagle_worker import EAGLEWorker

            self.draft_worker = EAGLEWorker(
                gpu_id=gpu_id,
                tp_rank=tp_rank,
                server_args=server_args,
                nccl_port=port_args.nccl_port,
                target_worker=self.tp_worker,
                dp_rank=dp_rank,
            )
        else:
            self.draft_worker = None

368
        # Get token and memory info from the model worker
369
370
371
372
        (
            self.max_total_num_tokens,
            self.max_prefill_tokens,
            self.max_running_requests,
373
            self.max_req_len,
374
375
            self.max_req_input_len,
            self.random_seed,
376
            self.device,
377
378
379
380
381
            worker_global_server_args_dict,
            _,
            _,
            _,
        ) = self.tp_worker.get_worker_info()
382
383
384
385
386
387
388
389
        if global_server_args_dict["max_micro_batch_size"] is None:
            global_server_args_dict["max_micro_batch_size"] = max(
                self.max_running_requests // server_args.pp_size, 1
            )

        self.tp_group = self.tp_worker.get_tp_group()
        self.tp_cpu_group = self.tp_group.cpu_group
        self.attn_tp_group = self.tp_worker.get_attention_tp_group()
390
        self.attn_tp_cpu_group = self.tp_worker.get_attention_tp_cpu_group()
391
392
393
        self.pp_group = get_pp_group()
        self.world_group = get_world_group()

394
        self.pad_input_ids_func = self.tp_worker.get_pad_input_ids_func()
395
        global_server_args_dict.update(worker_global_server_args_dict)
396
        set_random_seed(self.random_seed)
397

Hanming Lu's avatar
Hanming Lu committed
398
399
400
401
402
403
404
405
        # Hybrid
        self.is_hybrid = self.tp_worker.is_hybrid
        if self.is_hybrid:
            self.sliding_window_size = self.tp_worker.sliding_window_size
            self.full_tokens_per_layer, self.swa_tokens_per_layer = (
                self.tp_worker.get_tokens_per_layer_info()
            )

406
        # Print debug info
407
        if tp_rank == 0:
408
409
410
            avail_mem = get_available_gpu_memory(
                self.device, self.gpu_id, empty_cache=False
            )
411
412
413
414
415
            logger.info(
                f"max_total_num_tokens={self.max_total_num_tokens}, "
                f"chunked_prefill_size={server_args.chunked_prefill_size}, "
                f"max_prefill_tokens={self.max_prefill_tokens}, "
                f"max_running_requests={self.max_running_requests}, "
416
417
                f"context_len={self.model_config.context_len}, "
                f"available_gpu_mem={avail_mem:.2f} GB"
418
            )
419

Lianmin Zheng's avatar
Lianmin Zheng committed
420
        # Init memory pool and cache
421
        self.init_memory_pool_and_cache()
422
423
424

        # Init running status
        self.waiting_queue: List[Req] = []
425
        # The running decoding batch for continuous batching
Lianmin Zheng's avatar
Lianmin Zheng committed
426
        self.running_batch: ScheduleBatch = ScheduleBatch(reqs=[], batch_is_full=False)
427
        # The current forward batch
Lianmin Zheng's avatar
Lianmin Zheng committed
428
        self.cur_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
429
        # The last forward batch
430
        self.last_batch: Optional[ScheduleBatch] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
431
432
        self.forward_ct = 0
        self.forward_ct_decode = 0
433
        self.num_generated_tokens = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
434
        self.last_prefill_tokens = 0
435
436
        self.last_decode_stats_tic = time.perf_counter()
        self.last_prefill_stats_tic = time.perf_counter()
437
        self.return_health_check_ct = 0
438
439
440
441
442
        self.num_retracted_reqs: int = 0
        self.num_paused_reqs: int = 0
        self.kv_transfer_speed_gb_s: float = 0.0
        self.kv_transfer_latency_ms: float = 0.0
        self.sessions: Dict[str, Session] = {}
443
        self.current_stream = torch.get_device_module(self.device).current_stream()
444
445
        if self.device == "cpu":
            self.current_stream.synchronize = lambda: None  # No-op for CPU
446
        self.forward_sleep_time = None
447

448
449
        # Init chunked prefill
        self.chunked_prefill_size = server_args.chunked_prefill_size
450
451
        if self.chunked_prefill_size <= 0:  # -1 means disable
            self.chunked_prefill_size = None
452
        self.chunked_req = None
453
454
455
456
        self.is_mixed_chunk = (
            self.chunked_prefill_size is not None and server_args.enable_mixed_chunk
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
457
        # Init the grammar backend for constrained generation
458
        self.grammar_queue: List[Req] = []
459
        if not server_args.skip_tokenizer_init:
460
            self.grammar_backend = create_grammar_backend(
461
462
463
464
                server_args,
                self.tokenizer,
                self.model_config.vocab_size,
                self.model_config.hf_eos_token_id,
465
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
466
467
        else:
            self.grammar_backend = None
468

469
        # Init schedule policy and new token estimation
470
        self.policy = SchedulePolicy(
Lianmin Zheng's avatar
Lianmin Zheng committed
471
472
473
            self.schedule_policy,
            self.tree_cache,
            self.enable_hierarchical_cache,
474
        )
475
476
477
        assert (
            server_args.schedule_conservativeness >= 0
        ), "Invalid schedule_conservativeness"
478
479
        self.init_new_token_ratio = min(
            global_config.default_init_new_token_ratio
480
481
            * server_args.schedule_conservativeness,
            1.0,
482
        )
483
484
485
486
487
488
489
490
491
492
        self.min_new_token_ratio = min(
            self.init_new_token_ratio
            * global_config.default_min_new_token_ratio_factor,
            1.0,
        )
        self.new_token_ratio_decay = (
            self.init_new_token_ratio - self.min_new_token_ratio
        ) / global_config.default_new_token_ratio_decay_steps
        self.new_token_ratio = self.init_new_token_ratio

Lianmin Zheng's avatar
Lianmin Zheng committed
493
494
495
496
        # Init watchdog thread
        self.watchdog_timeout = server_args.watchdog_timeout
        t = threading.Thread(target=self.watchdog_thread, daemon=True)
        t.start()
497
        self.parent_process = psutil.Process().parent()
498
499

        # Init memory saver, profiler and metric stats
500
501
502
        self.memory_saver_adapter = TorchMemorySaverAdapter.create(
            enable=server_args.enable_memory_saver
        )
503
        self.init_profier()
504
505

        # Init metrics stats
506
        self.init_metrics(tp_rank, pp_rank, dp_rank)
507
        self.init_kv_events(server_args.kv_events_config)
508

509
510
        # Init request dispatcher
        self._request_dispatcher = TypeBasedDispatcher(
511
512
513
            [
                (TokenizedGenerateReqInput, self.handle_generate_request),
                (TokenizedEmbeddingReqInput, self.handle_embedding_request),
514
                (FlushCacheReqInput, self.flush_cache_wrapped),
515
                (AbortReq, self.abort_request),
516
517
                (OpenSessionReqInput, self.open_session),
                (CloseSessionReqInput, self.close_session),
518
519
520
521
522
523
524
525
                (UpdateWeightFromDiskReqInput, self.update_weights_from_disk),
                (InitWeightsUpdateGroupReqInput, self.init_weights_update_group),
                (
                    UpdateWeightsFromDistributedReqInput,
                    self.update_weights_from_distributed,
                ),
                (UpdateWeightsFromTensorReqInput, self.update_weights_from_tensor),
                (GetWeightsByNameReqInput, self.get_weights_by_name),
526
527
                (ReleaseMemoryOccupationReqInput, self.release_memory_occupation),
                (ResumeMemoryOccupationReqInput, self.resume_memory_occupation),
528
                (SlowDownReqInput, self.slow_down),
529
                (ProfileReq, self.profile),
530
                (GetInternalStateReq, self.get_internal_state),
531
                (SetInternalStateReq, self.set_internal_state),
532
                (RpcReqInput, self.handle_rpc_request),
533
                (ExpertDistributionReq, self.expert_distribution_handle),
534
535
                (LoadLoRAAdapterReqInput, self.load_lora_adapter),
                (UnloadLoRAAdapterReqInput, self.unload_lora_adapter),
536
537
538
            ]
        )

539
        # Init disaggregation
Byron Hsu's avatar
Byron Hsu committed
540
541
542
543
544
        self.disaggregation_mode = DisaggregationMode(
            self.server_args.disaggregation_mode
        )
        self.init_disaggregation()

fzyzcjy's avatar
fzyzcjy committed
545
546
547
        if get_bool_env_var("SGLANG_GC_LOG"):
            configure_gc_logger()

548
549
550
    def current_scheduler_metrics_enabled(self):
        return self.attn_tp_rank == 0 or self.enable_metrics_for_all_schedulers

551
552
553
554
    def maybe_sleep_on_idle(self):
        if self.idle_sleeper is not None:
            self.idle_sleeper.maybe_sleep()

555
556
    def init_tokenizer(self):
        server_args = self.server_args
Lianmin Zheng's avatar
Lianmin Zheng committed
557

558
        self.model_config = ModelConfig.from_server_args(server_args)
559
        self.is_generation = self.model_config.is_generation
560

561
562
563
564
565
566
567
568
569
        if server_args.skip_tokenizer_init:
            self.tokenizer = self.processor = None
        else:
            if self.model_config.is_multimodal:
                self.processor = get_processor(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
570
                    use_fast=not server_args.disable_fast_image_processor,
571
                )
xm:D's avatar
xm:D committed
572
                self.tokenizer = get_tokenizer_from_processor(self.processor)
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
            else:
                self.tokenizer = get_tokenizer(
                    server_args.tokenizer_path,
                    tokenizer_mode=server_args.tokenizer_mode,
                    trust_remote_code=server_args.trust_remote_code,
                    revision=server_args.revision,
                )

    def init_memory_pool_and_cache(self):
        server_args = self.server_args

        self.req_to_token_pool, self.token_to_kv_pool_allocator = (
            self.tp_worker.get_memory_pool()
        )

        if (
            server_args.chunked_prefill_size is not None
            and server_args.disable_radix_cache
        ):
Hanming Lu's avatar
Hanming Lu committed
592
            if self.is_hybrid:
tarinkk's avatar
tarinkk committed
593
594
595
596
                ChunkCacheClass = SWAChunkCache
            else:
                ChunkCacheClass = ChunkCache
            self.tree_cache = ChunkCacheClass(
597
598
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
599
                page_size=self.page_size,
600
601
602
603
604
605
            )
        else:
            if self.enable_hierarchical_cache:
                self.tree_cache = HiRadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
606
607
608
609
610
                    tp_cache_group=(
                        self.attn_tp_cpu_group
                        if self.server_args.enable_dp_attention
                        else self.tp_cpu_group
                    ),
611
                    page_size=self.page_size,
612
                    hicache_ratio=server_args.hicache_ratio,
Zhiqiang Xie's avatar
Zhiqiang Xie committed
613
614
                    hicache_size=server_args.hicache_size,
                    hicache_write_policy=server_args.hicache_write_policy,
615
616
617
618
619
620
                    hicache_io_backend=(
                        "direct"
                        if server_args.attention_backend
                        == "fa3"  # hot fix for incompatibility
                        else server_args.hicache_io_backend
                    ),
621
                    hicache_storage_backend=server_args.hicache_storage_backend,
622
                )
623
624
625
                self.tp_worker.register_hicache_layer_transfer_counter(
                    self.tree_cache.cache_controller.layer_done_counter
                )
Hanming Lu's avatar
Hanming Lu committed
626
627
628
629
630
631
632
633
634
635
636
            elif self.is_hybrid:
                assert (
                    self.server_args.disaggregation_mode == "null"
                ), "Hybrid mode does not support disaggregation yet"
                self.tree_cache = SWARadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
                    sliding_window_size=self.sliding_window_size,
                    page_size=self.page_size,
                    disable=server_args.disable_radix_cache,
                )
637

638
639
640
641
            else:
                self.tree_cache = RadixCache(
                    req_to_token_pool=self.req_to_token_pool,
                    token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
Lianmin Zheng's avatar
Lianmin Zheng committed
642
                    page_size=self.page_size,
643
                    disable=server_args.disable_radix_cache,
644
                    enable_kv_cache_events=self.enable_kv_cache_events,
645
646
647
648
649
650
651
652
653
654
655
656
                )

        self.decode_mem_cache_buf_multiplier = (
            1
            if self.spec_algorithm.is_none()
            else (
                server_args.speculative_num_draft_tokens
                + (
                    server_args.speculative_eagle_topk
                    * server_args.speculative_num_steps
                )
            )
657
        )
658

659
660
661
        embedding_cache_size = int(os.environ.get("SGLANG_VLM_CACHE_SIZE_MB", "100"))
        init_embedding_cache(embedding_cache_size * 1024 * 1024)

662
663
664
665
666
    def init_profier(self):
        self.torch_profiler = None
        self.torch_profiler_output_dir: Optional[str] = None
        self.profiler_activities: Optional[List[str]] = None
        self.profile_id: Optional[str] = None
667
        self.profiler_start_forward_ct: Optional[int] = None
668
669
670
671
672
673
674
675
676
677
        self.profiler_target_forward_ct: Optional[int] = None
        self.profiler_target_prefill_ct: Optional[int] = None
        self.profiler_target_decode_ct: Optional[int] = None
        self.profiler_prefill_ct: Optional[int] = None
        self.profiler_decode_ct: Optional[int] = None
        self.profile_by_stage: bool = False
        self.profile_steps: Optional[int] = None
        self.profile_in_progress: bool = False
        self.rpd_profiler = None

678
    def init_metrics(self, tp_rank: int, pp_rank: int, dp_rank: Optional[int]):
679
        self.last_gen_throughput: float = 0.0
Lianmin Zheng's avatar
Lianmin Zheng committed
680
        self.last_input_throughput: float = 0.0
681
682
683
684
685
        self.step_time_dict = defaultdict(list)  # Dict[batch size -> step time]
        self.spec_num_total_accepted_tokens = 0
        self.spec_num_total_forward_ct = 0
        self.cum_spec_accept_length = 0
        self.cum_spec_accept_count = 0
686
        self.total_retracted_reqs = 0
687
688
689
        self.stats = SchedulerStats()
        if self.enable_metrics:
            engine_type = "unified"
690
691
692
693
694
695
696
697
698
            labels = {
                "model_name": self.server_args.served_model_name,
                "engine_type": engine_type,
                "tp_rank": tp_rank,
                "pp_rank": pp_rank,
            }
            if dp_rank is not None:
                labels["dp_rank"] = dp_rank
            self.metrics_collector = SchedulerMetricsCollector(labels=labels)
Lianmin Zheng's avatar
Lianmin Zheng committed
699

700
701
    def init_kv_events(self, kv_events_config: Optional[str]):
        if self.enable_kv_cache_events:
702
703
704
            self.kv_event_publisher = EventPublisherFactory.create(
                kv_events_config, self.attn_dp_rank
            )
705

