test_eagle_infer.py 18.2 KB
Newer Older
1
import json
2
import multiprocessing as mp
3
import os
4
import random
5
import threading
6
import time
7
import unittest
8
9
from concurrent.futures import ThreadPoolExecutor
from functools import partial
10
from types import SimpleNamespace
11
from typing import List, Optional
12

13
import numpy as np
14
import requests
15
import torch
16

17
import sglang as sgl
18
from sglang.srt.hf_transformers_utils import get_tokenizer
19
from sglang.srt.utils import kill_process_tree
20
from sglang.test.few_shot_gsm8k import run_eval
21
from sglang.test.runners import DEFAULT_PROMPTS, SRTRunner
22
from sglang.test.test_utils import (
23
24
    DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
    DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
25
26
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
27
    CustomTestCase,
28
    popen_launch_server,
29
    run_logprob_check,
30
)
31

32
33
34
torch_dtype = torch.float16
prefill_tolerance = 5e-2
decode_tolerance: float = 5e-2
35

36

37
class TestEAGLEEngine(CustomTestCase):
38
39
40
41
42
    BASE_CONFIG = {
        "model_path": DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
        "speculative_draft_model_path": DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
        "speculative_algorithm": "EAGLE",
        "speculative_num_steps": 5,
43
44
        "speculative_eagle_topk": 4,
        "speculative_num_draft_tokens": 8,
45
        "mem_fraction_static": 0.7,
46
        "cuda_graph_max_bs": 5,
47
    }
48
    NUM_CONFIGS = 3
49

50
51
52
    def setUp(self):
        self.prompt = "Today is a sunny day and I like"
        self.sampling_params = {"temperature": 0, "max_new_tokens": 8}
53

54
55
56
        ref_engine = sgl.Engine(
            model_path=self.BASE_CONFIG["model_path"], cuda_graph_max_bs=1
        )
57
        self.ref_output = ref_engine.generate(self.prompt, self.sampling_params)["text"]
58
59
        ref_engine.shutdown()

60
    def test_correctness(self):
61
        configs = [
62
            # Basic config
63
            self.BASE_CONFIG,
64
            # Disable cuda graph
65
            {**self.BASE_CONFIG, "disable_cuda_graph": True},
66
67
            # Chunked prefill
            {**self.BASE_CONFIG, "chunked_prefill_size": 4},
68
        ]
69

70
71
72
73
        for i, config in enumerate(configs[: self.NUM_CONFIGS]):
            with self.subTest(i=i):
                print(f"{config=}")
                engine = sgl.Engine(**config, log_level="info", decode_log_interval=10)
74
                try:
75
                    self._test_single_generation(engine)
76
                    self._test_batch_generation(engine)
77
78
                    self._test_eos_token(engine)
                    self._test_acc_length(engine)
79
80
                finally:
                    engine.shutdown()
81
                print("=" * 100)
82

83
    def _test_single_generation(self, engine):
84
85
86
87
        output = engine.generate(self.prompt, self.sampling_params)["text"]
        print(f"{output=}, {self.ref_output=}")
        self.assertEqual(output, self.ref_output)

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
    def _test_batch_generation(self, engine):
        prompts = [
            "Hello, my name is",
            "The president of the United States is",
            "The capital of France is",
            "The future of AI is",
        ]
        params = {"temperature": 0, "max_new_tokens": 50}

        outputs = engine.generate(prompts, params)
        for prompt, output in zip(prompts, outputs):
            print(f"Prompt: {prompt}")
            print(f"Generated: {output['text']}")
            print("-" * 40)

        print(f"{engine.get_server_info()=}")

        avg_spec_accept_length = engine.get_server_info()["avg_spec_accept_length"]
        print(f"{avg_spec_accept_length=}")
        self.assertGreater(avg_spec_accept_length, 1.9)

109
110
111
    def _test_eos_token(self, engine):
        prompt = "[INST] <<SYS>>\nYou are a helpful assistant.\n<</SYS>>\nToday is a sunny day and I like [/INST]"
        params = {
112
            "temperature": 0.1,
113
114
115
116
117
118
119
120
121
122
123
            "max_new_tokens": 1024,
            "skip_special_tokens": False,
        }

        tokenizer = get_tokenizer(DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST)
        output = engine.generate(prompt, params)["text"]
        print(f"{output=}")

        tokens = tokenizer.encode(output, truncation=False)
        self.assertNotIn(tokenizer.eos_token_id, tokens)

