test_eagle_infer.py 15.4 KB
Newer Older
1
import json
2
import multiprocessing as mp
3
import os
4
import random
5
import threading
6
import time
7
import unittest
8
9
from concurrent.futures import ThreadPoolExecutor
from functools import partial
10
from types import SimpleNamespace
11
from typing import List, Optional
12

13
import numpy as np
14
import requests
15
import torch
16

17
import sglang as sgl
18
from sglang.srt.hf_transformers_utils import get_tokenizer
19
from sglang.srt.utils import kill_process_tree
20
from sglang.test.few_shot_gsm8k import run_eval
21
from sglang.test.runners import DEFAULT_PROMPTS, SRTRunner
22
from sglang.test.test_utils import (
23
24
    DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
    DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
25
26
27
    DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
    DEFAULT_URL_FOR_TEST,
    popen_launch_server,
28
    run_logprob_check,
29
)
30

31
32
33
torch_dtype = torch.float16
prefill_tolerance = 5e-2
decode_tolerance: float = 5e-2
34

35
36

class TestEAGLEEngine(unittest.TestCase):
37
38
39
40
41
    BASE_CONFIG = {
        "model_path": DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
        "speculative_draft_model_path": DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
        "speculative_algorithm": "EAGLE",
        "speculative_num_steps": 5,
42
43
        "speculative_eagle_topk": 4,
        "speculative_num_draft_tokens": 8,
44
        "mem_fraction_static": 0.7,
45
        "cuda_graph_max_bs": 5,
46
    }
47
    NUM_CONFIGS = 3
48

49
50
51
    def setUp(self):
        self.prompt = "Today is a sunny day and I like"
        self.sampling_params = {"temperature": 0, "max_new_tokens": 8}
52

53
54
55
        ref_engine = sgl.Engine(
            model_path=self.BASE_CONFIG["model_path"], cuda_graph_max_bs=1
        )
56
        self.ref_output = ref_engine.generate(self.prompt, self.sampling_params)["text"]
57
58
        ref_engine.shutdown()

59
    def test_correctness(self):
60
        configs = [
61
            # Basic config
62
            self.BASE_CONFIG,
63
            # Disable cuda graph
64
            {**self.BASE_CONFIG, "disable_cuda_graph": True},
65
66
            # Chunked prefill
            {**self.BASE_CONFIG, "chunked_prefill_size": 4},
67
        ]
68

69
70
71
72
        for i, config in enumerate(configs[: self.NUM_CONFIGS]):
            with self.subTest(i=i):
                print(f"{config=}")
                engine = sgl.Engine(**config, log_level="info", decode_log_interval=10)
73
                try:
74
                    self._test_single_generation(engine)
75
                    self._test_batch_generation(engine)
76
77
                    self._test_eos_token(engine)
                    self._test_acc_length(engine)
78
79
                finally:
                    engine.shutdown()
80
                print("=" * 100)
81

82
    def _test_single_generation(self, engine):
83
84
85
86
        output = engine.generate(self.prompt, self.sampling_params)["text"]
        print(f"{output=}, {self.ref_output=}")
        self.assertEqual(output, self.ref_output)

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    def _test_batch_generation(self, engine):
        prompts = [
            "Hello, my name is",
            "The president of the United States is",
            "The capital of France is",
            "The future of AI is",
        ]
        params = {"temperature": 0, "max_new_tokens": 50}

        outputs = engine.generate(prompts, params)
        for prompt, output in zip(prompts, outputs):
            print(f"Prompt: {prompt}")
            print(f"Generated: {output['text']}")
            print("-" * 40)

        print(f"{engine.get_server_info()=}")

        avg_spec_accept_length = engine.get_server_info()["avg_spec_accept_length"]
        print(f"{avg_spec_accept_length=}")
        self.assertGreater(avg_spec_accept_length, 1.9)

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    def _test_eos_token(self, engine):
        prompt = "[INST] <<SYS>>\nYou are a helpful assistant.\n<</SYS>>\nToday is a sunny day and I like [/INST]"
        params = {
            "temperature": 0,
            "max_new_tokens": 1024,
            "skip_special_tokens": False,
        }

        tokenizer = get_tokenizer(DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST)
        output = engine.generate(prompt, params)["text"]
        print(f"{output=}")

        tokens = tokenizer.encode(output, truncation=False)
        self.assertNotIn(tokenizer.eos_token_id, tokens)

123
124
125
    def _test_acc_length(self, engine):
        prompt = [
            "Human: Give me a fully functional FastAPI server. Show the python code.\n\nAssistant:"
126
        ]
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
        sampling_params = {"temperature": 0, "max_new_tokens": 512}
        output = engine.generate(prompt, sampling_params)
        output = output[0]

        if "spec_verify_ct" in output["meta_info"]:
            acc_length = (
                output["meta_info"]["completion_tokens"]
                / output["meta_info"]["spec_verify_ct"]
            )
        else:
            acc_length = 1.0

        speed = (
            output["meta_info"]["completion_tokens"]
            / output["meta_info"]["e2e_latency"]
        )
        print(f"{acc_length=}")
        self.assertGreater(acc_length, 3.6)
145