Byron Hsu's avatar
Byron Hsu committed
706
    def init_disaggregation(self):
707
708
709
710
        self.transfer_backend = TransferBackend(
            self.server_args.disaggregation_transfer_backend
        )

Byron Hsu's avatar
Byron Hsu committed
711
712
713
714
        if (
            self.disaggregation_mode == DisaggregationMode.DECODE
        ):  # *2 for the headroom.
            buffer_size = (self.req_to_token_pool.size) * 2
Byron Hsu's avatar
Byron Hsu committed
715
            self.req_to_metadata_buffer_idx_allocator = ReqToMetadataIdxAllocator(
Byron Hsu's avatar
Byron Hsu committed
716
717
                buffer_size
            )
718
719
            self.disagg_metadata_buffers = MetadataBuffers(
                buffer_size,
720
721
                hidden_size=self.model_config.hf_text_config.hidden_size,
                dtype=self.model_config.dtype,
722
723
                custom_mem_pool=self.token_to_kv_pool_allocator.get_kvcache().maybe_get_custom_mem_pool(),
            )
Byron Hsu's avatar
Byron Hsu committed
724
725
726

            # The decode requests polling kv cache
            self.disagg_decode_transfer_queue = DecodeTransferQueue(
727
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
728
                req_to_metadata_buffer_idx_allocator=self.req_to_metadata_buffer_idx_allocator,
729
                tp_rank=self.tp_rank,
730
                metadata_buffers=self.disagg_metadata_buffers,
Byron Hsu's avatar
Byron Hsu committed
731
732
                scheduler=self,
                tree_cache=self.tree_cache,
Byron Hsu's avatar
Byron Hsu committed
733
734
735
736
737
738
            )

            # The decode requests pending for pre-allocation
            self.disagg_decode_prealloc_queue = DecodePreallocQueue(
                req_to_token_pool=self.req_to_token_pool,
                token_to_kv_pool_allocator=self.token_to_kv_pool_allocator,
Byron Hsu's avatar
Byron Hsu committed
739
740
741
742
743
                draft_token_to_kv_pool=(
                    None
                    if self.draft_worker is None
                    else self.draft_worker.model_runner.token_to_kv_pool
                ),
Byron Hsu's avatar
Byron Hsu committed
744
                req_to_metadata_buffer_idx_allocator=self.req_to_metadata_buffer_idx_allocator,
745
                metadata_buffers=self.disagg_metadata_buffers,
Byron Hsu's avatar
Byron Hsu committed
746
747
748
                scheduler=self,
                transfer_queue=self.disagg_decode_transfer_queue,
                tree_cache=self.tree_cache,
749
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
750
751
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
752
753
                dp_size=self.server_args.dp_size,
                gpu_id=self.gpu_id,
Byron Hsu's avatar
Byron Hsu committed
754
                bootstrap_port=self.server_args.disaggregation_bootstrap_port,
755
756
                max_total_num_tokens=self.max_total_num_tokens,
                prefill_pp_size=self.server_args.disaggregation_prefill_pp,
757
                num_reserved_decode_tokens=self.server_args.num_reserved_decode_tokens,
758
                transfer_backend=self.transfer_backend,
Byron Hsu's avatar
Byron Hsu committed
759
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
760

Byron Hsu's avatar
Byron Hsu committed
761
762
763
        elif self.disaggregation_mode == DisaggregationMode.PREFILL:
            # *2 for the headroom.
            buffer_size = self.max_running_requests * 2
Byron Hsu's avatar
Byron Hsu committed
764
            self.req_to_metadata_buffer_idx_allocator = ReqToMetadataIdxAllocator(
Byron Hsu's avatar
Byron Hsu committed
765
766
                buffer_size
            )
767
768
            self.disagg_metadata_buffers = MetadataBuffers(
                buffer_size,
769
770
                hidden_size=self.model_config.hf_text_config.hidden_size,
                dtype=self.model_config.dtype,
771
772
                custom_mem_pool=self.token_to_kv_pool_allocator.get_kvcache().maybe_get_custom_mem_pool(),
            )
Byron Hsu's avatar
Byron Hsu committed
773

Liangsheng Yin's avatar
Liangsheng Yin committed
774
            self.disagg_prefill_bootstrap_queue = PrefillBootstrapQueue(
Byron Hsu's avatar
Byron Hsu committed
775
                token_to_kv_pool=self.token_to_kv_pool_allocator.get_kvcache(),
Byron Hsu's avatar
Byron Hsu committed
776
777
778
779
780
                draft_token_to_kv_pool=(
                    None
                    if self.draft_worker is None
                    else self.draft_worker.model_runner.token_to_kv_pool
                ),
Byron Hsu's avatar
Byron Hsu committed
781
                req_to_metadata_buffer_idx_allocator=self.req_to_metadata_buffer_idx_allocator,
782
                metadata_buffers=self.disagg_metadata_buffers,
Byron Hsu's avatar
Byron Hsu committed
783
784
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
Byron Hsu's avatar
Byron Hsu committed
785
                gpu_id=self.gpu_id,
Byron Hsu's avatar
Byron Hsu committed
786
                bootstrap_port=self.server_args.disaggregation_bootstrap_port,
787
                gloo_group=self.attn_tp_cpu_group,
Byron Hsu's avatar
Byron Hsu committed
788
789
790
                max_total_num_tokens=self.max_total_num_tokens,
                decode_tp_size=self.server_args.disaggregation_decode_tp,
                decode_dp_size=self.server_args.disaggregation_decode_dp,
791
                scheduler=self,
Byron Hsu's avatar
Byron Hsu committed
792
793
794
                pp_rank=self.pp_rank,
                pp_size=self.pp_size,
                transfer_backend=self.transfer_backend,
Byron Hsu's avatar
Byron Hsu committed
795
796
            )
            # The prefill requests that are in the middle of kv sending
797
            self.disagg_prefill_inflight_queue: List[Req] = []
Byron Hsu's avatar
Byron Hsu committed
798

799
    @DynamicGradMode()
800
    def event_loop_normal(self):
801
        """A normal scheduler loop."""
802
        while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
803
804
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)
805

806
            batch = self.get_next_batch_to_run()
Lianmin Zheng's avatar
Lianmin Zheng committed
807
            self.cur_batch = batch
808
809
810
811

            if batch:
                result = self.run_batch(batch)
                self.process_batch_result(batch, result)
Lianmin Zheng's avatar
Lianmin Zheng committed
812
            else:
Lianmin Zheng's avatar
Lianmin Zheng committed
813
                # When the server is idle, do self-check and re-init some states
Lianmin Zheng's avatar
Lianmin Zheng committed
814
                self.check_memory()
Hanming Lu's avatar
Hanming Lu committed
815
                self.check_tree_cache()
816
                self.new_token_ratio = self.init_new_token_ratio
817
                self.maybe_sleep_on_idle()
818
819

            self.last_batch = batch
820

821
    @DynamicGradMode()
Lianmin Zheng's avatar
Lianmin Zheng committed
822
    def event_loop_overlap(self):
823
        """A scheduler loop that overlaps the CPU processing and GPU computation."""
824
        self.result_queue = deque()
Lianmin Zheng's avatar
Lianmin Zheng committed
825
826
827
828
829
830
831

        while True:
            recv_reqs = self.recv_requests()
            self.process_input_requests(recv_reqs)

            batch = self.get_next_batch_to_run()
            self.cur_batch = batch
832

Lianmin Zheng's avatar
Lianmin Zheng committed
833
            if batch:
834
                batch.launch_done = threading.Event()
Lianmin Zheng's avatar
Lianmin Zheng committed
835
                result = self.run_batch(batch)
836
                self.result_queue.append((batch.copy(), result))
Lianmin Zheng's avatar
Lianmin Zheng committed
837

838
                if self.last_batch is None:
839
                    # Create a dummy first batch to start the pipeline for overlap schedule.
840
841
842
843
844
845
                    # It is now used for triggering the sampling_info_done event.
                    tmp_batch = ScheduleBatch(
                        reqs=None,
                        forward_mode=ForwardMode.DUMMY_FIRST,
                        next_batch_sampling_info=self.tp_worker.cur_sampling_info,
                    )
846
                    self.process_batch_result(tmp_batch, None, batch.launch_done)
847

Lianmin Zheng's avatar
Lianmin Zheng committed
848
            if self.last_batch:
849
                # Process the results of the last batch
850
                tmp_batch, tmp_result = self.result_queue.popleft()
851
852
853
                tmp_batch.next_batch_sampling_info = (
                    self.tp_worker.cur_sampling_info if batch else None
                )
854
855
856
857
                # NOTE: we should use current launched batch's launch_done event Instead of the last batch's
                self.process_batch_result(
                    tmp_batch, tmp_result, batch.launch_done if batch else None
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
858
            elif batch is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
859
                # When the server is idle, do self-check and re-init some states
Lianmin Zheng's avatar
Lianmin Zheng committed
860
                self.check_memory()
Hanming Lu's avatar
Hanming Lu committed
861
                self.check_tree_cache()
862
                self.new_token_ratio = self.init_new_token_ratio
863
                self.maybe_sleep_on_idle()
Lianmin Zheng's avatar
Lianmin Zheng committed
864
865
866

            self.last_batch = batch

867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
    @DynamicGradMode()
    def event_loop_pp(self):
        """A non-overlap scheduler loop for pipeline parallelism."""
        mbs = [None] * self.pp_size
        last_mbs = [None] * self.pp_size
        self.running_mbs = [
            ScheduleBatch(reqs=[], batch_is_full=False) for _ in range(self.pp_size)
        ]
        bids = [None] * self.pp_size
        pp_outputs: Optional[PPProxyTensors] = None
        while True:
            server_is_idle = True
            for mb_id in range(self.pp_size):
                self.running_batch = self.running_mbs[mb_id]
                self.last_batch = last_mbs[mb_id]

                recv_reqs = self.recv_requests()
                self.process_input_requests(recv_reqs)
                mbs[mb_id] = self.get_next_batch_to_run()
                self.running_mbs[mb_id] = self.running_batch

                self.cur_batch = mbs[mb_id]
                if self.cur_batch:
                    server_is_idle = False
                    result = self.run_batch(self.cur_batch)

893
                # (last rank) send the outputs to the next step
894
895
896
897
898
899
                if self.pp_group.is_last_rank:
                    if self.cur_batch:
                        next_token_ids, bids[mb_id] = (
                            result.next_token_ids,
                            result.bid,
                        )
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
                        if self.cur_batch.return_logprob:
                            pp_outputs = PPProxyTensors(
                                {
                                    "next_token_ids": next_token_ids,
                                    "extend_input_len_per_req": result.extend_input_len_per_req,
                                    "extend_logprob_start_len_per_req": result.extend_logprob_start_len_per_req,
                                }
                                | (
                                    {
                                        f"logits_output.{k}": v
                                        for k, v in result.logits_output.__dict__.items()
                                    }
                                    if result.logits_output is not None
                                    else {}
                                )
                            )
                        else:
                            pp_outputs = PPProxyTensors(
                                {
                                    "next_token_ids": next_token_ids,
                                }
                            )
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
                        # send the output from the last round to let the next stage worker run post processing
                        self.pp_group.send_tensor_dict(
                            pp_outputs.tensors,
                            all_gather_group=self.attn_tp_group,
                        )

                # receive outputs and post-process (filter finished reqs) the coming microbatch
                next_mb_id = (mb_id + 1) % self.pp_size
                next_pp_outputs = None
                if mbs[next_mb_id] is not None:
                    next_pp_outputs: Optional[PPProxyTensors] = PPProxyTensors(
                        self.pp_group.recv_tensor_dict(
                            all_gather_group=self.attn_tp_group
                        )
                    )
                    mbs[next_mb_id].output_ids = next_pp_outputs["next_token_ids"]
938
939
940
941
942
943
944
945
946
                    logits_output_args = {
                        k[len("logits_output.") :]: v
                        for k, v in next_pp_outputs.tensors.items()
                        if k.startswith("logits_output.")
                    }
                    if len(logits_output_args) > 0:
                        logits_output = LogitsProcessorOutput(**logits_output_args)
                    else:
                        logits_output = None
947
                    output_result = GenerationBatchResult(
948
                        logits_output=logits_output,
949
950
                        pp_hidden_states_proxy_tensors=None,
                        next_token_ids=next_pp_outputs["next_token_ids"],
951
952
953
954
955
956
                        extend_input_len_per_req=next_pp_outputs.tensors.get(
                            "extend_input_len_per_req", None
                        ),
                        extend_logprob_start_len_per_req=next_pp_outputs.tensors.get(
                            "extend_logprob_start_len_per_req", None
                        ),
957
                        bid=bids[next_mb_id],
958
                        can_run_cuda_graph=result.can_run_cuda_graph,
959
960
961
962
                    )
                    self.process_batch_result(mbs[next_mb_id], output_result)
                    last_mbs[next_mb_id] = mbs[next_mb_id]

963
                # (not last rank)
964
965
966
                if not self.pp_group.is_last_rank:
                    if self.cur_batch:
                        bids[mb_id] = result.bid
967
968
                    # carry the outputs to the next stage
                    # send the outputs from the last round to let the next stage worker run post processing
969
970
971
972
973
974
975
                    if pp_outputs:
                        self.pp_group.send_tensor_dict(
                            pp_outputs.tensors,
                            all_gather_group=self.attn_tp_group,
                        )

                    # send out reqs to the next stage
976
                    dp_offset = self.attn_dp_rank * self.attn_tp_size
977
978
979
980
                    if self.attn_tp_rank == 0:
                        point_to_point_pyobj(
                            recv_reqs,
                            self.pp_rank * self.tp_size + dp_offset,
981
                            self.world_group.device_group,
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
                            self.pp_rank * self.tp_size + dp_offset,
                            (self.pp_rank + 1) * self.tp_size + dp_offset,
                        )

                    # send out proxy tensors to the next stage
                    if self.cur_batch:
                        self.pp_group.send_tensor_dict(
                            result.pp_hidden_states_proxy_tensors,
                            all_gather_group=self.attn_tp_group,
                        )

                pp_outputs = next_pp_outputs

            # When the server is idle, self-check and re-init some states
            if server_is_idle:
                self.check_memory()
Hanming Lu's avatar
Hanming Lu committed
998
                self.check_tree_cache()
999
                self.new_token_ratio = self.init_new_token_ratio
1000
                self.maybe_sleep_on_idle()
1001

