test_eagle_infer.py 18.2 KB
Newer Older
1
import json
2
import os
3
import random
4
import threading
5
import time
6
import unittest
7
8
from concurrent.futures import ThreadPoolExecutor
from functools import partial
9
from types import SimpleNamespace
10

11
import numpy as np
12
import requests
13
import torch
14

15
import sglang as sgl
16
from sglang.srt.hf_transformers_utils import get_tokenizer
17
from sglang.srt.utils import kill_process_tree
18
from sglang.test.few_shot_gsm8k import run_eval
19
from sglang.test.test_utils import (
20
21
    DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
    DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
22
23
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
24
    CustomTestCase,
25
    popen_launch_server,
26
    run_logprob_check,
27
)
28

29
30
31
torch_dtype = torch.float16
prefill_tolerance = 5e-2
decode_tolerance: float = 5e-2
32

33

34
class TestEAGLEEngine(CustomTestCase):
35
36
37
38
39
    BASE_CONFIG = {
        "model_path": DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
        "speculative_draft_model_path": DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
        "speculative_algorithm": "EAGLE",
        "speculative_num_steps": 5,
40
41
        "speculative_eagle_topk": 4,
        "speculative_num_draft_tokens": 8,
42
        "mem_fraction_static": 0.7,
Lianmin Zheng's avatar
Lianmin Zheng committed
43
        "cuda_graph_max_bs": 4,
44
    }
45
    NUM_CONFIGS = 2
46

47
48
49
    def setUp(self):
        self.prompt = "Today is a sunny day and I like"
        self.sampling_params = {"temperature": 0, "max_new_tokens": 8}
50

51
52
53
        ref_engine = sgl.Engine(
            model_path=self.BASE_CONFIG["model_path"], cuda_graph_max_bs=1
        )
54
        self.ref_output = ref_engine.generate(self.prompt, self.sampling_params)["text"]
55
56
        ref_engine.shutdown()

57
    def test_correctness(self):
58
        configs = [
59
            # Basic config
60
            self.BASE_CONFIG,
61
62
            # Chunked prefill
            {**self.BASE_CONFIG, "chunked_prefill_size": 4},
63
        ]
64

65
66
67
68
        for i, config in enumerate(configs[: self.NUM_CONFIGS]):
            with self.subTest(i=i):
                print(f"{config=}")
                engine = sgl.Engine(**config, log_level="info", decode_log_interval=10)
69
                try:
70
                    self._test_single_generation(engine)
71
                    self._test_batch_generation(engine)
72
73
                    self._test_eos_token(engine)
                    self._test_acc_length(engine)
74
75
                finally:
                    engine.shutdown()
76
                print("=" * 100)
77

78
    def _test_single_generation(self, engine):
79
80
81
82
        output = engine.generate(self.prompt, self.sampling_params)["text"]
        print(f"{output=}, {self.ref_output=}")
        self.assertEqual(output, self.ref_output)

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    def _test_batch_generation(self, engine):
        prompts = [
            "Hello, my name is",
            "The president of the United States is",
            "The capital of France is",
            "The future of AI is",
        ]
        params = {"temperature": 0, "max_new_tokens": 50}

        outputs = engine.generate(prompts, params)
        for prompt, output in zip(prompts, outputs):
            print(f"Prompt: {prompt}")
            print(f"Generated: {output['text']}")
            print("-" * 40)

        print(f"{engine.get_server_info()=}")

        avg_spec_accept_length = engine.get_server_info()["avg_spec_accept_length"]
        print(f"{avg_spec_accept_length=}")
        self.assertGreater(avg_spec_accept_length, 1.9)

104
105
106
    def _test_eos_token(self, engine):
        prompt = "[INST] <<SYS>>\nYou are a helpful assistant.\n<</SYS>>\nToday is a sunny day and I like [/INST]"
        params = {
107
            "temperature": 0.1,
108
109
110
111
112
113
114
115
116
117
118
            "max_new_tokens": 1024,
            "skip_special_tokens": False,
        }

        tokenizer = get_tokenizer(DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST)
        output = engine.generate(prompt, params)["text"]
        print(f"{output=}")

        tokens = tokenizer.encode(output, truncation=False)
        self.assertNotIn(tokenizer.eos_token_id, tokens)