146

147
148
149
150
151
152
153
154
155
156
157
158
159
class TestEAGLEEngineTokenMap(unittest.TestCase):
    BASE_CONFIG = {
        "model_path": "meta-llama/Meta-Llama-3-8B-Instruct",
        "speculative_draft_model_path": "lmsys/sglang-EAGLE-LLaMA3-Instruct-8B",
        "speculative_algorithm": "EAGLE",
        "speculative_num_steps": 5,
        "speculative_eagle_topk": 4,
        "speculative_num_draft_tokens": 8,
        "speculative_token_map": "thunlp/LLaMA3-Instruct-8B-FR-Spec/freq_32768.pt",
        "mem_fraction_static": 0.7,
        "cuda_graph_max_bs": 5,
    }
    NUM_CONFIGS = 1
160
161


162
class TestEAGLEServer(unittest.TestCase):
163
164
165
166
167
168
169
170
    PROMPTS = [
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nToday is a sunny day and I like[/INST]"
        '[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nWhat are the mental triggers in Jeff Walker\'s Product Launch Formula and "Launch" book?[/INST]',
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nSummarize Russell Brunson's Perfect Webinar Script...[/INST]",
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nwho are you?[/INST]",
        "[INST] <<SYS>>\\nYou are a helpful assistant.\\n<</SYS>>\\nwhere are you from?[/INST]",
    ]

171
172
173
174
    @classmethod
    def setUpClass(cls):
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
175
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
176
177
178
179
180
181
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
182
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
183
                "--speculative-num-steps",
184
                5,
185
                "--speculative-eagle-topk",
186
                8,
187
                "--speculative-num-draft-tokens",
188
                64,
189
                "--mem-fraction-static",
190
                0.7,
191
                "--chunked-prefill-size",
192
193
194
                128,
                "--max-running-requests",
                8,
195
196
197
198
199
200
201
            ],
        )

    @classmethod
    def tearDownClass(cls):
        kill_process_tree(cls.process.pid)

202
203
    def send_request(self):
        time.sleep(random.uniform(0, 2))
204
        for prompt in self.PROMPTS:
205
206
207
208
209
210
211
212
213
214
215
216
            url = self.base_url + "/generate"
            data = {
                "text": prompt,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": 1024,
                },
            }
            response = requests.post(url, json=data)
            assert response.status_code == 200

    def send_requests_abort(self):
217
        for prompt in self.PROMPTS:
218
219
220
221
222
223
224
225
226
227
228
            try:
                time.sleep(random.uniform(0, 2))
                url = self.base_url + "/generate"
                data = {
                    "model": "base",
                    "text": prompt,
                    "sampling_params": {
                        "temperature": 0,
                        "max_new_tokens": 1024,
                    },
                }
229
                # set timeout = 1s, mock disconnected
230
231
232
233
234
235
                requests.post(url, json=data, timeout=1)
            except Exception as e:
                print(e)
                pass

    def test_request_abort(self):
236
        concurrency = 4
237
238
        threads = [
            threading.Thread(target=self.send_request) for _ in range(concurrency)
239
        ] + [
240
            threading.Thread(target=self.send_requests_abort)
241
242
            for _ in range(concurrency)
        ]
243
        for worker in threads:
244
            worker.start()
245
        for p in threads:
246
247
            p.join()

248
    def test_gsm8k(self):
249
250
        server_info = requests.get(self.base_url + "/flush_cache")

251
252
253
254
255
256
257
258
259
        args = SimpleNamespace(
            num_shots=5,
            data_path=None,
            num_questions=200,
            max_new_tokens=512,
            parallel=128,
            host="http://127.0.0.1",
            port=int(self.base_url.split(":")[-1]),
        )
260

261
262
263
264
        metrics = run_eval(args)
        print(f"{metrics=}")
        self.assertGreater(metrics["accuracy"], 0.20)

265
266
267
        server_info = requests.get(self.base_url + "/get_server_info")
        avg_spec_accept_length = server_info.json()["avg_spec_accept_length"]
        print(f"{avg_spec_accept_length=}")
268
        self.assertGreater(avg_spec_accept_length, 3.5)
269

270
271
        # Wait a little bit so that the memory check happens.
        time.sleep(4)
272