124
125
    def _test_acc_length(self, engine):
        prompt = [
126
127
            "Human: Give me a fully functional FastAPI server. Show the python code.\n\nAssistant:",
        ] * 5  # test batched generation
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
        sampling_params = {"temperature": 0, "max_new_tokens": 512}
        output = engine.generate(prompt, sampling_params)
        output = output[0]

        if "spec_verify_ct" in output["meta_info"]:
            acc_length = (
                output["meta_info"]["completion_tokens"]
                / output["meta_info"]["spec_verify_ct"]
            )
        else:
            acc_length = 1.0

        speed = (
            output["meta_info"]["completion_tokens"]
            / output["meta_info"]["e2e_latency"]
        )
        print(f"{acc_length=}")
145
146
147
148
149

        if engine.server_args.model_path == DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST:
            self.assertGreater(acc_length, 3.6)
        else:
            self.assertGreater(acc_length, 2.6)
150

151

152
class TestEAGLEEngineTokenMap(TestEAGLEEngine):
153
154
155
156
157
158
159
160
161
162
    BASE_CONFIG = {
        "model_path": "meta-llama/Meta-Llama-3-8B-Instruct",
        "speculative_draft_model_path": "lmsys/sglang-EAGLE-LLaMA3-Instruct-8B",
        "speculative_algorithm": "EAGLE",
        "speculative_num_steps": 5,
        "speculative_eagle_topk": 4,
        "speculative_num_draft_tokens": 8,
        "speculative_token_map": "thunlp/LLaMA3-Instruct-8B-FR-Spec/freq_32768.pt",
        "mem_fraction_static": 0.7,
        "cuda_graph_max_bs": 5,
163
        "dtype": "float16",
164
165
    }
    NUM_CONFIGS = 1
166
167


James Liu's avatar
James Liu committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
class TestEAGLE3Engine(TestEAGLEEngine):
    BASE_CONFIG = {
        "model_path": "meta-llama/Llama-3.1-8B-Instruct",
        "speculative_draft_model_path": "jamesliu1/sglang-EAGLE3-Llama-3.1-Instruct-8B",
        "speculative_algorithm": "EAGLE3",
        "speculative_num_steps": 5,
        "speculative_eagle_topk": 16,
        "speculative_num_draft_tokens": 64,
        "mem_fraction_static": 0.7,
        "cuda_graph_max_bs": 5,
        "dtype": "float16",
    }
    NUM_CONFIGS = 1


183
class TestEAGLEServer(CustomTestCase):
184
185
186
187
188
189
190
191
    PROMPTS = [
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nToday is a sunny day and I like[/INST]"
        '[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nWhat are the mental triggers in Jeff Walker\'s Product Launch Formula and "Launch" book?[/INST]',
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nSummarize Russell Brunson's Perfect Webinar Script...[/INST]",
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nwho are you?[/INST]",
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nwhere are you from?[/INST]",
    ]

192
193
194
195
    @classmethod
    def setUpClass(cls):
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
196
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
197
198
199
200
201
202
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
203
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
204
                "--speculative-num-steps",
205
                5,
206
                "--speculative-eagle-topk",
207
                8,
208
                "--speculative-num-draft-tokens",
209
                64,
210
                "--mem-fraction-static",
211
                0.7,
212
                "--chunked-prefill-size",
213
214
215
                128,
                "--max-running-requests",
                8,
216
217
218
219
220
221
222
            ],
        )