119
120
    def _test_acc_length(self, engine):
        prompt = [
121
122
            "Human: Give me a fully functional FastAPI server. Show the python code.\n\nAssistant:",
        ] * 5  # test batched generation
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        sampling_params = {"temperature": 0, "max_new_tokens": 512}
        output = engine.generate(prompt, sampling_params)
        output = output[0]

        if "spec_verify_ct" in output["meta_info"]:
            acc_length = (
                output["meta_info"]["completion_tokens"]
                / output["meta_info"]["spec_verify_ct"]
            )
        else:
            acc_length = 1.0

        speed = (
            output["meta_info"]["completion_tokens"]
            / output["meta_info"]["e2e_latency"]
        )
        print(f"{acc_length=}")
140
141
142
143

        if engine.server_args.model_path == DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST:
            self.assertGreater(acc_length, 3.6)
        else:
144
            self.assertGreater(acc_length, 2.5)
145

146

147
class TestEAGLEEngineTokenMap(TestEAGLEEngine):
148
149
150
151
152
153
154
155
156
    BASE_CONFIG = {
        "model_path": "meta-llama/Meta-Llama-3-8B-Instruct",
        "speculative_draft_model_path": "lmsys/sglang-EAGLE-LLaMA3-Instruct-8B",
        "speculative_algorithm": "EAGLE",
        "speculative_num_steps": 5,
        "speculative_eagle_topk": 4,
        "speculative_num_draft_tokens": 8,
        "speculative_token_map": "thunlp/LLaMA3-Instruct-8B-FR-Spec/freq_32768.pt",
        "mem_fraction_static": 0.7,
Lianmin Zheng's avatar
Lianmin Zheng committed
157
        "cuda_graph_max_bs": 4,
158
        "dtype": "float16",
159
160
    }
    NUM_CONFIGS = 1
161
162


James Liu's avatar
James Liu committed
163
164
165
166
167
168
169
170
171
class TestEAGLE3Engine(TestEAGLEEngine):
    BASE_CONFIG = {
        "model_path": "meta-llama/Llama-3.1-8B-Instruct",
        "speculative_draft_model_path": "jamesliu1/sglang-EAGLE3-Llama-3.1-Instruct-8B",
        "speculative_algorithm": "EAGLE3",
        "speculative_num_steps": 5,
        "speculative_eagle_topk": 16,
        "speculative_num_draft_tokens": 64,
        "mem_fraction_static": 0.7,
Lianmin Zheng's avatar
Lianmin Zheng committed
172
        "cuda_graph_max_bs": 4,
James Liu's avatar
James Liu committed
173
174
175
176
177
        "dtype": "float16",
    }
    NUM_CONFIGS = 1


178
class TestEAGLEServer(CustomTestCase):
179
180
181
182
183
184
185
186
    PROMPTS = [
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nToday is a sunny day and I like[/INST]"
        '[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nWhat are the mental triggers in Jeff Walker\'s Product Launch Formula and "Launch" book?[/INST]',
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nSummarize Russell Brunson's Perfect Webinar Script...[/INST]",
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nwho are you?[/INST]",
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nwhere are you from?[/INST]",
    ]

187
188
189
190
    @classmethod
    def setUpClass(cls):
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
191
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
192
193
194
195
196
197
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
198
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
199
                "--speculative-num-steps",
200
                5,
201
                "--speculative-eagle-topk",
202
                8,
203
                "--speculative-num-draft-tokens",
204
                64,
205
                "--mem-fraction-static",
206
                0.7,
207
                "--chunked-prefill-size",
208
209
210
                128,
                "--max-running-requests",
                8,
211
212
213
214
215
216
217
            ],
        )

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

218
219
    def send_request(self):
        time.sleep(random.uniform(0, 2))
220
        for prompt in self.PROMPTS:
221
222
223
224
225
226
227
228
229
230
231
232
            url = self.base_url + "/generate"
            data = {
                "text": prompt,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": 1024,
                },
            }
            response = requests.post(url, json=data)
            assert response.status_code == 200

    def send_requests_abort(self):
233
        for prompt in self.PROMPTS:
234
235
236
237
238
239
240
241
242
243
244
            try:
                time.sleep(random.uniform(0, 2))
                url = self.base_url + "/generate"
                data = {
                    "model": "base",
                    "text": prompt,
                    "sampling_params": {
                        "temperature": 0,
                        "max_new_tokens": 1024,
                    },
                }
245
                # set timeout = 1s, mock disconnected
246
247
248
249
250
251
                requests.post(url, json=data, timeout=1)
            except Exception as e:
                print(e)
                pass

    def test_request_abort(self):
252
        concurrency = 4
253
254
        threads = [
            threading.Thread(target=self.send_request) for _ in range(concurrency)
255
        ] + [
256
            threading.Thread(target=self.send_requests_abort)
257
258
            for _ in range(concurrency)
        ]
259
        for worker in threads:
260
            worker.start()
261
        for p in threads:
262
263
            p.join()