273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
    def test_logprob_start_len(self):
        logprob_start_len = 4
        new_tokens = 4
        prompts = [
            "I have a very good idea on",
            "Today is a sunndy day and",
        ]

        response = requests.post(
            self.base_url + "/generate",
            json={
                "text": prompts,
                "sampling_params": {
                    "temperature": 0,
                    "max_new_tokens": new_tokens,
                },
                "return_logprob": True,
                "top_logprobs_num": 5,
                "logprob_start_len": logprob_start_len,
            },
        )
        response_json = response.json()
        print(json.dumps(response_json, indent=2))

        for res in response_json:
            self.assertEqual(
                res["meta_info"]["prompt_tokens"],
                logprob_start_len + len(res["meta_info"]["input_token_logprobs"]),
            )

            self.assertEqual(res["meta_info"]["completion_tokens"], new_tokens)
            self.assertEqual(len(res["meta_info"]["output_token_logprobs"]), new_tokens)

    def test_logprob_match(self):
        """Test the output logprobs are close to the input logprobs if we run a prefill again."""

        def run_generate(
            prompt, return_logprob=False, max_new_tokens=512, logprob_start_len=-1
        ):

            if isinstance(prompt, str):
                prompt_kwargs = {"text": prompt}
            else:
                prompt_kwargs = {"input_ids": prompt}

            response = requests.post(
                self.base_url + "/generate",
                json={
                    **prompt_kwargs,
                    "sampling_params": {
                        "temperature": 1.0,
                        "max_new_tokens": max_new_tokens,
                        "ignore_eos": True,
                    },
                    "return_logprob": return_logprob,
                    "return_text_in_logprobs": True,
                    "logprob_start_len": logprob_start_len,
                },
            )
            return response.json()

        prompt = "I have a very good idea on how to"

        gen = run_generate(prompt, return_logprob=True, logprob_start_len=0)
        output_logprobs = np.array(
            [x[0] for x in gen["meta_info"]["output_token_logprobs"]]
        )
        num_prompts_tokens = gen["meta_info"]["prompt_tokens"]

        input_tokens = [x[1] for x in gen["meta_info"]["input_token_logprobs"]]
        output_tokens = [x[1] for x in gen["meta_info"]["output_token_logprobs"]]

        new_prompt = input_tokens + output_tokens
        score = run_generate(
            new_prompt, return_logprob=True, logprob_start_len=0, max_new_tokens=0
        )
        output_logprobs_score = np.array(
            [
                x[0]
                for x in score["meta_info"]["input_token_logprobs"][num_prompts_tokens:]
            ]
        )

        print(f"{output_logprobs[-10:]=}")
        print(f"{output_logprobs_score[-10:]=}")

        diff = np.abs(output_logprobs - output_logprobs_score)
        max_diff = np.max(diff)
        self.assertLess(max_diff, 0.25)

    def test_logprob_mixed(self):
        args = []
        temperature = 0
        # input_len, output_len, temperature, logprob_start_len, return_logprob, top_logprobs_num
        # Llama 2 context length seems to be only 2k, so we can only test small length.
        for input_len in [200, 500, 1000, 2000]:
            for output_len in [4, 8]:
                for logprob_start_len in [0, 100, 300, 800, 1998]:
                    for return_logprob in [True, False]:
                        for top_logprobs_num in [0, 5]:

                            if logprob_start_len >= input_len:
                                continue

                            args.append(
                                (
                                    input_len,
                                    output_len,
                                    temperature,
                                    logprob_start_len,
                                    return_logprob,
                                    top_logprobs_num,
                                )
                            )

        random.shuffle(args)

        func = partial(run_logprob_check, self)
        with ThreadPoolExecutor(8) as executor:
            list(executor.map(func, args))

394

395
class TestEAGLERetract(TestEAGLEServer):
396
397
    @classmethod
    def setUpClass(cls):
398
399
        # These config helps find a leak.
        os.environ["SGLANG_CI_SMALL_KV_SIZE"] = "4500"
400
401
402
403
404
405
406
407
408
409
410
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
                "--speculative-num-steps",
411
                5,
412
                "--speculative-eagle-topk",
413
                8,
414
                "--speculative-num-draft-tokens",
415
                64,
416
                "--mem-fraction-static",
417
                0.7,
418
                "--chunked-prefill-size",
419
                128,
420
                "--max-running-requests",
421
                64,
422
423
424
425
            ],
        )


426
427
428
429
430
431
432
433
434
435
436
437
438
439
class TestEAGLEServerTriton(TestEAGLEServer):
    @classmethod
    def setUpClass(cls):
        cls.base_url = DEFAULT_URL_FOR_TEST
        cls.process = popen_launch_server(
            DEFAULT_EAGLE_TARGET_MODEL_FOR_TEST,
            cls.base_url,
            timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
            other_args=[
                "--speculative-algorithm",
                "EAGLE",
                "--speculative-draft-model-path",
                DEFAULT_EAGLE_DRAFT_MODEL_FOR_TEST,
                "--speculative-num-steps",
440
                5,
441
                "--speculative-eagle-topk",
442
                8,
443
                "--speculative-num-draft-tokens",
444
                64,
445
                "--mem-fraction-static",
446
                0.7,
447
448
                "--attention-backend",
                "triton",
449
450
                "--max-running-requests",
                8,
451
452
453
454
            ],
        )


455
456
if __name__ == "__main__":
    unittest.main()