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

223
224
    def send_request(self):
        time.sleep(random.uniform(0, 2))
225
        for prompt in self.PROMPTS:
226
227
228
229
230
231
232
233
234
235
236
237
            url = self.base_url + "/generate"
            data = {
                "text": prompt,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": 1024,
                },
            }
            response = requests.post(url, json=data)
            assert response.status_code == 200

    def send_requests_abort(self):
238
        for prompt in self.PROMPTS:
239
240
241
242
243
244
245
246
247
248
249
            try:
                time.sleep(random.uniform(0, 2))
                url = self.base_url + "/generate"
                data = {
                    "model": "base",
                    "text": prompt,
                    "sampling_params": {
                        "temperature": 0,
                        "max_new_tokens": 1024,
                    },
                }
250
                # set timeout = 1s, mock disconnected
251
252
253
254
255
256
                requests.post(url, json=data, timeout=1)
            except Exception as e:
                print(e)
                pass

    def test_request_abort(self):
257
        concurrency = 4
258
259
        threads = [
            threading.Thread(target=self.send_request) for _ in range(concurrency)
260
        ] + [
261
            threading.Thread(target=self.send_requests_abort)
262
263
            for _ in range(concurrency)
        ]
264
        for worker in threads:
265
            worker.start()
266
        for p in threads:
267
268
            p.join()

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    def test_max_token_one(self):
        requests.get(self.base_url + "/flush_cache")

        args = SimpleNamespace(
            num_shots=5,
            data_path=None,
            num_questions=200,
            max_new_tokens=1,
            parallel=128,
            host="http://127.0.0.1",
            port=int(self.base_url.split(":")[-1]),
        )

        # Just run and check it does not hang
        metrics = run_eval(args)
        self.assertGreater(metrics["output_throughput"], 50)

286
    def test_gsm8k(self):
287
        requests.get(self.base_url + "/flush_cache")
288

289
290
291
292
293
294
295
296
297
        args = SimpleNamespace(
            num_shots=5,
            data_path=None,
            num_questions=200,
            max_new_tokens=512,
            parallel=128,
            host="http://127.0.0.1",
            port=int(self.base_url.split(":")[-1]),
        )
298

299
300
301
302
        metrics = run_eval(args)
        print(f"{metrics=}")
        self.assertGreater(metrics["accuracy"], 0.20)

303
304
305
        server_info = requests.get(self.base_url + "/get_server_info")
        avg_spec_accept_length = server_info.json()["avg_spec_accept_length"]
        print(f"{avg_spec_accept_length=}")
306
        self.assertGreater(avg_spec_accept_length, 3.5)
307

308
309
        # Wait a little bit so that the memory check happens.
        time.sleep(4)
310

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    def test_logprob_start_len(self):
        logprob_start_len = 4
        new_tokens = 4
        prompts = [
            "I have a very good idea on",
            "Today is a sunndy day and",
        ]

        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": prompts,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": new_tokens,
                },
                "return_logprob": True,
                "top_logprobs_num": 5,
                "logprob_start_len": logprob_start_len,
            },
        )
        response_json = response.json()
        print(json.dumps(response_json, indent=2))

        for res in response_json:
            self.assertEqual(
                res["meta_info"]["prompt_tokens"],
                logprob_start_len + len(res["meta_info"]["input_token_logprobs"]),
            )

            self.assertEqual(res["meta_info"]["completion_tokens"], new_tokens)
            self.assertEqual(len(res["meta_info"]["output_token_logprobs"]), new_tokens)

    def test_logprob_match(self):
        """Test the output logprobs are close to the input logprobs if we run a prefill again."""

        def run_generate(
            prompt, return_logprob=False, max_new_tokens=512, logprob_start_len=-1
        ):

            if isinstance(prompt, str):
                prompt_kwargs = {"text": prompt}
            else:
                prompt_kwargs = {"input_ids": prompt}

            response = requests.post(
                self.base_url + "/generate",
                json={
                    **prompt_kwargs,
                    "sampling_params": {
                        "temperature": 1.0,
                        "max_new_tokens": max_new_tokens,
                        "ignore_eos": True,
                    },
                    "return_logprob": return_logprob,
                    "return_text_in_logprobs": True,
                    "logprob_start_len": logprob_start_len,
                },
            )
            return response.json()

        prompt = "I have a very good idea on how to"

        gen = run_generate(prompt, return_logprob=True, logprob_start_len=0)
        output_logprobs = np.array(
            [x[0] for x in gen["meta_info"]["output_token_logprobs"]]
        )
        num_prompts_tokens = gen["meta_info"]["prompt_tokens"]

        input_tokens = [x[1] for x in gen["meta_info"]["input_token_logprobs"]]
        output_tokens = [x[1] for x in gen["meta_info"]["output_token_logprobs"]]