1002
1003
    def recv_requests(self) -> List[Req]:
        """Receive results at tp_rank = 0 and broadcast it to all other TP ranks."""
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
        if self.pp_rank == 0:
            if self.attn_tp_rank == 0:
                recv_reqs = []

                while True:
                    try:
                        recv_req = self.recv_from_tokenizer.recv_pyobj(zmq.NOBLOCK)
                    except zmq.ZMQError:
                        break
                    recv_reqs.append(recv_req)

                while True:
                    try:
                        recv_rpc = self.recv_from_rpc.recv_pyobj(zmq.NOBLOCK)
                    except zmq.ZMQError:
                        break
                    recv_reqs.append(recv_rpc)
            else:
                recv_reqs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1023
        else:
1024
            if self.attn_tp_rank == 0:
1025
                dp_offset = self.attn_dp_rank * self.attn_tp_size
1026
1027
1028
                recv_reqs = point_to_point_pyobj(
                    [],
                    self.pp_rank * self.tp_size + dp_offset,
1029
                    self.world_group.device_group,
1030
1031
1032
1033
1034
                    (self.pp_rank - 1) * self.tp_size + dp_offset,
                    self.pp_rank * self.tp_size + dp_offset,
                )
            else:
                recv_reqs = None
1035

1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
        if self.server_args.enable_dp_attention:
            if self.attn_tp_rank == 0:
                work_reqs = [
                    req
                    for req in recv_reqs
                    if isinstance(
                        req, (TokenizedGenerateReqInput, TokenizedEmbeddingReqInput)
                    )
                ]
                control_reqs = [
                    req
                    for req in recv_reqs
                    if not isinstance(
                        req, (TokenizedGenerateReqInput, TokenizedEmbeddingReqInput)
                    )
                ]
            else:
                work_reqs = None
                control_reqs = None

            if self.attn_tp_size != 1:
                work_reqs = broadcast_pyobj(
                    work_reqs,
1059
                    self.attn_tp_group.rank,
1060
                    self.attn_tp_cpu_group,
1061
                    src=self.attn_tp_group.ranks[0],
1062
1063
1064
                )
            if self.tp_size != 1:
                control_reqs = broadcast_pyobj(
1065
1066
1067
1068
                    control_reqs,
                    self.tp_group.rank,
                    self.tp_cpu_group,
                    src=self.tp_group.ranks[0],
1069
1070
1071
                )
            recv_reqs = work_reqs + control_reqs
        elif self.tp_size != 1:
1072
1073
1074
1075
1076
1077
            recv_reqs = broadcast_pyobj(
                recv_reqs,
                self.tp_group.rank,
                self.tp_cpu_group,
                src=self.tp_group.ranks[0],
            )
1078
1079
        return recv_reqs

Lianmin Zheng's avatar
Lianmin Zheng committed
1080
    def process_input_requests(self, recv_reqs: List):
1081
        for recv_req in recv_reqs:
1082
1083
            # If it is a health check generation request and there are running requests, ignore it.
            if is_health_check_generate_req(recv_req) and (
Lianmin Zheng's avatar
Lianmin Zheng committed
1084
                self.chunked_req is not None or not self.running_batch.is_empty()
1085
1086
1087
1088
            ):
                self.return_health_check_ct += 1
                continue

1089
            output = self._request_dispatcher(recv_req)
1090
            if output is not None:
1091
1092
1093
1094
1095
                if isinstance(output, RpcReqOutput):
                    if self.recv_from_rpc is not None:
                        self.recv_from_rpc.send_pyobj(output)
                else:
                    self.send_to_tokenizer.send_pyobj(output)
1096
1097
1098
1099
1100

    def handle_generate_request(
        self,
        recv_req: TokenizedGenerateReqInput,
    ):
1101
        # Create a new request
1102
1103
1104
1105
1106
        if (
            recv_req.session_params is None
            or recv_req.session_params.id is None
            or recv_req.session_params.id not in self.sessions
        ):
Rin Intachuen's avatar
Rin Intachuen committed
1107
1108
1109
1110
1111
1112
            if recv_req.input_embeds is not None:
                # Generate fake input_ids based on the length of input_embeds
                seq_length = len(recv_req.input_embeds)
                fake_input_ids = [1] * seq_length
                recv_req.input_ids = fake_input_ids

1113
1114
1115
1116
            if recv_req.bootstrap_port is None:
                # Use default bootstrap port
                recv_req.bootstrap_port = self.server_args.disaggregation_bootstrap_port

1117
1118
1119
1120
1121
            req = Req(
                recv_req.rid,
                recv_req.input_text,
                recv_req.input_ids,
                recv_req.sampling_params,
Lianmin Zheng's avatar
Lianmin Zheng committed
1122
1123
                return_logprob=recv_req.return_logprob,
                top_logprobs_num=recv_req.top_logprobs_num,
1124
                token_ids_logprob=recv_req.token_ids_logprob,
Lianmin Zheng's avatar
Lianmin Zheng committed
1125
                stream=recv_req.stream,
1126
                lora_path=recv_req.lora_path,
Rin Intachuen's avatar
Rin Intachuen committed
1127
                input_embeds=recv_req.input_embeds,
Lianmin Zheng's avatar
Lianmin Zheng committed
1128
                custom_logit_processor=recv_req.custom_logit_processor,
1129
                return_hidden_states=recv_req.return_hidden_states,
1130
                eos_token_ids=self.model_config.hf_eos_token_id,
1131
                bootstrap_host=recv_req.bootstrap_host,
1132
                bootstrap_port=recv_req.bootstrap_port,
1133
                bootstrap_room=recv_req.bootstrap_room,
1134
                data_parallel_rank=recv_req.data_parallel_rank,
1135
                vocab_size=self.model_config.vocab_size,
1136
1137
            )
            req.tokenizer = self.tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
1138

1139
1140
1141
            if self.disaggregation_mode != DisaggregationMode.NULL:
                # Invalid request for disaggregated mode
                if recv_req.bootstrap_room is None:
1142
                    error_msg = (
1143
1144
1145
                        f"Invalid request: Disaggregated request received without "
                        f"boostrap room id. {req.rid=}"
                    )
1146
1147
                    logger.error(error_msg)
                    prepare_abort(req, error_msg)
1148
1149
1150
                    self.stream_output([req], req.return_logprob)
                    return

1151
1152
1153
1154
            if (
                recv_req.session_params is not None
                and recv_req.session_params.id is not None
            ):
1155
                req.set_finish_with_abort(
1156
                    f"Invalid request: session id {recv_req.session_params.id} does not exist"
1157
                )
1158
                self._add_request_to_queue(req)
1159
1160
                return
        else:
1161
1162
            # Create a new request from a previous session
            session = self.sessions[recv_req.session_params.id]
1163
            req = session.create_req(recv_req, self.tokenizer)
1164
            if isinstance(req.finished_reason, FINISH_ABORT):
1165
                self._add_request_to_queue(req)
1166
                return
1167

1168
        # Handle multimodal inputs
Mick's avatar
Mick committed
1169
1170
        if recv_req.mm_inputs is not None:
            image_inputs = MultimodalInputs.from_dict(recv_req.mm_inputs)
1171
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
1172
            req.origin_input_ids = self.pad_input_ids_func(
1173
                req.origin_input_ids, image_inputs
1174
            )
1175
            req.extend_image_inputs(image_inputs)
1176

1177
            if len(req.origin_input_ids) >= self.max_req_input_len:
1178
1179
1180
1181
1182
                req.set_finish_with_abort(
                    error_msg=(
                        "Multimodal prompt is too long after expanding multimodal tokens. "
                        f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
                    )
1183
                )
1184
                self._add_request_to_queue(req)
1185
1186
                return

1187
        # Validate prompt length
1188
1189
1190
1191
1192
1193
        error_msg = validate_input_length(
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
        if error_msg:
1194
            req.set_finish_with_abort(error_msg)
1195
            self._add_request_to_queue(req)
1196
            return
1197

1198
        # Copy more attributes
1199
        if recv_req.logprob_start_len == -1 or not recv_req.return_logprob:
1200
1201
1202
1203
1204
            # By default, only return the logprobs for output tokens
            req.logprob_start_len = len(req.origin_input_ids) - 1
        else:
            req.logprob_start_len = recv_req.logprob_start_len

1205
        if req.logprob_start_len >= len(req.origin_input_ids):
1206
            error_msg = f"{req.logprob_start_len=} is higher than the number of input tokens {len(req.origin_input_ids)=}. Please use a smaller logprob_start_len."
1207
            req.logprob_start_len = len(req.origin_input_ids) - 1
1208
            req.set_finish_with_abort(error_msg)
1209
1210
1211
            self._add_request_to_queue(req)
            return

1212
1213
1214
1215
1216
1217
        req.sampling_params.max_new_tokens = min(
            (
                req.sampling_params.max_new_tokens
                if req.sampling_params.max_new_tokens is not None
                else 1 << 30
            ),
1218
            self.max_req_len - len(req.origin_input_ids) - 1,
1219
1220
        )

1221
1222
1223
1224
1225
        # Init grammar cache for this request
        add_to_grammar_queue = False
        if (
            req.sampling_params.json_schema is not None
            or req.sampling_params.regex is not None
1226
            or req.sampling_params.ebnf is not None
1227
            or req.sampling_params.structural_tag is not None
1228
1229
1230
1231
1232
1233
        ):
            assert self.grammar_backend is not None
            if req.sampling_params.json_schema is not None:
                key = ("json", req.sampling_params.json_schema)
            elif req.sampling_params.regex is not None:
                key = ("regex", req.sampling_params.regex)
1234
1235
            elif req.sampling_params.ebnf is not None:
                key = ("ebnf", req.sampling_params.ebnf)
1236
1237
            elif req.sampling_params.structural_tag:
                key = ("structural_tag", req.sampling_params.structural_tag)
1238

1239
1240
1241
1242
1243
            value, cache_hit = self.grammar_backend.get_cached_or_future_value(key)
            req.grammar = value

            if not cache_hit:
                req.grammar_key = key
1244
                add_to_grammar_queue = True
1245
1246
1247
1248
            else:
                if value is INVALID_GRAMMAR_OBJ:  # We hit a cached invalid grammar.
                    error_msg = f"Invalid grammar request with cache hit: {key=}"
                    req.set_finish_with_abort(error_msg)
1249
1250

        if add_to_grammar_queue:
1251
            req.queue_time_start = time.perf_counter()
1252
1253
            self.grammar_queue.append(req)
        else:
1254
1255
1256
            self._add_request_to_queue(req)

    def _add_request_to_queue(self, req: Req):
1257
        req.queue_time_start = time.perf_counter()
Byron Hsu's avatar
Byron Hsu committed
1258
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
Byron Hsu's avatar
Byron Hsu committed
1259
1260
1261
            self.disagg_prefill_bootstrap_queue.add(
                req, self.model_config.num_key_value_heads
            )
Byron Hsu's avatar
Byron Hsu committed
1262
1263
1264
        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            self.disagg_decode_prealloc_queue.add(req)
        else:
1265
1266
1267
1268
1269
1270
1271
1272
1273
            if self.enable_hicache_storage:
                req.init_next_round_input(self.tree_cache)
                last_hash = req.last_host_node.get_last_hash_value()
                matched_len = len(req.prefix_indices) + req.host_hit_length
                if (matched_len > 0 and last_hash is not None) or matched_len == 0:
                    new_input_tokens = req.fill_ids[matched_len:]
                    self.tree_cache.prefetch_from_storage(
                        req.rid, req.last_host_node, new_input_tokens, last_hash
                    )
Byron Hsu's avatar
Byron Hsu committed
1274
1275
            self.waiting_queue.append(req)

1276
    def _extend_requests_to_queue(self, reqs: List[Req], is_retracted: bool = False):
1277
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
Byron Hsu's avatar
Byron Hsu committed
1278
1279
1280
            self.disagg_prefill_bootstrap_queue.extend(
                reqs, self.model_config.num_key_value_heads
            )
1281
1282
        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            # If this is a decode server, we put the request to the decode pending prealloc queue
1283
            self.disagg_decode_prealloc_queue.extend(reqs, is_retracted)
Byron Hsu's avatar
Byron Hsu committed
1284
1285
        else:
            self.waiting_queue.extend(reqs)
1286
1287
1288

    def handle_embedding_request(
        self,
1289
        recv_req: TokenizedEmbeddingReqInput,
1290
1291
1292
1293
1294
1295
    ):
        req = Req(
            recv_req.rid,
            recv_req.input_text,
            recv_req.input_ids,
            recv_req.sampling_params,
woodx's avatar
woodx committed
1296
            token_type_ids=recv_req.token_type_ids,
1297
1298
1299
        )
        req.tokenizer = self.tokenizer

1300
1301
        # Handle multimodal inputs
        if recv_req.image_inputs is not None:
Mick's avatar
Mick committed
1302
            image_inputs = MultimodalInputs.from_dict(recv_req.image_inputs)
1303
1304
1305
1306
1307
1308
1309
            # Expand a single image token into multiple dummy tokens for receiving image embeddings
            req.origin_input_ids = self.pad_input_ids_func(
                req.origin_input_ids, image_inputs
            )
            req.extend_image_inputs(image_inputs)

            if len(req.origin_input_ids) >= self.max_req_input_len:
1310
1311
1312
1313
1314
                req.set_finish_with_abort(
                    error_msg=(
                        "Multimodal prompt is too long after expanding multimodal tokens. "
                        f"After expanding {len(req.origin_input_ids_unpadded)=} => {len(req.origin_input_ids)} >= {self.max_req_input_len}."
                    )
1315
                )
1316
                self._add_request_to_queue(req)
1317
1318
                return

1319
        # Validate prompts length
1320
        error_msg = validate_input_length(
1321
1322
1323
1324
            req,
            self.max_req_input_len,
            self.server_args.allow_auto_truncate,
        )
1325
        if error_msg:
1326
            self._add_request_to_queue(req)
1327
            return
1328

1329
1330
        # Copy more attributes
        req.logprob_start_len = len(req.origin_input_ids) - 1
1331
        self._add_request_to_queue(req)
1332

1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
    def _emit_kv_metrics(self):
        kv_metrics = KvMetrics()
        kv_metrics.request_active_slots = self.stats.num_running_reqs
        kv_metrics.request_total_slots = self.max_running_requests
        kv_metrics.kv_active_blocks = int(
            self.stats.token_usage * self.max_total_num_tokens
        )
        kv_metrics.kv_total_blocks = self.max_total_num_tokens
        kv_metrics.num_requests_waiting = self.stats.num_queue_reqs
        kv_metrics.gpu_cache_usage_perc = self.stats.token_usage
        kv_metrics.gpu_prefix_cache_hit_rate = self.stats.cache_hit_rate
        kv_metrics.data_parallel_rank = self.dp_rank if self.dp_rank is not None else 0

        if not self.send_metrics_from_scheduler.closed:
            self.send_metrics_from_scheduler.send_pyobj(kv_metrics)

1349
1350
1351
1352
    def log_prefill_stats(
        self,
        adder: PrefillAdder,
        can_run_list: List[Req],
1353
        running_bs: int,
1354
    ):
1355
1356
        gap_latency = time.perf_counter() - self.last_prefill_stats_tic
        self.last_prefill_stats_tic = time.perf_counter()
Liangsheng Yin's avatar
Liangsheng Yin committed
1357
1358
        self.last_input_throughput = self.last_prefill_tokens / gap_latency
        self.last_prefill_tokens = adder.log_input_tokens
Lianmin Zheng's avatar
Lianmin Zheng committed
1359