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
    def test_max_token_one(self):
        requests.get(self.base_url + "/flush_cache")

        args = SimpleNamespace(
            num_shots=5,
            data_path=None,
            num_questions=200,
            max_new_tokens=1,
            parallel=128,
            host="http://127.0.0.1",
            port=int(self.base_url.split(":")[-1]),
        )

        # Just run and check it does not hang
        metrics = run_eval(args)
        self.assertGreater(metrics["output_throughput"], 50)

281
    def test_gsm8k(self):
282
        requests.get(self.base_url + "/flush_cache")
283

284
285
286
287
288
289
290
291
292
        args = SimpleNamespace(
            num_shots=5,
            data_path=None,
            num_questions=200,
            max_new_tokens=512,
            parallel=128,
            host="http://127.0.0.1",
            port=int(self.base_url.split(":")[-1]),
        )
293

294
295
296
297
        metrics = run_eval(args)
        print(f"{metrics=}")
        self.assertGreater(metrics["accuracy"], 0.20)

298
299
        server_info = requests.get(self.base_url + "/get_server_info").json()
        avg_spec_accept_length = server_info["avg_spec_accept_length"]
300
        print(f"{avg_spec_accept_length=}")
301
302
303
304
305
306
307

        speculative_eagle_topk = server_info["speculative_eagle_topk"]

        if speculative_eagle_topk == 1:
            self.assertGreater(avg_spec_accept_length, 2.5)
        else:
            self.assertGreater(avg_spec_accept_length, 3.5)
308

309
310
        # Wait a little bit so that the memory check happens.
        time.sleep(4)
311

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
    def test_logprob_start_len(self):
        logprob_start_len = 4
        new_tokens = 4
        prompts = [
            "I have a very good idea on",
            "Today is a sunndy day and",
        ]

        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": prompts,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": new_tokens,
                },
                "return_logprob": True,
                "top_logprobs_num": 5,
                "logprob_start_len": logprob_start_len,
            },
        )
        response_json = response.json()
        print(json.dumps(response_json, indent=2))

        for res in response_json:
            self.assertEqual(
                res["meta_info"]["prompt_tokens"],
                logprob_start_len + len(res["meta_info"]["input_token_logprobs"]),
            )

            self.assertEqual(res["meta_info"]["completion_tokens"], new_tokens)
            self.assertEqual(len(res["meta_info"]["output_token_logprobs"]), new_tokens)

    def test_logprob_match(self):
        """Test the output logprobs are close to the input logprobs if we run a prefill again."""

        def run_generate(
            prompt, return_logprob=False, max_new_tokens=512, logprob_start_len=-1
        ):

            if isinstance(prompt, str):
                prompt_kwargs = {"text": prompt}
            else:
                prompt_kwargs = {"input_ids": prompt}

            response = requests.post(
                self.base_url + "/generate",
                json={
                    **prompt_kwargs,
                    "sampling_params": {
                        "temperature": 1.0,
                        "max_new_tokens": max_new_tokens,
                        "ignore_eos": True,
                    },
                    "return_logprob": return_logprob,
                    "return_text_in_logprobs": True,
                    "logprob_start_len": logprob_start_len,
                },
            )
            return response.json()

        prompt = "I have a very good idea on how to"

        gen = run_generate(prompt, return_logprob=True, logprob_start_len=0)
        output_logprobs = np.array(
            [x[0] for x in gen["meta_info"]["output_token_logprobs"]]
        )
        num_prompts_tokens = gen["meta_info"]["prompt_tokens"]

        input_tokens = [x[1] for x in gen["meta_info"]["input_token_logprobs"]]
        output_tokens = [x[1] for x in gen["meta_info"]["output_token_logprobs"]]