        new_prompt = input_tokens + output_tokens
        score = run_generate(
            new_prompt, return_logprob=True, logprob_start_len=0, max_new_tokens=0
        )
        output_logprobs_score = np.array(
            [
                x[0]
                for x in score["meta_info"]["input_token_logprobs"][num_prompts_tokens:]
            ]
        )

        print(f"{output_logprobs[-10:]=}")
        print(f"{output_logprobs_score[-10:]=}")

        diff = np.abs(output_logprobs - output_logprobs_score)
        max_diff = np.max(diff)
        self.assertLess(max_diff, 0.25)

    def test_logprob_mixed(self):
        args = []
        temperature = 0
        # input_len, output_len, temperature, logprob_start_len, return_logprob, top_logprobs_num
        # Llama 2 context length seems to be only 2k, so we can only test small length.
        for input_len in [200, 500, 1000, 2000]:
            for output_len in [4, 8]:
                for logprob_start_len in [0, 100, 300, 800, 1998]:
                    for return_logprob in [True, False]:
                        for top_logprobs_num in [0, 5]:

                            if logprob_start_len >= input_len:
                                continue

                            args.append(
                                (
                                    input_len,
                                    output_len,
                                    temperature,
                                    logprob_start_len,
                                    return_logprob,
                                    top_logprobs_num,
                                )
                            )

        random.shuffle(args)

        func = partial(run_logprob_check, self)
        with ThreadPoolExecutor(8) as executor:
            list(executor.map(func, args))

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    def run_decode(self, sampling_params):
        return_logprob = True
        top_logprobs_num = 5
        return_text = True
        n = 1

        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": "Human: Write a travel blog post to Hawaii.\n\nAssistant:",
                "sampling_params": {
                    "max_new_tokens": 48,
                    "n": n,
                    "temperature": 0.7,
                    **sampling_params,
                },
                "return_logprob": return_logprob,
                "top_logprobs_num": top_logprobs_num,
                "return_text_in_logprobs": return_text,
                "logprob_start_len": 0,
            },
        )
        self.assertEqual(response.status_code, 200)
        print(json.dumps(response.json()))
        print("=" * 100)

    def test_penalty_mixed(self):
        args = [
            {},
            {},
            {},
            {"frequency_penalty": 2},
            {"presence_penalty": 1},
            {"min_new_tokens": 16},
            {"frequency_penalty": 0.2},
            {"presence_penalty": 0.4},
            {"min_new_tokens": 8},
            {"frequency_penalty": 0.4, "presence_penalty": 0.8},
            {"frequency_penalty": 0.4, "min_new_tokens": 12},
            {"presence_penalty": 0.8, "min_new_tokens": 12},
            {"presence_penalty": -0.3, "frequency_penalty": 1.3, "min_new_tokens": 32},
            {"presence_penalty": 0.3, "frequency_penalty": -1.3, "min_new_tokens": 32},
        ]
        random.shuffle(args * 5)
        with ThreadPoolExecutor(8) as executor:
            list(executor.map(self.run_decode, args))

479

480
class TestEAGLERetract(TestEAGLEServer):
481
482
    @classmethod
    def setUpClass(cls):
483
484
        # These config helps find a leak.
        os.environ["SGLANG_CI_SMALL_KV_SIZE"] = "4500"
485
486
487
488
489
490
491
492
493
494
495
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
                "--speculative-num-steps",
496
                5,
497
                "--speculative-eagle-topk",
498
                8,
499
                "--speculative-num-draft-tokens",
500
                64,
501
                "--mem-fraction-static",
502
                0.7,
503
                "--chunked-prefill-size",
504
                128,
505
                "--max-running-requests",
506
                64,
507
508
509
510
            ],
        )


511
512
513
514
515
516
517
518
519
520
521
522
523
524
class TestEAGLEServerTriton(TestEAGLEServer):
    @classmethod
    def setUpClass(cls):
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
                "--speculative-num-steps",
525
                5,
526
                "--speculative-eagle-topk",
527
                8,
528
                "--speculative-num-draft-tokens",
529
                64,
530
                "--mem-fraction-static",
531
                0.7,
532
533
                "--attention-backend",
                "triton",
534
535
                "--max-running-requests",
                8,
536
537
538
539
            ],
        )


540
541
if __name__ == "__main__":
    unittest.main()