Hanming Lu's avatar
Hanming Lu committed
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
        if self.is_hybrid:
            (
                full_num_used,
                swa_num_used,
                full_token_usage,
                swa_token_usage,
                _,
                _,
                _,
                _,
            ) = self._get_swa_token_info()
            num_used = max(full_num_used, swa_num_used)
            token_usage = max(full_token_usage, swa_token_usage)
            token_msg = (
                f"full token usage: {full_token_usage:.2f}, "
                f"swa token usage: {swa_token_usage:.2f}, "
            )
        else:
            num_used, token_usage, _, _ = self._get_token_info()
            token_msg = f"token usage: {token_usage:.2f}, "
1380

1381
        num_new_seq = len(can_run_list)
1382
        f = (
1383
            f"Prefill batch. "
1384
            f"#new-seq: {num_new_seq}, "
1385
1386
            f"#new-token: {adder.log_input_tokens}, "
            f"#cached-token: {adder.log_hit_tokens}, "
Hanming Lu's avatar
Hanming Lu committed
1387
            f"{token_msg}"
1388
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
1389
1390
1391
1392

        if self.disaggregation_mode == DisaggregationMode.PREFILL:
            f += f"#unbootstrapped-req: {len(self.disagg_prefill_bootstrap_queue.queue)}, "
            f += f"#queue-req: {len(self.waiting_queue)}, "
fzyzcjy's avatar
fzyzcjy committed
1393
            f += f"#transferring-req: {len(self.disagg_prefill_inflight_queue)}, "
1394
            f += f"input throughput (token/s): {self.last_input_throughput:.2f}, "
Liangsheng Yin's avatar
Liangsheng Yin committed
1395
        else:
Liangsheng Yin's avatar
Liangsheng Yin committed
1396
            f += f"#running-req: {running_bs}, "
1397
1398
            f += f"#queue-req: {len(self.waiting_queue)}, "

1399
        logger.info(f)
1400
1401

        if self.enable_metrics:
1402
1403
1404
1405
            total_tokens = adder.log_input_tokens + adder.log_hit_tokens

            cache_hit_rate = (
                adder.log_hit_tokens / total_tokens if total_tokens > 0 else 0.0
1406
            )
1407
1408
            self.stats.num_running_reqs = running_bs
            self.stats.num_used_tokens = num_used
Hanming Lu's avatar
Hanming Lu committed
1409
            self.stats.token_usage = round(token_usage, 2)
1410
1411
            self.stats.num_queue_reqs = len(self.waiting_queue)
            self.stats.cache_hit_rate = cache_hit_rate
1412
1413
1414
1415
1416
1417

            total_queue_latency = 0
            for req in can_run_list:
                total_queue_latency += req.queue_time_end - req.queue_time_start
            self.stats.avg_request_queue_latency = total_queue_latency / num_new_seq

1418
            self.metrics_collector.log_stats(self.stats)
1419
            self._emit_kv_metrics()
1420
        self._publish_kv_events()
1421

1422
1423
1424
    def log_decode_stats(
        self, can_run_cuda_graph: bool, running_batch: ScheduleBatch = None
    ):
1425
1426
        batch = running_batch or self.running_batch

1427
1428
        gap_latency = time.perf_counter() - self.last_decode_stats_tic
        self.last_decode_stats_tic = time.perf_counter()
1429
1430
        self.last_gen_throughput = self.num_generated_tokens / gap_latency
        self.num_generated_tokens = 0
1431
        num_running_reqs = len(batch.reqs)
Hanming Lu's avatar
Hanming Lu committed
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
        if self.is_hybrid:
            (
                full_num_used,
                swa_num_used,
                full_token_usage,
                swa_token_usage,
                _,
                _,
                _,
                _,
            ) = self._get_swa_token_info()
            num_used = max(full_num_used, swa_num_used)
            token_usage = max(full_token_usage, swa_token_usage)
            token_msg = (
                f"#full token: {full_num_used}, "
                f"full token usage: {full_token_usage:.2f}, "
                f"#swa token: {swa_num_used}, "
                f"swa token usage: {swa_token_usage:.2f}, "
            )
        else:
            num_used, token_usage, _, _ = self._get_token_info()
            token_msg = f"#token: {num_used}, " f"token usage: {token_usage:.2f}, "
1454
1455
1456
1457
1458

        if RECORD_STEP_TIME:
            self.step_time_dict[num_running_reqs].append(
                gap_latency / self.server_args.decode_log_interval
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1459

Hanming Lu's avatar
Hanming Lu committed
1460
        msg = f"Decode batch. #running-req: {num_running_reqs}, {token_msg}"
Liangsheng Yin's avatar
Liangsheng Yin committed
1461

1462
        if self.spec_algorithm.is_none():
1463
            spec_accept_length = 0
1464
        else:
1465
            spec_accept_length = (
1466
1467
                self.spec_num_total_accepted_tokens / self.spec_num_total_forward_ct
            )
1468
1469
            self.cum_spec_accept_length += self.spec_num_total_accepted_tokens
            self.cum_spec_accept_count += self.spec_num_total_forward_ct
1470
            self.spec_num_total_accepted_tokens = self.spec_num_total_forward_ct = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
1471
1472
1473
            msg += f"accept len: {spec_accept_length:.2f}, "

        if self.disaggregation_mode == DisaggregationMode.DECODE:
1474
            msg += f"pre-allocated usage: {self.disagg_decode_prealloc_queue.num_tokens_pre_allocated / self.max_total_num_tokens:.2f}, "
1475
            msg += f"#retracted-req: {len(self.disagg_decode_prealloc_queue.retracted_queue)}, "
Liangsheng Yin's avatar
Liangsheng Yin committed
1476
1477

        msg += (
1478
            f"cuda graph: {can_run_cuda_graph}, "
Liangsheng Yin's avatar
Liangsheng Yin committed
1479
            f"gen throughput (token/s): {self.last_gen_throughput:.2f}, "
1480
            f"#queue-req: {len(self.waiting_queue)}, "
Liangsheng Yin's avatar
Liangsheng Yin committed
1481
        )
1482
1483

        logger.info(msg)
1484
1485
1486
        if self.enable_metrics:
            self.stats.num_running_reqs = num_running_reqs
            self.stats.num_used_tokens = num_used
Hanming Lu's avatar
Hanming Lu committed
1487
            self.stats.token_usage = round(token_usage, 2)
1488
1489
            self.stats.cache_hit_rate = 0.0
            self.stats.gen_throughput = self.last_gen_throughput
1490
            self.stats.num_queue_reqs = len(self.waiting_queue)
1491
            self.stats.num_grammar_queue_reqs = len(self.grammar_queue)
1492
            self.stats.spec_accept_length = spec_accept_length
1493
            self.stats.total_retracted_reqs = self.total_retracted_reqs
1494
            self.metrics_collector.log_stats(self.stats)
1495
            self._emit_kv_metrics()
1496
        self._publish_kv_events()
1497

Lianmin Zheng's avatar
Lianmin Zheng committed
1498
    def check_memory(self):
Hanming Lu's avatar
Hanming Lu committed
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
        if self.is_hybrid:
            (
                full_num_used,
                swa_num_used,
                _,
                _,
                full_available_size,
                full_evictable_size,
                swa_available_size,
                swa_evictable_size,
            ) = self._get_swa_token_info()
            memory_leak = full_num_used != 0 or swa_num_used != 0
            token_msg = (
                f"{self.full_tokens_per_layer=}, {full_available_size=}, {full_evictable_size=}, {self.tree_cache.full_protected_size()=}\n"
                f"{self.swa_tokens_per_layer=}, {swa_available_size=}, {swa_evictable_size=}, {self.tree_cache.swa_protected_size()=}\n"
            )
tarinkk's avatar
tarinkk committed
1515
        else:
Hanming Lu's avatar
Hanming Lu committed
1516
1517
1518
1519
1520
1521
            _, _, available_size, evictable_size = self._get_token_info()
            protected_size = self.tree_cache.protected_size()
            memory_leak = (available_size + evictable_size) != (
                self.max_total_num_tokens
                if not self.enable_hierarchical_cache
                else self.max_total_num_tokens - protected_size
Lianmin Zheng's avatar
Lianmin Zheng committed
1522
            )
Hanming Lu's avatar
Hanming Lu committed
1523
1524
1525
1526
            token_msg = f"{self.max_total_num_tokens=}, {available_size=}, {evictable_size=}, {protected_size=}\n"

        if memory_leak:
            msg = "token_to_kv_pool_allocator memory leak detected! " f"{token_msg}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1527
            raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
1528

1529
1530
1531
1532
1533
1534
1535
1536
        if self.disaggregation_mode == DisaggregationMode.DECODE:
            req_total_size = (
                self.req_to_token_pool.size + self.req_to_token_pool.pre_alloc_size
            )
        else:
            req_total_size = self.req_to_token_pool.size

        if len(self.req_to_token_pool.free_slots) != req_total_size:
1537
            msg = (
1538
                "req_to_token_pool memory leak detected!"
1539
1540
                f"available_size={len(self.req_to_token_pool.free_slots)}, "
                f"total_size={self.req_to_token_pool.size}\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
1541
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1542
            raise ValueError(msg)
Lianmin Zheng's avatar
Lianmin Zheng committed
1543

1544
1545
        if (
            self.enable_metrics
1546
            and self.current_scheduler_metrics_enabled()
1547
            and time.perf_counter() > self.metrics_collector.last_log_time + 30
1548
1549
        ):
            # During idle time, also collect metrics every 30 seconds.
Hanming Lu's avatar
Hanming Lu committed
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
            if self.is_hybrid:
                (
                    full_num_used,
                    swa_num_used,
                    full_token_usage,
                    swa_token_usage,
                    _,
                    _,
                    _,
                    _,
                ) = self._get_swa_token_info()
                num_used = max(full_num_used, swa_num_used)
                token_usage = max(full_token_usage, swa_token_usage)
            else:
                num_used, token_usage, _, _ = self._get_token_info()
Lianmin Zheng's avatar
Lianmin Zheng committed
1565
            num_running_reqs = len(self.running_batch.reqs)
1566
1567
            self.stats.num_running_reqs = num_running_reqs
            self.stats.num_used_tokens = num_used
Hanming Lu's avatar
Hanming Lu committed
1568
            self.stats.token_usage = round(token_usage, 2)
1569
1570
            self.stats.gen_throughput = 0
            self.stats.num_queue_reqs = len(self.waiting_queue)
1571
            self.stats.num_grammar_queue_reqs = len(self.grammar_queue)
1572
            self.metrics_collector.log_stats(self.stats)
1573
        self._publish_kv_events()
1574

Hanming Lu's avatar
Hanming Lu committed
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
    def check_tree_cache(self):
        if self.is_hybrid and isinstance(self.tree_cache, SWARadixCache):
            self.tree_cache.sanity_check()

    def _get_token_info(self):
        available_size = self.token_to_kv_pool_allocator.available_size()
        evictable_size = self.tree_cache.evictable_size()
        num_used = self.max_total_num_tokens - (available_size + evictable_size)
        token_usage = num_used / self.max_total_num_tokens
        return num_used, token_usage, available_size, evictable_size

    def _get_swa_token_info(self):
        full_available_size = self.token_to_kv_pool_allocator.full_available_size()
        full_evictable_size = self.tree_cache.full_evictable_size()
        swa_available_size = self.token_to_kv_pool_allocator.swa_available_size()
        swa_evictable_size = self.tree_cache.swa_evictable_size()
        full_num_used = self.full_tokens_per_layer - (
            full_available_size + full_evictable_size
        )
        swa_num_used = self.swa_tokens_per_layer - (
            swa_available_size + swa_evictable_size
        )
        full_token_usage = full_num_used / self.full_tokens_per_layer
        swa_token_usage = swa_num_used / self.swa_tokens_per_layer
        return (
            full_num_used,
            swa_num_used,
            full_token_usage,
            swa_token_usage,
            full_available_size,
            full_evictable_size,
            swa_available_size,
            swa_evictable_size,
        )

1610
    def get_next_batch_to_run(self) -> Optional[ScheduleBatch]:
1611
        # Merge the prefill batch into the running batch
1612
1613
1614
1615
1616
1617
1618
1619
        chunked_req_to_exclude = set()
        if self.chunked_req:
            # Move the chunked request out of the batch so that we can merge
            # only finished requests to running_batch.
            chunked_req_to_exclude.add(self.chunked_req)
            self.tree_cache.cache_unfinished_req(self.chunked_req)
            # chunked request keeps its rid but will get a new req_pool_idx
            self.req_to_token_pool.free(self.chunked_req.req_pool_idx)
Lianmin Zheng's avatar
Lianmin Zheng committed
1620
        if self.last_batch and self.last_batch.forward_mode.is_extend():
1621
1622
1623
1624
            if self.last_batch.chunked_req is not None:
                # In the context pipeline parallelism, after the last chunk, the current microbatch still track outdated chunked_req.
                # We need to discard it.
                chunked_req_to_exclude.add(self.last_batch.chunked_req)
Lianmin Zheng's avatar
Lianmin Zheng committed
1625

1626
            # Filter batch
1627
            last_bs = self.last_batch.batch_size()
1628
1629
1630
            self.last_batch.filter_batch(
                chunked_req_to_exclude=list(chunked_req_to_exclude)
            )
1631
            if self.last_batch.batch_size() < last_bs:
Lianmin Zheng's avatar
Lianmin Zheng committed
1632
                self.running_batch.batch_is_full = False
1633

1634
            # Merge the new batch into the running batch
1635
            if not self.last_batch.is_empty():
Lianmin Zheng's avatar
Lianmin Zheng committed
1636
                if self.running_batch.is_empty():
1637
1638
                    self.running_batch = self.last_batch
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1639
                    # Merge running_batch with prefill batch
1640
                    self.running_batch.merge_batch(self.last_batch)
1641

1642
        new_batch = self.get_new_batch_prefill()
1643

1644
1645
1646
1647
1648
        need_dp_attn_preparation = require_mlp_sync(self.server_args)

        if need_dp_attn_preparation and not self.spec_algorithm.is_none():
            # In speculative decoding, prefill batches and decode batches cannot be processed in the same DP attention group.
            # We prepare idle batches in advance to skip preparing decode batches when there are prefill batches in the group.
1649
            new_batch = self.prepare_mlp_sync_batch(new_batch)
1650
1651
1652
            need_dp_attn_preparation = new_batch is None

        if new_batch is not None:
1653
1654
1655
1656
            # Run prefill first if possible
            ret = new_batch
        else:
            # Run decode
Lianmin Zheng's avatar
Lianmin Zheng committed
1657
            if not self.running_batch.is_empty():
1658
                self.running_batch = self.update_running_batch(self.running_batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
1659
1660
1661
                ret = self.running_batch if not self.running_batch.is_empty() else None
            else:
                ret = None
1662

