utils.py 16.7 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
import os
PengGao's avatar
PengGao committed
2
3
import random
import subprocess
PengGao's avatar
PengGao committed
4
5
from typing import Optional

PengGao's avatar
PengGao committed
6
7
8
import imageio
import imageio_ffmpeg as ffmpeg
import numpy as np
9
import safetensors
helloyongyang's avatar
helloyongyang committed
10
import torch
11
import torch.distributed as dist
helloyongyang's avatar
helloyongyang committed
12
import torchvision
13
14
from einops import rearrange
from loguru import logger
helloyongyang's avatar
helloyongyang committed
15
16
17
18
19
20
21


def seed_all(seed):
    random.seed(seed)
    os.environ["PYTHONHASHSEED"] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
Kane's avatar
Kane committed
22
23
24
25
26
27
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)
    elif hasattr(torch, "mlu") and torch.mlu.is_available():
        torch.mlu.manual_seed(seed)
        torch.mlu.manual_seed_all(seed)
helloyongyang's avatar
helloyongyang committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True


def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=1, fps=24):
    """save videos by video tensor
       copy from https://github.com/guoyww/AnimateDiff/blob/e92bd5671ba62c0d774a32951453e328018b7c5b/animatediff/utils/util.py#L61

    Args:
        videos (torch.Tensor): video tensor predicted by the model
        path (str): path to save video
        rescale (bool, optional): rescale the video tensor from [-1, 1] to  . Defaults to False.
        n_rows (int, optional): Defaults to 1.
        fps (int, optional): video save fps. Defaults to 8.
    """
    videos = rearrange(videos, "b c t h w -> t b c h w")
    outputs = []
    for x in videos:
        x = torchvision.utils.make_grid(x, nrow=n_rows)
        x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = torch.clamp(x, 0, 1)
        x = (x * 255).numpy().astype(np.uint8)
        outputs.append(x)

    os.makedirs(os.path.dirname(path), exist_ok=True)
    imageio.mimsave(path, outputs, fps=fps)


def cache_video(
    tensor,
PengGao's avatar
PengGao committed
60
    save_file: str,
helloyongyang's avatar
helloyongyang committed
61
62
63
64
65
66
67
    fps=30,
    suffix=".mp4",
    nrow=8,
    normalize=True,
    value_range=(-1, 1),
    retry=5,
):
GoatWu's avatar
GoatWu committed
68
69
70
71
72
73
74
75
    save_dir = os.path.dirname(save_file)
    try:
        if not os.path.exists(save_dir):
            os.makedirs(save_dir, exist_ok=True)
    except Exception as e:
        logger.error(f"Failed to create directory: {save_dir}, error: {e}")
        return None

helloyongyang's avatar
helloyongyang committed
76
77
78
79
80
81
82
    cache_file = save_file

    # save to cache
    error = None
    for _ in range(retry):
        try:
            # preprocess
PengGao's avatar
PengGao committed
83
            tensor = tensor.clamp(min(value_range), max(value_range))  # type: ignore
helloyongyang's avatar
helloyongyang committed
84
            tensor = torch.stack(
Dongz's avatar
Dongz committed
85
                [torchvision.utils.make_grid(u, nrow=nrow, normalize=normalize, value_range=value_range) for u in tensor.unbind(2)],
helloyongyang's avatar
helloyongyang committed
86
87
88
89
90
91
92
93
94
                dim=1,
            ).permute(1, 2, 3, 0)
            tensor = (tensor * 255).type(torch.uint8).cpu()

            # write video
            writer = imageio.get_writer(cache_file, fps=fps, codec="libx264", quality=8)
            for frame in tensor.numpy():
                writer.append_data(frame)
            writer.close()
gushiqiao's avatar
gushiqiao committed
95
96
            del tensor
            torch.cuda.empty_cache()
helloyongyang's avatar
helloyongyang committed
97
98
99
100
101
            return cache_file
        except Exception as e:
            error = e
            continue
    else:
root's avatar
root committed
102
        logger.info(f"cache_video failed, error: {error}", flush=True)
helloyongyang's avatar
helloyongyang committed
103
        return None
PengGao's avatar
PengGao committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136


def vae_to_comfyui_image(vae_output: torch.Tensor) -> torch.Tensor:
    """
    Convert VAE decoder output to ComfyUI Image format

    Args:
        vae_output: VAE decoder output tensor, typically in range [-1, 1]
                    Shape: [B, C, T, H, W] or [B, C, H, W]