        new_prompt = input_tokens + output_tokens
        score = run_generate(
            new_prompt, return_logprob=True, logprob_start_len=0, max_new_tokens=0
        )
        output_logprobs_score = np.array(
            [
                x[0]
                for x in score["meta_info"]["input_token_logprobs"][num_prompts_tokens:]
            ]
        )

        print(f"{output_logprobs[-10:]=}")
        print(f"{output_logprobs_score[-10:]=}")

        diff = np.abs(output_logprobs - output_logprobs_score)
        max_diff = np.max(diff)
        self.assertLess(max_diff, 0.25)

    def test_logprob_mixed(self):
        args = []
        temperature = 0
        # input_len, output_len, temperature, logprob_start_len, return_logprob, top_logprobs_num
        # Llama 2 context length seems to be only 2k, so we can only test small length.
        for input_len in [200, 500, 1000, 2000]:
            for output_len in [4, 8]:
                for logprob_start_len in [0, 100, 300, 800, 1998]:
                    for return_logprob in [True, False]:
                        for top_logprobs_num in [0, 5]:

                            if logprob_start_len >= input_len:
                                continue

                            args.append(
                                (
                                    input_len,
                                    output_len,
                                    temperature,
                                    logprob_start_len,
                                    return_logprob,
                                    top_logprobs_num,
                                )
                            )

        random.shuffle(args)

        func = partial(run_logprob_check, self)
        with ThreadPoolExecutor(8) as executor:
            list(executor.map(func, args))

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
    def run_decode(self, sampling_params):
        return_logprob = True
        top_logprobs_num = 5
        return_text = True
        n = 1

        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": "Human: Write a travel blog post to Hawaii.\n\nAssistant:",
                "sampling_params": {
                    "max_new_tokens": 48,
                    "n": n,
                    "temperature": 0.7,
                    **sampling_params,
                },
                "return_logprob": return_logprob,
                "top_logprobs_num": top_logprobs_num,
                "return_text_in_logprobs": return_text,
                "logprob_start_len": 0,
            },
        )
        self.assertEqual(response.status_code, 200)
        print(json.dumps(response.json()))
        print("=" * 100)

    def test_penalty_mixed(self):
        args = [
            {},
            {},
            {},
            {"frequency_penalty": 2},
            {"presence_penalty": 1},
            {"min_new_tokens": 16},
            {"frequency_penalty": 0.2},
            {"presence_penalty": 0.4},
            {"min_new_tokens": 8},
            {"frequency_penalty": 0.4, "presence_penalty": 0.8},
            {"frequency_penalty": 0.4, "min_new_tokens": 12},
            {"presence_penalty": 0.8, "min_new_tokens": 12},
            {"presence_penalty": -0.3, "frequency_penalty": 1.3, "min_new_tokens": 32},
            {"presence_penalty": 0.3, "frequency_penalty": -1.3, "min_new_tokens": 32},
        ]
        random.shuffle(args * 5)
        with ThreadPoolExecutor(8) as executor:
            list(executor.map(self.run_decode, args))

480

481
class TestEAGLERetract(TestEAGLEServer):
482
483
    @classmethod
    def setUpClass(cls):
484
485
        # These config helps find a leak.
        os.environ["SGLANG_CI_SMALL_KV_SIZE"] = "4500"
486
487
488
489
490
491
492
493
494
495
496
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
                "--speculative-num-steps",
497
                5,
498
                "--speculative-eagle-topk",
499
                8,
500
                "--speculative-num-draft-tokens",
501
                64,
502
                "--mem-fraction-static",
503
                0.7,
504
                "--chunked-prefill-size",
505
                128,
506
                "--max-running-requests",
507
                64,
508
509
510
511
            ],
        )


512
513
514
515
516
517
518
519
520
521
522
523
524
525
class TestEAGLEServerTriton(TestEAGLEServer):
    @classmethod
    def setUpClass(cls):
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
                "--speculative-num-steps",
526
                5,
527
                "--speculative-eagle-topk",
528
                8,
529
                "--speculative-num-draft-tokens",
530
                64,
531
                "--mem-fraction-static",
532
                0.7,
533
534
                "--attention-backend",
                "triton",
535
536
                "--max-running-requests",
                8,
537
538
539
540
            ],
        )


541
542
if __name__ == "__main__":
    unittest.main()