1663
1664
        # Handle DP attention
        if need_dp_attn_preparation:
1665
            ret = self.prepare_mlp_sync_batch(ret)
1666
1667

        return ret
1668

1669
1670
1671
1672
1673
1674
    def get_num_allocatable_reqs(self, running_bs):
        res = global_server_args_dict["max_micro_batch_size"] - running_bs
        if self.pp_size > 1:
            res = min(res, self.req_to_token_pool.available_size())
        return res

Lianmin Zheng's avatar
Lianmin Zheng committed
1675
    def get_new_batch_prefill(self) -> Optional[ScheduleBatch]:
Lianmin Zheng's avatar
Lianmin Zheng committed
1676
        # Check if the grammar is ready in the grammar queue
1677
        if self.grammar_queue:
1678
            self.move_ready_grammar_requests()
1679

Lianmin Zheng's avatar
Lianmin Zheng committed
1680
1681
        # Handle the cases where prefill is not allowed
        if (
Lianmin Zheng's avatar
Lianmin Zheng committed
1682
            self.running_batch.batch_is_full or len(self.waiting_queue) == 0
1683
        ) and self.chunked_req is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
1684
1685
            return None

Lianmin Zheng's avatar
Lianmin Zheng committed
1686
        running_bs = len(self.running_batch.reqs)
1687
        # Ignore the check if self.chunked_req is not None.
1688
1689
1690
1691
1692
        # In the non-PP case, when self.chunked_req is not None, num_allocatable_reqs should always be greater than 0,
        # as the space for the chunked request has just been released.
        # In PP case, a chunked req can start in one microbatch and end in another microbatch, so the max_running_requests per microbatch should not be strict.
        # Instead, we should always allow chunked request to be added, otherwise, there will be a memory leak.
        if self.get_num_allocatable_reqs(running_bs) <= 0 and not self.chunked_req:
Lianmin Zheng's avatar
Lianmin Zheng committed
1693
            self.running_batch.batch_is_full = True
1694
1695
            return None

1696
        if self.enable_hierarchical_cache:
1697
            self.tree_cache.check_hicache_events()
1698

1699
        # Get priority queue
1700
        self.policy.calc_priority(self.waiting_queue)
1701

Lianmin Zheng's avatar
Lianmin Zheng committed
1702
        # Prefill policy
1703
        adder = PrefillAdder(
1704
            self.page_size,
1705
            self.tree_cache,
1706
            self.token_to_kv_pool_allocator,
1707
1708
1709
1710
            self.running_batch,
            self.new_token_ratio,
            self.max_prefill_tokens,
            self.chunked_prefill_size,
1711
            running_bs if self.is_mixed_chunk else 0,
1712
1713
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1714
        if self.chunked_req is not None:
1715
1716
            self.chunked_req.init_next_round_input()
            self.chunked_req = adder.add_chunked_req(self.chunked_req)
1717

1718
        if self.enable_lora:
Lianmin Zheng's avatar
Lianmin Zheng committed
1719
1720
            lora_set = set([req.lora_path for req in self.running_batch.reqs])

1721
        # Get requests from the waiting queue to a new prefill batch
1722
1723
        for req in self.waiting_queue:
            if (
1724
                self.enable_lora
1725
1726
1727
1728
1729
1730
1731
                and len(
                    lora_set
                    | set([req.lora_path for req in adder.can_run_list])
                    | set([req.lora_path])
                )
                > self.max_loras_per_batch
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1732
                self.running_batch.batch_is_full = True
1733
1734
                break

1735
            if len(adder.can_run_list) >= self.get_num_allocatable_reqs(running_bs):
Lianmin Zheng's avatar
Lianmin Zheng committed
1736
                self.running_batch.batch_is_full = True
1737
                break
1738

Byron Hsu's avatar
Byron Hsu committed
1739
1740
1741
1742
1743
1744
1745
            if self.disaggregation_mode == DisaggregationMode.PREFILL:
                # In prefill mode, prealloc queue and transfer queue can also take memory,
                # so we need to check if the available size for the actual available size.
                if len(adder.can_run_list) >= self.req_to_token_pool.available_size():
                    self.running_batch.batch_is_full = True
                    break

1746
1747
1748
            if self.enable_hicache_storage:
                self.tree_cache.check_prefetch_progress(req.rid)

1749
1750
            req.init_next_round_input(self.tree_cache)
            res = adder.add_one_req(req, has_chunked_req=(self.chunked_req is not None))
1751

1752
1753
            if res != AddReqResult.CONTINUE:
                if res == AddReqResult.NO_TOKEN:
1754
1755
                    if self.enable_hierarchical_cache:
                        # Set batch_is_full after making sure there are requests that can be served
Lianmin Zheng's avatar
Lianmin Zheng committed
1756
1757
                        self.running_batch.batch_is_full = len(
                            adder.can_run_list
1758
                        ) > 0 or (not self.running_batch.is_empty())
1759
                    else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1760
                        self.running_batch.batch_is_full = True
1761
1762
                break

Lianmin Zheng's avatar
Lianmin Zheng committed
1763
        # Update waiting queue
1764
        can_run_list: List[Req] = adder.can_run_list
Lianmin Zheng's avatar
Lianmin Zheng committed
1765
1766
        if len(can_run_list) == 0:
            return None
1767
1768
1769
1770

        if self.enable_metrics:
            # only record queue time when enable_metrics is True to avoid overhead
            for req in can_run_list:
1771
                req.queue_time_end = time.perf_counter()
1772

Lianmin Zheng's avatar
Lianmin Zheng committed
1773
1774
1775
        self.waiting_queue = [
            x for x in self.waiting_queue if x not in set(can_run_list)
        ]
1776

1777
1778
1779
        if adder.new_chunked_req is not None:
            assert self.chunked_req is None
            self.chunked_req = adder.new_chunked_req
1780

1781
1782
        if self.chunked_req:
            self.chunked_req.is_chunked += 1
Lianmin Zheng's avatar
Lianmin Zheng committed
1783

1784
        # Print stats
1785
        if self.current_scheduler_metrics_enabled():
1786
            self.log_prefill_stats(adder, can_run_list, running_bs)
1787

Lianmin Zheng's avatar
Lianmin Zheng committed
1788
        # Create a new batch
1789
1790
1791
        new_batch = ScheduleBatch.init_new(
            can_run_list,
            self.req_to_token_pool,
1792
            self.token_to_kv_pool_allocator,
1793
            self.tree_cache,
1794
            self.model_config,
1795
            self.enable_overlap,
1796
            self.spec_algorithm,
1797
            self.server_args.enable_custom_logit_processor,
1798
            chunked_req=self.chunked_req,
1799
        )
1800
1801
        if self.enable_hierarchical_cache:
            # todo (zhiqiang): disable cuda graph execution if hicache loading triggered
1802
1803
1804
            new_batch.hicache_consumer_index = (
                self.tree_cache.ready_to_load_host_cache()
            )
1805

1806
        new_batch.prepare_for_extend()
1807

Lianmin Zheng's avatar
Lianmin Zheng committed
1808
        # Mixed-style chunked prefill
1809
1810
        if (
            self.is_mixed_chunk
Lianmin Zheng's avatar
Lianmin Zheng committed
1811
            and not self.running_batch.is_empty()
1812
1813
1814
            and not (new_batch.return_logprob or self.running_batch.return_logprob)
        ):
            # TODO (lianmin): support return_logprob + mixed chunked prefill
1815
1816
            self.running_batch.filter_batch()
            if not self.running_batch.is_empty():
1817
                self.running_batch.prepare_for_decode()
1818
1819
                new_batch.mix_with_running(self.running_batch)
                new_batch.decoding_reqs = self.running_batch.reqs
Lianmin Zheng's avatar
Lianmin Zheng committed
1820
1821
1822
            self.running_batch = ScheduleBatch(
                reqs=[], batch_is_full=self.running_batch.batch_is_full
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1823
1824
        else:
            new_batch.decoding_reqs = None
Lianmin Zheng's avatar
Lianmin Zheng committed
1825
1826
1827

        return new_batch

Lianmin Zheng's avatar
Lianmin Zheng committed
1828
    def update_running_batch(self, batch: ScheduleBatch) -> Optional[ScheduleBatch]:
1829
        """Update the current running decoding batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1830
        initial_bs = batch.batch_size()
Lianmin Zheng's avatar
Lianmin Zheng committed
1831

1832
1833
        batch.filter_batch()
        if batch.is_empty():
Lianmin Zheng's avatar
Lianmin Zheng committed
1834
1835
            batch.batch_is_full = False
            return batch
1836

Lianmin Zheng's avatar
Lianmin Zheng committed
1837
        # Check if decode out of memory
1838
        if not batch.check_decode_mem(self.decode_mem_cache_buf_multiplier) or (
1839
            TEST_RETRACT and batch.batch_size() > 10
1840
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1841
1842
            old_ratio = self.new_token_ratio

1843
            retracted_reqs, new_token_ratio = batch.retract_decode(self.server_args)
1844
            num_retracted_reqs = len(retracted_reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
1845
            self.new_token_ratio = new_token_ratio
1846

Lianmin Zheng's avatar
Lianmin Zheng committed
1847
            logger.info(
1848
                "KV cache pool is full. Retract requests. "
1849
                f"#retracted_reqs: {num_retracted_reqs}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
1850
1851
                f"#new_token_ratio: {old_ratio:.4f} -> {self.new_token_ratio:.4f}"
            )
1852

1853
            self._extend_requests_to_queue(retracted_reqs, is_retracted=True)
1854
            self.total_retracted_reqs += num_retracted_reqs
Lianmin Zheng's avatar
Lianmin Zheng committed
1855
1856
        else:
            self.new_token_ratio = max(
1857
                self.new_token_ratio - self.new_token_ratio_decay,
Lianmin Zheng's avatar
Lianmin Zheng committed
1858
1859
1860
                self.min_new_token_ratio,
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
1861
        if batch.batch_size() < initial_bs:
Lianmin Zheng's avatar
Lianmin Zheng committed
1862
            batch.batch_is_full = False
Lianmin Zheng's avatar
Lianmin Zheng committed
1863
1864

        # Update batch tensors
1865
        batch.prepare_for_decode()
Lianmin Zheng's avatar
Lianmin Zheng committed
1866
        return batch
Lianmin Zheng's avatar
Lianmin Zheng committed
1867

1868
1869
1870
    def run_batch(
        self, batch: ScheduleBatch
    ) -> Union[GenerationBatchResult, EmbeddingBatchResult]:
1871
        """Run a batch."""
Lianmin Zheng's avatar
Lianmin Zheng committed
1872
1873
        self.forward_ct += 1

1874
1875
        # Whether to run the profiler
        self._profile_batch_predicate(batch)
1876
1877
1878
1879
        if self.forward_sleep_time is not None:
            logger.info(f"Scheduler.run_batch sleep {self.forward_sleep_time}s")
            time.sleep(self.forward_sleep_time)

1880
        # Run forward
1881
        if self.is_generation:
1882
1883
            if self.spec_algorithm.is_none():
                model_worker_batch = batch.get_model_worker_batch()
1884
1885
1886
1887
1888

                # update the consumer index of hicache to the running batch
                self.tp_worker.set_hicache_consumer(
                    model_worker_batch.hicache_consumer_index
                )
1889
                if self.pp_group.is_last_rank:
1890
                    logits_output, next_token_ids, can_run_cuda_graph = (
1891
1892
1893
                        self.tp_worker.forward_batch_generation(model_worker_batch)
                    )
                else:
1894
                    pp_hidden_states_proxy_tensors, _, can_run_cuda_graph = (
1895
1896
                        self.tp_worker.forward_batch_generation(model_worker_batch)
                    )
1897
                bid = model_worker_batch.bid
Lianmin Zheng's avatar
Lianmin Zheng committed
1898
            else:
1899
1900
1901
                (
                    logits_output,
                    next_token_ids,
1902
                    bid,
1903
                    num_accepted_tokens,
1904
                    can_run_cuda_graph,
1905
                ) = self.draft_worker.forward_batch_speculative_generation(batch)
1906
1907
1908
                bs = batch.batch_size()
                self.spec_num_total_accepted_tokens += num_accepted_tokens + bs
                self.spec_num_total_forward_ct += bs
1909
                self.num_generated_tokens += num_accepted_tokens
1910
1911
1912

            if self.pp_group.is_last_rank:
                batch.output_ids = next_token_ids
1913

1914
1915
1916
            # These 2 values are needed for processing the output, but the values can be
            # modified by overlap schedule. So we have to copy them here so that
            # we can use the correct values in output processing.
1917
            if batch.return_logprob or self.spec_algorithm.is_eagle():
1918
                extend_input_len_per_req = [req.extend_input_len for req in batch.reqs]
1919
1920
1921
            else:
                extend_input_len_per_req = None
            if batch.return_logprob:
1922
1923
1924
1925
1926
1927
                extend_logprob_start_len_per_req = [
                    req.extend_logprob_start_len for req in batch.reqs
                ]
            else:
                extend_logprob_start_len_per_req = None

1928
            ret = GenerationBatchResult(
1929
1930
1931
1932
1933
1934
1935
                logits_output=logits_output if self.pp_group.is_last_rank else None,
                pp_hidden_states_proxy_tensors=(
                    pp_hidden_states_proxy_tensors
                    if not self.pp_group.is_last_rank
                    else None
                ),
                next_token_ids=next_token_ids if self.pp_group.is_last_rank else None,
1936
1937
                extend_input_len_per_req=extend_input_len_per_req,
                extend_logprob_start_len_per_req=extend_logprob_start_len_per_req,
1938
                bid=bid,
1939
                can_run_cuda_graph=can_run_cuda_graph,
1940
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1941
1942
1943
        else:  # embedding or reward model
            model_worker_batch = batch.get_model_worker_batch()
            embeddings = self.tp_worker.forward_batch_embedding(model_worker_batch)
1944
1945
1946
            ret = EmbeddingBatchResult(
                embeddings=embeddings, bid=model_worker_batch.bid
            )
1947
        return ret
Chayenne's avatar
Chayenne committed
1948

1949
1950
1951
1952
    def process_batch_result(
        self,
        batch: ScheduleBatch,
        result: Union[GenerationBatchResult, EmbeddingBatchResult],
1953
        launch_done: Optional[threading.Event] = None,
1954
    ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1955
        if batch.forward_mode.is_decode():
1956
            self.process_batch_result_decode(batch, result, launch_done)
1957
        elif batch.forward_mode.is_extend():
1958
            self.process_batch_result_prefill(batch, result, launch_done)
1959
1960
        elif batch.forward_mode.is_idle():
            if self.enable_overlap:
1961
                self.tp_worker.resolve_last_batch_result(launch_done)
1962
                self.set_next_batch_sampling_info_done(batch)
1963
        elif batch.forward_mode.is_dummy_first():
1964
            self.set_next_batch_sampling_info_done(batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
1965

1966
1967
1968
1969
1970
1971
1972
        if self.return_health_check_ct:
            # Return some signal for the health check.
            # This is used to prevent the health check signal being blocked by long context prefill.
            # However, one minor issue is that this code path does not check the status of detokenizer manager.
            self.return_health_check_ct -= 1
            self.send_to_tokenizer.send_pyobj(HealthCheckOutput())