    Returns:
        ComfyUI Image tensor in range [0, 1]
        Shape: [B, H, W, C] for single frame or [B*T, H, W, C] for video
    """
    # Handle video tensor (5D) vs image tensor (4D)
    if vae_output.dim() == 5:
        # Video tensor: [B, C, T, H, W]
        B, C, T, H, W = vae_output.shape
        # Reshape to [B*T, C, H, W] for processing
        vae_output = vae_output.permute(0, 2, 1, 3, 4).reshape(B * T, C, H, W)

    # Normalize from [-1, 1] to [0, 1]
    images = (vae_output + 1) / 2

    # Clamp values to [0, 1]
    images = torch.clamp(images, 0, 1)

    # Convert from [B, C, H, W] to [B, H, W, C]
    images = images.permute(0, 2, 3, 1).cpu()

    return images


LiangLiu's avatar
LiangLiu committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
def vae_to_comfyui_image_inplace(vae_output: torch.Tensor) -> torch.Tensor:
    """
    Convert VAE decoder output to ComfyUI Image format (inplace operation)

    Args:
        vae_output: VAE decoder output tensor, typically in range [-1, 1]
                    Shape: [B, C, T, H, W] or [B, C, H, W]
                    WARNING: This tensor will be modified in-place!

    Returns:
        ComfyUI Image tensor in range [0, 1]
        Shape: [B, H, W, C] for single frame or [B*T, H, W, C] for video
        Note: The returned tensor is the same object as input (modified in-place)
    """
    # Handle video tensor (5D) vs image tensor (4D)
    if vae_output.dim() == 5:
        # Video tensor: [B, C, T, H, W]
        B, C, T, H, W = vae_output.shape
        # Reshape to [B*T, C, H, W] for processing (inplace view)
        vae_output = vae_output.permute(0, 2, 1, 3, 4).contiguous().view(B * T, C, H, W)

    # Normalize from [-1, 1] to [0, 1] (inplace)
    vae_output.add_(1).div_(2)

    # Clamp values to [0, 1] (inplace)
    vae_output.clamp_(0, 1)

    # Convert from [B, C, H, W] to [B, H, W, C] and move to CPU
    vae_output = vae_output.permute(0, 2, 3, 1).cpu()

    return vae_output


PengGao's avatar
PengGao committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
def save_to_video(
    images: torch.Tensor,
    output_path: str,
    fps: float = 24.0,
    method: str = "imageio",
    lossless: bool = False,
    output_pix_fmt: Optional[str] = "yuv420p",
) -> None:
    """
    Save ComfyUI Image tensor to video file

    Args:
        images: ComfyUI Image tensor [N, H, W, C] in range [0, 1]
        output_path: Path to save the video
        fps: Frames per second
        method: Save method - "imageio" or "ffmpeg"
        lossless: Whether to use lossless encoding (ffmpeg method only)
        output_pix_fmt: Pixel format for output (ffmpeg method only)
    """
    assert images.dim() == 4 and images.shape[-1] == 3, "Input must be [N, H, W, C] with C=3"

    # Ensure output directory exists
    os.makedirs(os.path.dirname(output_path) or ".", exist_ok=True)

    if method == "imageio":
        # Convert to uint8
196
197
        # frames = (images * 255).cpu().numpy().astype(np.uint8)
        frames = (images * 255).to(torch.uint8).cpu().numpy()
PengGao's avatar
PengGao committed
198
199
200
201
        imageio.mimsave(output_path, frames, fps=fps)  # type: ignore

    elif method == "ffmpeg":
        # Convert to numpy and scale to [0, 255]
202
203
        # frames = (images * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
        frames = (images * 255).clamp(0, 255).to(torch.uint8).cpu().numpy()
PengGao's avatar
PengGao committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

        # Convert RGB to BGR for OpenCV/FFmpeg
        frames = frames[..., ::-1].copy()

        N, height, width, _ = frames.shape

        # Ensure even dimensions for x264
        width += width % 2
        height += height % 2

        # Get ffmpeg executable from imageio_ffmpeg
        ffmpeg_exe = ffmpeg.get_ffmpeg_exe()

        if lossless:
            command = [
                ffmpeg_exe,
                "-y",  # Overwrite output file if it exists
                "-f",
                "rawvideo",
                "-s",
                f"{int(width)}x{int(height)}",
                "-pix_fmt",
                "bgr24",
                "-r",
                f"{fps}",
                "-loglevel",
                "error",
                "-threads",
                "4",
                "-i",
                "-",  # Input from pipe
                "-vcodec",
                "libx264rgb",
                "-crf",
                "0",
                "-an",  # No audio
                output_path,
            ]
        else:
            command = [
                ffmpeg_exe,
                "-y",  # Overwrite output file if it exists
                "-f",
                "rawvideo",
                "-s",
                f"{int(width)}x{int(height)}",
                "-pix_fmt",
                "bgr24",
                "-r",
                f"{fps}",
                "-loglevel",
                "error",
                "-threads",
                "4",
                "-i",
                "-",  # Input from pipe
                "-vcodec",
                "libx264",
                "-pix_fmt",
                output_pix_fmt,
                "-an",  # No audio
                output_path,
            ]

        # Run FFmpeg
        process = subprocess.Popen(
            command,
            stdin=subprocess.PIPE,
            stderr=subprocess.PIPE,
        )

        if process.stdin is None:
            raise BrokenPipeError("No stdin buffer received.")