1973
1974
    def prepare_mlp_sync_batch(self, local_batch: ScheduleBatch):
        return self.prepare_mlp_sync_batch_raw(
1975
1976
1977
            local_batch,
            dp_size=self.server_args.dp_size,
            attn_tp_size=self.attn_tp_size,
1978
            tp_group=self.tp_group,
1979
1980
1981
1982
            get_idle_batch=self.get_idle_batch,
            disable_cuda_graph=self.server_args.disable_cuda_graph,
            spec_algorithm=self.spec_algorithm,
            speculative_num_draft_tokens=self.server_args.speculative_num_draft_tokens,
1983
1984
1985
            enable_two_batch_overlap=self.server_args.enable_two_batch_overlap,
            enable_deepep_moe=self.server_args.enable_deepep_moe,
            deepep_mode=DeepEPMode[self.server_args.deepep_mode],
1986
            require_mlp_tp_gather=require_mlp_tp_gather(self.server_args),
1987
            disable_overlap_schedule=self.server_args.disable_overlap_schedule,
1988
1989
1990
        )

    @staticmethod
1991
    def prepare_mlp_sync_batch_raw(
1992
1993
1994
        local_batch: ScheduleBatch,
        dp_size,
        attn_tp_size: int,
1995
        tp_group,
1996
1997
1998
1999
        get_idle_batch,
        disable_cuda_graph: bool,
        spec_algorithm,
        speculative_num_draft_tokens,
2000
2001
2002
        enable_two_batch_overlap: bool,
        enable_deepep_moe: bool,
        deepep_mode: DeepEPMode,
2003
        require_mlp_tp_gather: bool,
2004
        disable_overlap_schedule: bool,
2005
    ):
2006
2007
2008
        # Check if other DP workers have running batches
        if local_batch is None:
            num_tokens = 0
2009
            num_tokens_for_logprob = 0
2010
2011
        elif local_batch.forward_mode.is_decode():
            num_tokens = local_batch.batch_size()
2012
            num_tokens_for_logprob = num_tokens
2013
2014
        else:
            num_tokens = local_batch.extend_num_tokens
2015
            num_tokens_for_logprob = sum(
Lianmin Zheng's avatar
Lianmin Zheng committed
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
                [
                    # We should have at least 1 token for sample in every case.
                    max(extend_len - logprob_start_len, 1)
                    for logprob_start_len, extend_len in zip(
                        local_batch.extend_logprob_start_lens, local_batch.extend_lens
                    )
                ]
            )

        if local_batch is None or local_batch.forward_mode.is_decode_or_idle():
            can_cuda_graph = 1
        else:
            can_cuda_graph = 0

        is_extend_in_batch = (
            local_batch.forward_mode.is_extend() if local_batch else False
        )
2033
2034

        tbo_preparer = TboDPAttentionPreparer()
2035
2036
2037
2038
2039
2040
        if disable_overlap_schedule:
            group = tp_group.device_group
            device = tp_group.device
        else:
            group = tp_group.cpu_group
            device = "cpu"
2041

Lianmin Zheng's avatar
Lianmin Zheng committed
2042
2043
2044
2045
        local_info = torch.tensor(
            [
                num_tokens,
                can_cuda_graph,
2046
                num_tokens_for_logprob,
Lianmin Zheng's avatar
Lianmin Zheng committed
2047
                is_extend_in_batch,
2048
2049
2050
2051
2052
2053
                *tbo_preparer.prepare_all_gather(
                    local_batch,
                    deepep_mode,
                    enable_deepep_moe,
                    enable_two_batch_overlap,
                ),
Lianmin Zheng's avatar
Lianmin Zheng committed
2054
2055
            ],
            dtype=torch.int64,
2056
            device=device,
Lianmin Zheng's avatar
Lianmin Zheng committed
2057
2058
        )
        global_info = torch.empty(
2059
            (dp_size, attn_tp_size, 6),
Lianmin Zheng's avatar
Lianmin Zheng committed
2060
            dtype=torch.int64,
2061
            device=device,
Lianmin Zheng's avatar
Lianmin Zheng committed
2062
        )
2063
        torch.distributed.all_gather_into_tensor(
Lianmin Zheng's avatar
Lianmin Zheng committed
2064
2065
            global_info.flatten(),
            local_info,
2066
            group=group,
2067
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
2068
2069
2070
2071
        global_num_tokens = global_info[:, 0, 0].tolist()
        can_cuda_graph = min(global_info[:, 0, 1].tolist())
        global_num_tokens_for_logprob = global_info[:, 0, 2].tolist()
        is_extend_in_batch = global_info[:, 0, 3].tolist()
2072

2073
2074
2075
2076
        tbo_split_seq_index, global_forward_mode = tbo_preparer.compute_output(
            global_info[:, :, 4:6]
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
2077
        if local_batch is None and max(global_num_tokens) > 0:
2078
            local_batch = get_idle_batch()
2079
2080

        if local_batch is not None:
2081
            # TODO: handle the case when moe_dense_tp_size != 1
2082
            if not require_mlp_tp_gather:
2083
2084
2085
2086
2087
2088
2089
                local_batch.global_num_tokens = [num_tokens]
                local_batch.global_num_tokens_for_logprob = [num_tokens_for_logprob]
            else:
                local_batch.global_num_tokens = global_num_tokens
                local_batch.global_num_tokens_for_logprob = (
                    global_num_tokens_for_logprob
                )
2090
            local_batch.is_extend_in_batch = any(is_extend_in_batch)
2091
2092
            local_batch.tbo_split_seq_index = tbo_split_seq_index
            local_batch.global_forward_mode = global_forward_mode
2093

2094
            # Check forward mode for cuda graph
2095
            if not disable_cuda_graph:
Lianmin Zheng's avatar
Lianmin Zheng committed
2096
                local_batch.can_run_dp_cuda_graph = can_cuda_graph
2097

2098
        return local_batch
2099
2100
2101
2102
2103

    def get_idle_batch(self):
        idle_batch = ScheduleBatch.init_new(
            [],
            self.req_to_token_pool,
2104
            self.token_to_kv_pool_allocator,
2105
2106
2107
            self.tree_cache,
            self.model_config,
            self.enable_overlap,
2108
            self.spec_algorithm,
2109
            self.server_args.enable_custom_logit_processor,
2110
2111
2112
2113
        )
        idle_batch.prepare_for_idle()
        return idle_batch

2114
2115
    def move_ready_grammar_requests(self):
        """Move requests whose grammar objects are ready from grammar_queue to waiting_queue."""
2116

2117
        num_ready_reqs = 0
2118
        num_timeout_reqs = 0
2119
2120
        for req in self.grammar_queue:
            try:
2121
2122
2123
                if req.finished():  # It is aborted by AbortReq
                    num_ready_reqs += 1
                    continue
2124
                req.grammar = req.grammar.result(timeout=0.03)
2125
2126
2127
2128
2129
                self.grammar_backend.set_cache(req.grammar_key, req.grammar.copy())
                if req.grammar is INVALID_GRAMMAR_OBJ:
                    req.set_finish_with_abort(
                        f"Invalid grammar request: {req.grammar_key=}"
                    )
2130
2131
                num_ready_reqs += 1
            except futures._base.TimeoutError:
2132
                req.grammar_wait_ct += 1
2133
2134
                # NOTE(lianmin): this timeout is the waiting time of the above line. It is
                # not the waiting time from it enters the grammar queue.
2135
                if req.grammar_wait_ct > GRAMMAR_TIMEOUT / 0.03:
2136
                    num_timeout_reqs = 1
2137
2138
                break

2139
        if self.server_args.enable_dp_attention:
2140
2141
            tp_size = self.attn_tp_size
            tp_group = self.attn_tp_cpu_group
2142
        else:
2143
2144
2145
2146
2147
            tp_size = self.tp_size
            tp_group = self.tp_cpu_group

        if tp_size > 1:
            # Sync across TP ranks to make sure they have the same number of ready requests
2148
            tensor = torch.tensor([num_ready_reqs, num_timeout_reqs], dtype=torch.int32)
2149
2150
2151
            torch.distributed.all_reduce(
                tensor, op=torch.distributed.ReduceOp.MAX, group=tp_group
            )
2152
            num_ready_reqs_max, num_timeout_reqs_max = tensor.tolist()
2153

2154
            for i in range(num_ready_reqs, num_ready_reqs_max):
2155
                req = self.grammar_queue[i]
2156
2157
                if req.finished():  # It is aborted by AbortReq
                    continue
2158
                req.grammar = req.grammar.result()
2159
2160
2161
2162
2163
2164
2165
2166
                self.grammar_backend.set_cache(req.grammar_key, req.grammar.copy())
                if req.grammar is INVALID_GRAMMAR_OBJ:
                    req.set_finish_with_abort(
                        f"Invalid grammar request: {req.grammar_key=}"
                    )
        else:
            num_ready_reqs_max = num_ready_reqs
            num_timeout_reqs_max = num_timeout_reqs
2167

2168
2169
2170
2171
2172
2173
2174
        for i in range(num_ready_reqs, num_ready_reqs + num_timeout_reqs_max):
            req = self.grammar_queue[i]
            req.grammar.cancel()
            error_msg = f"Grammar preprocessing timed out for {req.grammar_key=}"
            req.set_finish_with_abort(error_msg)
            self.grammar_backend.set_cache(req.grammar_key, INVALID_GRAMMAR_OBJ)
        num_ready_reqs = num_ready_reqs_max + num_timeout_reqs_max
2175

2176
        self._extend_requests_to_queue(self.grammar_queue[:num_ready_reqs])
2177
2178
        self.grammar_queue = self.grammar_queue[num_ready_reqs:]

2179
2180
2181
2182
2183
2184
2185
    def set_next_batch_sampling_info_done(self, batch: ScheduleBatch):
        if batch.next_batch_sampling_info:
            if batch.next_batch_sampling_info.grammars is not None:
                batch.next_batch_sampling_info.update_regex_vocab_mask()
                self.current_stream.synchronize()
            batch.next_batch_sampling_info.sampling_info_done.set()

2186
2187
2188
    def watchdog_thread(self):
        """A watch dog thread that will try to kill the server itself if one forward batch takes too long."""
        self.watchdog_last_forward_ct = 0
2189
        self.watchdog_last_time = time.perf_counter()
2190
2191

        while True:
2192
            current = time.perf_counter()
2193
2194
2195
2196
2197
2198
2199
2200
2201
            if self.cur_batch is not None:
                if self.watchdog_last_forward_ct == self.forward_ct:
                    if current > self.watchdog_last_time + self.watchdog_timeout:
                        break
                else:
                    self.watchdog_last_forward_ct = self.forward_ct
                    self.watchdog_last_time = current
            time.sleep(self.watchdog_timeout // 2)

Lianmin Zheng's avatar
Lianmin Zheng committed
2202
2203
        if not disable_request_logging():
            # Print batch size and memory pool info to check whether there are de-sync issues.
Hanming Lu's avatar
Hanming Lu committed
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
            if self.is_hybrid:
                (
                    _,
                    _,
                    _,
                    _,
                    full_available_size,
                    full_evictable_size,
                    swa_available_size,
                    swa_evictable_size,
                ) = self._get_swa_token_info()
                info_msg = (
                    f"{full_available_size=}, "
                    f"{full_evictable_size=}, "
                    f"{swa_available_size=}, "
                    f"{swa_evictable_size=}, "
                )
            else:
                _, _, available_size, evictable_size = self._get_token_info()
                info_msg = f"{available_size=}, " f"{evictable_size=}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
2224
2225
2226
            logger.error(
                f"{self.cur_batch.batch_size()=}, "
                f"{self.cur_batch.reqs=}, "
Hanming Lu's avatar
Hanming Lu committed
2227
                f"{info_msg}"
Lianmin Zheng's avatar
Lianmin Zheng committed
2228
2229
            )

2230
        pyspy_dump_schedulers()
Lianmin Zheng's avatar
Lianmin Zheng committed
2231
        logger.error(f"Watchdog timeout ({self.watchdog_timeout=})")
2232
2233
        print(file=sys.stderr, flush=True)
        print(file=sys.stdout, flush=True)
Lianmin Zheng's avatar
Lianmin Zheng committed
2234
2235

        # Wait for some time so that the parent process can print the error.
2236
2237
2238
        time.sleep(5)
        self.parent_process.send_signal(signal.SIGQUIT)

2239
2240
2241
    def flush_cache_wrapped(self, recv_req: FlushCacheReqInput):
        success = self.flush_cache()
        return FlushCacheReqOutput(success=success)
2242

2243
    def flush_cache(self):
2244
        """Flush the memory pool and cache."""
2245
2246
2247
2248
2249
        if (
            len(self.waiting_queue) == 0
            and self.running_batch.is_empty()
            and (self.pp_size == 1 or all(x.is_empty() for x in self.running_mbs))
        ):
2250
2251
            self.cur_batch = None
            self.last_batch = None
2252
            self.tree_cache.reset()
2253
            if self.grammar_backend:
Lianmin Zheng's avatar
Lianmin Zheng committed
2254
                self.grammar_backend.reset()
2255
            self.req_to_token_pool.clear()
2256
            self.token_to_kv_pool_allocator.clear()
2257
2258
2259

            if not self.spec_algorithm.is_none():
                self.draft_worker.model_runner.req_to_token_pool.clear()
2260
                self.draft_worker.model_runner.token_to_kv_pool_allocator.clear()
2261
2262
2263
2264
2265

            self.num_generated_tokens = 0
            self.forward_ct_decode = 0
            self.spec_num_total_accepted_tokens = 0
            self.spec_num_total_forward_ct = 0
2266
2267
            self.cum_spec_accept_length = 0
            self.cum_spec_accept_count = 0
2268
2269
2270
2271
2272
2273
2274
            torch.cuda.empty_cache()
            logger.info("Cache flushed successfully!")
            if_success = True
        else:
            logging.warning(
                f"Cache not flushed because there are pending requests. "
                f"#queue-req: {len(self.waiting_queue)}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
2275
                f"#running-req: {len(self.running_batch.reqs)}"
2276
2277
2278
2279
            )
            if_success = False
        return if_success

Liangsheng Yin's avatar
Liangsheng Yin committed
2280
2281
    def get_load(self):
        # TODO(lsyin): use dynamically maintained num_waiting_tokens
Hanming Lu's avatar
Hanming Lu committed
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
        if self.is_hybrid:
            load_full = (
                self.full_tokens_per_layer
                - self.token_to_kv_pool_allocator.full_available_size()
                - self.tree_cache.full_evictable_size()
            )
            load_swa = (
                self.swa_tokens_per_layer
                - self.token_to_kv_pool_allocator.swa_available_size()
                - self.tree_cache.swa_evictable_size()
            )
            load = max(load_full, load_swa)
        else:
            load = (
                self.max_total_num_tokens
                - self.token_to_kv_pool_allocator.available_size()
                - self.tree_cache.evictable_size()
            )
Liangsheng Yin's avatar
Liangsheng Yin committed
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
        load += sum(len(req.origin_input_ids) for req in self.waiting_queue)
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
            load += sum(
                len(req.origin_input_ids)
                for req in self.disagg_prefill_bootstrap_queue.queue
            )
        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            load += sum(
                len(req.req.origin_input_ids)
                for req in self.disagg_decode_prealloc_queue.queue
            )

        return load

2314
2315
2316
    def get_internal_state(self, recv_req: GetInternalStateReq):
        ret = dict(global_server_args_dict)
        ret["last_gen_throughput"] = self.last_gen_throughput
2317
2318
2319
2320
2321
2322
2323
2324
2325
        ret["memory_usage"] = {
            "weight": round(
                self.tp_worker.worker.model_runner.weight_load_mem_usage, 2
            ),
            "kvcache": round(
                self.token_to_kv_pool_allocator.get_kvcache().mem_usage, 2
            ),
            "token_capacity": int(self.max_total_num_tokens),
        }
2326
2327
2328
2329
2330
2331

        if not _is_cpu:
            ret["memory_usage"]["cuda_graph"] = round(
                self.tp_worker.worker.model_runner.cuda_graph_mem_usage, 2
            )

2332
2333
2334
2335
2336
2337
        if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
            ret["avg_spec_accept_length"] = (
                self.cum_spec_accept_length / self.cum_spec_accept_count
            )
        if RECORD_STEP_TIME:
            ret["step_time_dict"] = self.step_time_dict
Liangsheng Yin's avatar
Liangsheng Yin committed
2338
2339
2340
2341

        ret["load"] = self.get_load()

        return GetInternalStateReqOutput(internal_state=ret)
2342
2343
2344
2345
2346

    def set_internal_state(self, recv_req: SetInternalStateReq):
        server_args_dict = recv_req.server_args
        args_allow_update = set(
            [
2347
                "max_micro_batch_size",
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
                "speculative_accept_threshold_single",
                "speculative_accept_threshold_acc",
            ]
        )
        if_success = True
        for k, v in server_args_dict.items():
            if k not in args_allow_update:
                logging.warning(f"Updating {k} is not supported.")
                if_success = False
                break
2358
2359
2360
2361
2362
2363
2364
2365
            elif k == "max_micro_batch_size" and (
                v > self.max_running_requests // self.pp_size or v < 1
            ):
                logging.warning(
                    f"Updating {k} to {v} is rejected because it is out of the valid range [1, {self.max_running_requests // self.pp_size}]."
                )
                if_success = False
                break
2366
2367
2368
2369
2370
2371
2372
2373
2374
        if if_success:
            if not self.spec_algorithm.is_none() and self.cum_spec_accept_count > 0:
                avg_spec_accept_length = (
                    self.cum_spec_accept_length / self.cum_spec_accept_count
                )
                logger.info(f"{avg_spec_accept_length=}")
            self.cum_spec_accept_length = self.cum_spec_accept_count = 0
            for k, v in server_args_dict.items():
                global_server_args_dict[k] = v
2375
            logger.info(f"Global server args updated! {global_server_args_dict=}")
2376
2377
2378
2379
2380
        return SetInternalStateReqOutput(
            updated=True,
            server_args=global_server_args_dict,
        )

2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
    def handle_rpc_request(self, recv_req: RpcReqInput):
        # Handle RPC requests
        logger.info(
            f"handle_rpc_request: {recv_req.method}, param: {recv_req.parameters}"
        )

        success = True
        exec = None
        try:
            func = getattr(self, recv_req.method)
            func(recv_req.parameters)
        except Exception as e:
            success = False
            exec = e
            logger.error(f"Failed to call rpc {recv_req.method}: {str(e)}")

        barrier()
        return RpcReqOutput(success, "" if not exec else str(exec))

    def save_remote_model(self, params):
        url = params["url"]

2403
        worker = self.tp_worker.worker
2404
2405
2406
2407

        worker.model_runner.save_remote_model(url)

    def save_sharded_model(self, params):
2408
        worker = self.tp_worker.worker
2409
2410
2411
2412
2413
2414
2415

        worker.model_runner.save_sharded_model(
            path=params["path"],
            pattern=params["pattern"],
            max_size=params["max_size"],
        )

2416
2417
    def abort_request(self, recv_req: AbortReq):
        # Delete requests in the waiting queue
Lianmin Zheng's avatar
Lianmin Zheng committed
2418
        to_del = []
2419
        for i, req in enumerate(self.waiting_queue):
2420
            if recv_req.abort_all or req.rid.startswith(recv_req.rid):
Lianmin Zheng's avatar
Lianmin Zheng committed
2421
                to_del.append(i)
2422

Lianmin Zheng's avatar
Lianmin Zheng committed
2423
        # Sort in reverse order to avoid index issues when deleting
Lianmin Zheng's avatar
Lianmin Zheng committed
2424
        for i in reversed(to_del):
2425
2426
2427
            # Abort method 1: directly pop from the queue
            # This only works for requests that have not started anything.
            # We still need to send something back to TokenizerManager to clean up the state.
Lianmin Zheng's avatar
Lianmin Zheng committed
2428
            req = self.waiting_queue.pop(i)
Lianmin Zheng's avatar
Lianmin Zheng committed
2429
            self.send_to_tokenizer.send_pyobj(AbortReq(req.rid))
2430
            logger.debug(f"Abort queued request. {req.rid=}")
2431

2432
2433
2434
2435
2436
        # Delete the requests in the grammar queue
        for req in self.grammar_queue:
            # Abort method 2: call `set_finish_with_abort`
            # The request will still run one prefill forward pass.
            # In this case, we change the input_ids to be only one token to make this prefill cheap.
2437
            if recv_req.abort_all or req.rid.startswith(recv_req.rid):
2438
                logger.debug(f"Abort grammar queue request. {req.rid=}")
2439
2440
                if req.grammar:
                    req.grammar.cancel()
2441
2442
                req.set_finish_with_abort("Aborted by AbortReq.")

2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
        # Delete requests not in the waiting queue when PD disaggregation is enabled
        if self.disaggregation_mode == DisaggregationMode.PREFILL:
            # Abort requests that have not yet been bootstrapped
            for i, req in enumerate(self.disagg_prefill_bootstrap_queue.queue):
                logger.debug(f"Abort bootstrap queue request. {req.rid=}")
                if recv_req.abort_all or req.rid.startswith(recv_req.rid):
                    if hasattr(req.disagg_kv_sender, "abort"):
                        req.disagg_kv_sender.abort()

            # Abort in-flight requests
            for i, req in enumerate(self.disagg_prefill_inflight_queue):
                logger.debug(f"Abort inflight queue request. {req.rid=}")
                if recv_req.abort_all or req.rid.startswith(recv_req.rid):
                    if hasattr(req.disagg_kv_sender, "abort"):
                        req.disagg_kv_sender.abort()

        elif self.disaggregation_mode == DisaggregationMode.DECODE:
            # Abort requests that have not yet finished preallocation
            for i, decode_req in enumerate(self.disagg_decode_prealloc_queue.queue):
                logger.debug(f"Abort prealloc queue request. {decode_req.req.rid=}")
                if recv_req.abort_all or decode_req.req.rid.startswith(recv_req.rid):
                    if hasattr(decode_req.kv_receiver, "abort"):
                        decode_req.kv_receiver.abort()

            # Abort requests waiting for kvcache to release tree cache
            for i, decode_req in enumerate(self.disagg_decode_transfer_queue.queue):
                logger.debug(f"Abort transfer queue request. {decode_req.req.rid=}")
                if recv_req.abort_all or decode_req.req.rid.startswith(recv_req.rid):
                    if hasattr(decode_req.kv_receiver, "abort"):
                        decode_req.kv_receiver.abort()

2474
        # Delete requests in the running batch
Lianmin Zheng's avatar
Lianmin Zheng committed
2475
2476
2477
2478
2479
2480
        if self.cur_batch is self.running_batch or self.cur_batch is None:
            reqs = self.running_batch.reqs
        else:
            reqs = self.running_batch.reqs + self.cur_batch.reqs

        for req in reqs:
2481
2482
2483
            if not req.finished() and (
                recv_req.abort_all or req.rid.startswith(recv_req.rid)
            ):
2484
2485
2486
                # Abort method 3: set `to_abort=True`
                # The request will still run one decode forward pass.
                # Then we reuse all existing code to clean up the KV cache allocation.
Lianmin Zheng's avatar
Lianmin Zheng committed
2487
2488
                logger.debug(f"Abort running request. {req.rid=}")
                req.to_abort = True
2489

2490
2491
2492
    def _pause_engine(self) -> Tuple[List[Req], int]:
        raise NotImplementedError()

Chayenne's avatar
Chayenne committed
2493
2494
2495
    def update_weights_from_disk(self, recv_req: UpdateWeightFromDiskReqInput):
        """In-place update of the weights from disk."""
        success, message = self.tp_worker.update_weights_from_disk(recv_req)
2496
        if success:
Stefan He's avatar
Stefan He committed
2497
2498
            flush_cache_success = self.flush_cache()
            assert flush_cache_success, "Cache flush failed after updating weights"
2499
2500
        else:
            logger.error(message)
2501
        return UpdateWeightFromDiskReqOutput(success, message, 0)
2502

2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
    def load_lora_adapter(
        self, recv_req: LoadLoRAAdapterReqInput
    ) -> LoadLoRAAdapterReqOutput:
        """In-place loading a new lora adapter from disk or huggingface."""

        result = self.tp_worker.load_lora_adapter(recv_req)
        return result

    def unload_lora_adapter(
        self, recv_req: UnloadLoRAAdapterReqInput
    ) -> UnloadLoRAAdapterReqOutput:
        """Unload the lora adapter."""

        result = self.tp_worker.unload_lora_adapter(recv_req)
        return result

2519
2520
2521
    def init_weights_update_group(self, recv_req: InitWeightsUpdateGroupReqInput):
        """Initialize the online model parameter update group."""
        success, message = self.tp_worker.init_weights_update_group(recv_req)
2522
        return InitWeightsUpdateGroupReqOutput(success, message)
2523
2524

    def update_weights_from_distributed(
2525
2526
2527
        self,
        recv_req: UpdateWeightsFromDistributedReqInput,
    ) -> Tuple[bool, str]:
2528
2529
2530
        """Update the online model parameter."""
        success, message = self.tp_worker.update_weights_from_distributed(recv_req)
        if success:
2531
2532
2533
            if recv_req.flush_cache:
                flush_cache_success = self.flush_cache()
                assert flush_cache_success, "Cache flush failed after updating weights"
2534
2535
        else:
            logger.error(message)
2536
        return UpdateWeightsFromDistributedReqOutput(success, message)
2537

2538
2539
2540
2541
2542
    def update_weights_from_tensor(self, recv_req: UpdateWeightsFromTensorReqInput):
        """Update the online model parameter from tensors."""
        success, message = self.tp_worker.update_weights_from_tensor(recv_req)
        # TODO extract common code b/t update_weights_from_distributed and update_weights_from_tensor later
        if success:
2543
            if recv_req.flush_cache:
Stefan He's avatar
Stefan He committed
2544
2545
                flush_cache_success = self.flush_cache()
                assert flush_cache_success, "Cache flush failed after updating weights"
2546
2547
        else:
            logger.error(message)
2548
        barrier(group=self.tp_cpu_group)
2549
        return UpdateWeightsFromTensorReqOutput(success, message)
2550

2551
2552
    def get_weights_by_name(self, recv_req: GetWeightsByNameReqInput):
        parameter = self.tp_worker.get_weights_by_name(recv_req)
2553
        return GetWeightsByNameReqOutput(parameter)
2554

2555
    def release_memory_occupation(self, recv_req: ReleaseMemoryOccupationReqInput):
2556
2557
        tags = recv_req.tags

2558
        if tags is None or len(tags) == 0:
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
            tags = [GPU_MEMORY_TYPE_WEIGHTS, GPU_MEMORY_TYPE_KV_CACHE]

        if GPU_MEMORY_TYPE_KV_CACHE in tags:
            self.memory_saver_adapter.pause(GPU_MEMORY_TYPE_KV_CACHE)
            self.flush_cache()

        if GPU_MEMORY_TYPE_WEIGHTS in tags:
            self.stashed_model_static_state = _export_static_state(
                self.tp_worker.worker.model_runner.model
            )
2569
            torch.distributed.barrier(self.tp_cpu_group)
2570
2571
            self.memory_saver_adapter.pause(GPU_MEMORY_TYPE_WEIGHTS)

2572
        return ReleaseMemoryOccupationReqOutput()
2573

2574
    def resume_memory_occupation(self, recv_req: ResumeMemoryOccupationReqInput):
2575
        tags = recv_req.tags
2576

2577
2578
2579
2580
2581
        if tags is None or len(tags) == 0:
            tags = [GPU_MEMORY_TYPE_WEIGHTS, GPU_MEMORY_TYPE_KV_CACHE]

        if GPU_MEMORY_TYPE_WEIGHTS in tags:
            self.memory_saver_adapter.resume(GPU_MEMORY_TYPE_WEIGHTS)
2582
            torch.distributed.barrier(self.tp_cpu_group)
2583
2584
2585
2586
2587
2588
2589
2590
2591
            _import_static_state(
                self.tp_worker.worker.model_runner.model,
                self.stashed_model_static_state,
            )
            del self.stashed_model_static_state

        if GPU_MEMORY_TYPE_KV_CACHE in tags:
            self.memory_saver_adapter.resume(GPU_MEMORY_TYPE_KV_CACHE)

2592
2593
        return ResumeMemoryOccupationReqOutput()

2594
2595
2596
2597
2598
2599
2600
    def slow_down(self, recv_req: SlowDownReqInput):
        t = recv_req.forward_sleep_time
        if t is not None and t <= 0:
            t = None
        self.forward_sleep_time = t
        return SlowDownReqOutput()

2601
    def profile(self, recv_req: ProfileReq):
2602
        if recv_req.type == ProfileReqType.START_PROFILE:
2603
            if recv_req.profile_by_stage or recv_req.start_step:
2604
2605
                return self.init_profile(
                    recv_req.output_dir,
2606
                    recv_req.start_step,
2607
2608
2609
2610
2611
                    recv_req.num_steps,
                    recv_req.activities,
                    recv_req.with_stack,
                    recv_req.record_shapes,
                    recv_req.profile_by_stage,
2612
                    recv_req.profile_id,
2613
2614
2615
2616
                )
            else:
                self.init_profile(
                    recv_req.output_dir,
2617
                    recv_req.start_step,
2618
2619
2620
2621
2622
                    recv_req.num_steps,
                    recv_req.activities,
                    recv_req.with_stack,
                    recv_req.record_shapes,
                    recv_req.profile_by_stage,
2623
                    recv_req.profile_id,
2624
2625
                )
                return self.start_profile(True)
2626
        else:
2627
2628
            return self.stop_profile()