        # Write frames to FFmpeg
        for frame in frames:
            # Pad frame if needed
            if frame.shape[0] < height or frame.shape[1] < width:
                padded = np.zeros((height, width, 3), dtype=np.uint8)
                padded[: frame.shape[0], : frame.shape[1]] = frame
                frame = padded
            process.stdin.write(frame.tobytes())

        process.stdin.close()
        process.wait()

        if process.returncode != 0:
            error_output = process.stderr.read().decode() if process.stderr else "Unknown error"
            raise RuntimeError(f"FFmpeg failed with error: {error_output}")

    else:
        raise ValueError(f"Unknown save method: {method}")
296
297


298
299
300
301
302
303
304
def remove_substrings_from_keys(original_dict, substr):
    new_dict = {}
    for key, value in original_dict.items():
        new_dict[key.replace(substr, "")] = value
    return new_dict


305
def find_torch_model_path(config, ckpt_config_key=None, filename=None, subdir=["original", "fp8", "int8", "distill_models", "distill_fp8", "distill_int8"]):
306
307
308
309
    if ckpt_config_key and config.get(ckpt_config_key, None) is not None:
        return config.get(ckpt_config_key)

    paths_to_check = [
310
        os.path.join(config["model_path"], filename),
311
    ]
gushiqiao's avatar
gushiqiao committed
312
313
    if isinstance(subdir, list):
        for sub in subdir:
314
            paths_to_check.insert(0, os.path.join(config["model_path"], sub, filename))
gushiqiao's avatar
gushiqiao committed
315
    else:
316
        paths_to_check.insert(0, os.path.join(config["model_path"], subdir, filename))
gushiqiao's avatar
gushiqiao committed
317

318
319
320
321
322
323
    for path in paths_to_check:
        if os.path.exists(path):
            return path
    raise FileNotFoundError(f"PyTorch model file '{filename}' not found.\nPlease download the model from https://huggingface.co/lightx2v/ or specify the model path in the configuration file.")


324
325
326
def load_safetensors(in_path, remove_key=None, include_keys=None):
    """加载safetensors文件或目录,支持按key包含筛选或排除"""
    include_keys = include_keys or []
327
    if os.path.isdir(in_path):
328
        return load_safetensors_from_dir(in_path, remove_key, include_keys)
329
    elif os.path.isfile(in_path):
330
        return load_safetensors_from_path(in_path, remove_key, include_keys)
331
332
333
334
    else:
        raise ValueError(f"{in_path} does not exist")


335
336
337
def load_safetensors_from_path(in_path, remove_key=None, include_keys=None):
    """从单个safetensors文件加载权重,支持按key筛选"""
    include_keys = include_keys or []
338
339
340
    tensors = {}
    with safetensors.safe_open(in_path, framework="pt", device="cpu") as f:
        for key in f.keys():
341
342
343
344
345
346
347
348
            # 优先处理include_keys:如果非空,只保留包含任意指定key的条目
            if include_keys:
                if any(inc_key in key for inc_key in include_keys):
                    tensors[key] = f.get_tensor(key)
            # 否则使用remove_key排除
            else:
                if not (remove_key and remove_key in key):
                    tensors[key] = f.get_tensor(key)
349
350
351
    return tensors


352
353
354
def load_safetensors_from_dir(in_dir, remove_key=None, include_keys=None):
    """从目录加载所有safetensors文件,支持按key筛选"""
    include_keys = include_keys or []
355
    tensors = {}
356
357
358
359
    safetensors_files = os.listdir(in_dir)
    safetensors_files = [f for f in safetensors_files if f.endswith(".safetensors")]
    for f in safetensors_files:
        tensors.update(load_safetensors_from_path(os.path.join(in_dir, f), remove_key, include_keys))
360
361
362
    return tensors