2629
    def init_profile(
2630
2631
        self,
        output_dir: Optional[str],
2632
        start_step: Optional[int],
2633
2634
        num_steps: Optional[int],
        activities: Optional[List[str]],
2635
2636
        with_stack: Optional[bool],
        record_shapes: Optional[bool],
2637
        profile_by_stage: bool,
2638
        profile_id: str,
2639
2640
    ) -> ProfileReqOutput:
        if self.profile_in_progress:
2641
2642
2643
2644
2645
            return ProfileReqOutput(
                success=False,
                message="Profiling is already in progress. Call /stop_profile first.",
            )

2646
2647
        self.profile_by_stage = profile_by_stage

2648
2649
2650
2651
2652
2653
        if output_dir is None:
            output_dir = os.getenv("SGLANG_TORCH_PROFILER_DIR", "/tmp")
        if activities is None:
            activities = ["CPU", "GPU"]

        self.torch_profiler_output_dir = output_dir
2654
2655
        self.torch_profiler_with_stack = with_stack
        self.torch_profiler_record_shapes = record_shapes
2656
        self.profiler_activities = activities
2657
        self.profile_id = profile_id
2658

2659
2660
2661
        if start_step:
            self.profiler_start_forward_ct = max(start_step, self.forward_ct + 1)

2662
2663
2664
2665
2666
2667
2668
        if num_steps:
            self.profile_steps = num_steps
            if self.profile_by_stage:
                self.profiler_target_prefill_ct = num_steps
                self.profiler_target_decode_ct = num_steps
                self.profiler_prefill_ct = 0
                self.profiler_decode_ct = 0
2669
2670
2671
2672
            elif start_step:
                self.profiler_target_forward_ct = (
                    self.profiler_start_forward_ct + num_steps
                )
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
            else:
                self.profiler_target_forward_ct = self.forward_ct + num_steps
            # The caller will be notified when reaching profiler_target_forward_ct
        else:
            self.profiler_target_forward_ct = None

        return ProfileReqOutput(success=True, message="Succeeded")

    def start_profile(
        self, stage: Optional[ForwardMode] = None
    ) -> ProfileReqOutput | None:
        stage_str = f" for {stage.__str__()}" if stage else ""
2685
        logger.info(
2686
            f"Profiling starts{stage_str}. Traces will be saved to: {self.torch_profiler_output_dir} (with profile id: {self.profile_id})",
2687
2688
        )

2689
2690
2691
2692
        activities = self.profiler_activities
        with_stack = self.torch_profiler_with_stack
        record_shapes = self.torch_profiler_record_shapes

2693
2694
2695
2696
2697
2698
2699
2700
        activity_map = {
            "CPU": torch.profiler.ProfilerActivity.CPU,
            "GPU": torch.profiler.ProfilerActivity.CUDA,
        }
        torchprof_activities = [
            activity_map[a] for a in activities if a in activity_map
        ]

2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
        if "RPD" in activities:
            from rpdTracerControl import rpdTracerControl

            rpdTracerControl.skipCreate()

            self.rpd_profile_path = os.path.join(
                self.torch_profiler_output_dir,
                "rpd-" + str(time.time()) + f"-TP-{self.tp_rank}" + ".trace.json.gz",
            )

            if self.tp_rank == 0:
                import sqlite3

                from rocpd.schema import RocpdSchema

                if os.path.exists("trace.rpd"):
                    os.unlink("trace.rpd")
                schema = RocpdSchema()
                connection = sqlite3.connect("trace.rpd")
                schema.writeSchema(connection)
                connection.commit()
                del connection
            torch.distributed.barrier(self.tp_cpu_group)

            self.rpd_profiler = rpdTracerControl()
            self.rpd_profiler.setPythonTrace(True)
            self.rpd_profiler.start()
            self.rpd_profiler.rangePush("", "rpd profile range", "")
            self.profile_in_progress = True
        elif torchprof_activities:
2731
2732
            self.torch_profiler = torch.profiler.profile(
                activities=torchprof_activities,
2733
2734
                with_stack=with_stack if with_stack is not None else True,
                record_shapes=record_shapes if record_shapes is not None else False,
2735
2736
            )
            self.torch_profiler.start()
2737
            self.profile_in_progress = True
2738
2739
2740

        if "MEM" in activities:
            torch.cuda.memory._record_memory_history(max_entries=100000)
2741
            self.profile_in_progress = True
2742

2743
2744
        if "CUDA_PROFILER" in activities:
            torch.cuda.cudart().cudaProfilerStart()
2745
            self.profile_in_progress = True
2746

2747
        return ProfileReqOutput(success=True, message="Succeeded")
2748

2749
2750
2751
2752
    def stop_profile(
        self, stage: Optional[ForwardMode] = None
    ) -> ProfileReqOutput | None:
        if not self.profile_in_progress:
2753
2754
2755
2756
            return ProfileReqOutput(
                success=False,
                message="Profiling is not in progress. Call /start_profile first.",
            )
2757

2758
2759
2760
        if not Path(self.torch_profiler_output_dir).exists():
            Path(self.torch_profiler_output_dir).mkdir(parents=True, exist_ok=True)

2761
2762
        stage_suffix = f"-{stage.__str__()}" if stage else ""
        logger.info("Stop profiling" + stage_suffix + "...")
2763
2764
2765
2766
2767
        if self.torch_profiler is not None:
            self.torch_profiler.stop()
            self.torch_profiler.export_chrome_trace(
                os.path.join(
                    self.torch_profiler_output_dir,
2768
                    self.profile_id
2769
2770
2771
                    + f"-TP-{self.tp_rank}"
                    + stage_suffix
                    + ".trace.json.gz",
2772
2773
                )
            )
2774
2775
2776
2777
2778
2779
            torch.distributed.barrier(self.tp_cpu_group)

        if self.rpd_profiler is not None:
            self.rpd_profiler.rangePop()
            self.rpd_profiler.stop()
            self.rpd_profiler.flush()
2780

2781
2782
2783
2784
2785
2786
2787
2788
2789
            torch.distributed.barrier(self.tp_cpu_group)
            if self.tp_rank == 0:
                from sglang.srt.utils import rpd_to_chrome_trace

                rpd_to_chrome_trace("trace.rpd", self.rpd_profile_path)
            self.rpd_profiler = None
            self.rpd_profiler_path = None

        if self.profiler_activities is not None and "MEM" in self.profiler_activities:
2790
            memory_profile_path = os.path.join(
2791
                self.torch_profiler_output_dir,
2792
2793
2794
2795
                str(time.time())
                + f"-TP-{self.tp_rank}-memory"
                + stage_suffix
                + ".pickle",
2796
2797
2798
2799
            )
            torch.cuda.memory._dump_snapshot(memory_profile_path)
            torch.cuda.memory._record_memory_history(enabled=None)

2800
2801
2802
        if "CUDA_PROFILER" in self.profiler_activities:
            torch.cuda.cudart().cudaProfilerStop()

2803
2804
2805
        logger.info(
            "Profiling done. Traces are saved to: %s",
            self.torch_profiler_output_dir,
2806
        )
2807
        self.torch_profiler = None
2808
        self.profile_in_progress = False
2809
        self.profiler_start_forward_ct = None
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831

        return ProfileReqOutput(success=True, message="Succeeded.")

    def _profile_batch_predicate(self, batch):
        if self.profile_by_stage:
            if batch.forward_mode.is_prefill():
                if self.profiler_prefill_ct == 0:
                    self.start_profile(batch.forward_mode)
                self.profiler_prefill_ct += 1
                if self.profiler_prefill_ct > self.profiler_target_prefill_ct:
                    if self.profile_in_progress:
                        self.stop_profile(stage=ForwardMode.EXTEND)
            elif batch.forward_mode.is_decode():
                if self.profiler_decode_ct == 0:
                    if self.profile_in_progress:
                        # force trace flush
                        self.stop_profile(ForwardMode.EXTEND)
                    self.start_profile(batch.forward_mode)
                self.profiler_decode_ct += 1
                if self.profiler_decode_ct > self.profiler_target_decode_ct:
                    if self.profile_in_progress:
                        self.stop_profile(stage=ForwardMode.DECODE)
2832
2833
            elif batch.forward_mode.is_idle():
                pass
2834
            else:
2835
                raise RuntimeError(f"unsupported profile stage: {batch.forward_mode}")
2836
2837
2838
2839
2840
2841
2842
        else:
            # Check profiler
            if (
                self.profiler_target_forward_ct
                and self.profiler_target_forward_ct <= self.forward_ct
            ):
                self.stop_profile()
2843
2844
2845
2846
2847
            if (
                self.profiler_start_forward_ct
                and self.profiler_start_forward_ct == self.forward_ct
            ):
                self.start_profile()
2848

2849
2850
    def expert_distribution_handle(self, recv_req: ExpertDistributionReq):
        if recv_req == ExpertDistributionReq.START_RECORD:
2851
            get_global_expert_distribution_recorder().start_record()
2852
        elif recv_req == ExpertDistributionReq.STOP_RECORD:
2853
            get_global_expert_distribution_recorder().stop_record()
2854
        elif recv_req == ExpertDistributionReq.DUMP_RECORD:
2855
            get_global_expert_distribution_recorder().dump_record()
2856
2857
        else:
            raise ValueError("Unrecognized ExpertDistributionReq value")
2858
        return ExpertDistributionReqOutput()
2859

2860
    def open_session(self, recv_req: OpenSessionReqInput):
2861
2862
2863
2864
        # handle error
        session_id = recv_req.session_id
        if session_id in self.sessions:
            logger.warning(f"session id {session_id} already exist, cannot open.")
2865
            return OpenSessionReqOutput(session_id, False)
2866
        elif session_id is None:
2867
            logger.warning("session id is None, cannot open.")
2868
            return OpenSessionReqOutput(session_id, False)
2869
2870
2871
2872
        else:
            self.sessions[session_id] = Session(
                recv_req.capacity_of_str_len, session_id
            )
2873
            return OpenSessionReqOutput(session_id, True)
2874
2875
2876
2877
2878
2879
2880
2881
2882

    def close_session(self, recv_req: CloseSessionReqInput):
        # handle error
        session_id = recv_req.session_id
        if session_id not in self.sessions:
            logger.warning(f"session id {session_id} does not exist, cannot delete.")
        else:
            del self.sessions[session_id]

2883
2884
    def get_print_prefix(self):
        prefix = ""
2885
2886
        if self.attn_dp_rank is not None:
            prefix += f" DP{self.attn_dp_rank}"
2887
2888
2889
2890
2891
2892
        if self.server_args.tp_size > 1:
            prefix += f" TP{self.tp_rank}"
        if self.pp_size > 1:
            prefix += f" PP{self.pp_rank}"
        return prefix

2893
2894
2895
2896
2897
2898
2899
    def _publish_kv_events(self):
        if self.enable_kv_cache_events:
            events = self.tree_cache.take_events()
            if events:
                batch = KVEventBatch(ts=time.time(), events=events)
                self.kv_event_publisher.publish(batch)

2900

2901
2902
2903
2904
def is_health_check_generate_req(recv_req):
    return getattr(recv_req, "rid", "").startswith("HEALTH_CHECK")


2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
def _export_static_state(model):
    return dict(
        buffers=[
            (name, buffer.detach().clone()) for name, buffer in model.named_buffers()
        ]
    )


def _import_static_state(model, static_params):
    self_named_buffers = dict(model.named_buffers())
    for name, tensor in static_params["buffers"]:
        self_named_buffers[name][...] = tensor


2919
2920
2921
2922
2923
def run_scheduler_process(
    server_args: ServerArgs,
    port_args: PortArgs,
    gpu_id: int,
    tp_rank: int,
2924
    pp_rank: int,
2925
    dp_rank: Optional[int],
2926
    pipe_writer,
2927
):
2928
    # Generate the prefix
2929
2930
2931
2932
2933
2934
2935
    prefix = ""
    if dp_rank is not None:
        prefix += f" DP{dp_rank}"
    if server_args.tp_size > 1:
        prefix += f" TP{tp_rank}"
    if server_args.pp_size > 1:
        prefix += f" PP{pp_rank}"
2936

2937
    # Config the process
2938
    setproctitle.setproctitle(f"sglang::scheduler{prefix.replace(' ', '_')}")
2939
    faulthandler.enable()
2940
    kill_itself_when_parent_died()
2941
    parent_process = psutil.Process().parent()
2942

2943
2944
2945
    # [For Router] if env var "SGLANG_DP_RANK" exist, set dp_rank to the value of the env var
    if dp_rank is None and "SGLANG_DP_RANK" in os.environ:
        dp_rank = int(os.environ["SGLANG_DP_RANK"])
2946

Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
2947
    # Configure the logger
2948
    configure_logger(server_args, prefix=prefix)
2949
    suppress_other_loggers()
2950

2951
    # Set cpu affinity to this gpu process
2952
2953
2954
    if get_bool_env_var("SGLANG_SET_CPU_AFFINITY"):
        set_gpu_proc_affinity(server_args.tp_size, server_args.nnodes, gpu_id)

2955
    # Create a scheduler and run the event loop
2956
    try:
2957
        scheduler = Scheduler(server_args, port_args, gpu_id, tp_rank, pp_rank, dp_rank)
2958
        pipe_writer.send(
Mick's avatar
Mick committed
2959
2960
2961
2962
2963
            {
                "status": "ready",
                "max_total_num_tokens": scheduler.max_total_num_tokens,
                "max_req_input_len": scheduler.max_req_input_len,
            }
2964
        )
Byron Hsu's avatar
Byron Hsu committed
2965

2966
        disaggregation_mode: DisaggregationMode = scheduler.disaggregation_mode
Byron Hsu's avatar
Byron Hsu committed
2967
        if disaggregation_mode == DisaggregationMode.NULL:
2968
2969
2970
            if server_args.pp_size > 1:
                scheduler.event_loop_pp()
            elif scheduler.enable_overlap:
Byron Hsu's avatar
Byron Hsu committed
2971
2972
2973
2974
                scheduler.event_loop_overlap()
            else:
                scheduler.event_loop_normal()
        elif disaggregation_mode == DisaggregationMode.PREFILL:
2975
2976
2977
2978
            if scheduler.enable_overlap:
                scheduler.event_loop_overlap_disagg_prefill()
            else:
                scheduler.event_loop_normal_disagg_prefill()
2979

Byron Hsu's avatar
Byron Hsu committed
2980
        elif disaggregation_mode == DisaggregationMode.DECODE:
2981
2982
2983
2984
            if scheduler.enable_overlap:
                scheduler.event_loop_overlap_disagg_decode()
            else:
                scheduler.event_loop_normal_disagg_decode()
Byron Hsu's avatar
Byron Hsu committed
2985

2986
    except Exception:
2987
2988
2989
        traceback = get_exception_traceback()
        logger.error(f"Scheduler hit an exception: {traceback}")
        parent_process.send_signal(signal.SIGQUIT)