363
364
365
def load_pt_safetensors(in_path, remove_key=None, include_keys=None):
    """加载pt/pth或safetensors权重,支持按key筛选"""
    include_keys = include_keys or []
366
367
368
    ext = os.path.splitext(in_path)[-1]
    if ext in (".pt", ".pth", ".tar"):
        state_dict = torch.load(in_path, map_location="cpu", weights_only=True)
369
370
371
372
373
374
375
376
377
378
379
        # 处理筛选逻辑
        keys_to_keep = []
        for key in state_dict.keys():
            if include_keys:
                if any(inc_key in key for inc_key in include_keys):
                    keys_to_keep.append(key)
            else:
                if not (remove_key and remove_key in key):
                    keys_to_keep.append(key)
        # 只保留符合条件的key
        state_dict = {k: state_dict[k] for k in keys_to_keep}
380
    else:
381
        state_dict = load_safetensors(in_path, remove_key, include_keys)
382
383
384
    return state_dict


385
def load_weights(checkpoint_path, cpu_offload=False, remove_key=None, load_from_rank0=False, include_keys=None):
gushiqiao's avatar
gushiqiao committed
386
    if not dist.is_initialized() or not load_from_rank0:
gushiqiao's avatar
gushiqiao committed
387
        # Single GPU mode
388
        logger.info(f"Loading weights from {checkpoint_path}")
389
        cpu_weight_dict = load_pt_safetensors(checkpoint_path, remove_key, include_keys)
gushiqiao's avatar
Fix  
gushiqiao committed
390
        return cpu_weight_dict
391

gushiqiao's avatar
gushiqiao committed
392
    # Multi-GPU mode
gushiqiao's avatar
gushiqiao committed
393
    is_weight_loader = False
394
    current_rank = dist.get_rank()
gushiqiao's avatar
gushiqiao committed
395
396
    if current_rank == 0:
        is_weight_loader = True
397
398

    cpu_weight_dict = {}
gushiqiao's avatar
Fix  
gushiqiao committed
399
    if is_weight_loader:
400
        logger.info(f"Loading weights from {checkpoint_path}")
LiangLiu's avatar
LiangLiu committed
401
        cpu_weight_dict = load_pt_safetensors(checkpoint_path, remove_key)
402
403

    meta_dict = {}
gushiqiao's avatar
gushiqiao committed
404
    if is_weight_loader:
405
406
407
        for key, tensor in cpu_weight_dict.items():
            meta_dict[key] = {"shape": tensor.shape, "dtype": tensor.dtype}

gushiqiao's avatar
gushiqiao committed
408
    obj_list = [meta_dict] if is_weight_loader else [None]
409

410
411
    src_global_rank = 0
    dist.broadcast_object_list(obj_list, src=src_global_rank)
412
413
    synced_meta_dict = obj_list[0]

gushiqiao's avatar
gushiqiao committed
414
415
416
417
418
419
420
421
    if cpu_offload:
        target_device = "cpu"
        distributed_weight_dict = {key: torch.empty(meta["shape"], dtype=meta["dtype"], device=target_device) for key, meta in synced_meta_dict.items()}
        dist.barrier()
    else:
        target_device = torch.device(f"cuda:{current_rank}")
        distributed_weight_dict = {key: torch.empty(meta["shape"], dtype=meta["dtype"], device=target_device) for key, meta in synced_meta_dict.items()}
        dist.barrier(device_ids=[torch.cuda.current_device()])
422
423

    for key in sorted(synced_meta_dict.keys()):
gushiqiao's avatar
gushiqiao committed
424
425
        tensor_to_broadcast = distributed_weight_dict[key]
        if is_weight_loader:
gushiqiao's avatar
gushiqiao committed
426
            tensor_to_broadcast.copy_(cpu_weight_dict[key], non_blocking=True)
gushiqiao's avatar
gushiqiao committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

        if cpu_offload:
            if is_weight_loader:
                gpu_tensor = tensor_to_broadcast.cuda()
                dist.broadcast(gpu_tensor, src=src_global_rank)
                tensor_to_broadcast.copy_(gpu_tensor.cpu(), non_blocking=True)
                del gpu_tensor
                torch.cuda.empty_cache()
            else:
                gpu_tensor = torch.empty_like(tensor_to_broadcast, device="cuda")
                dist.broadcast(gpu_tensor, src=src_global_rank)
                tensor_to_broadcast.copy_(gpu_tensor.cpu(), non_blocking=True)
                del gpu_tensor
                torch.cuda.empty_cache()
        else:
            dist.broadcast(tensor_to_broadcast, src=src_global_rank)
443

gushiqiao's avatar
gushiqiao committed
444
    if is_weight_loader:
445
446
        del cpu_weight_dict

gushiqiao's avatar
gushiqiao committed
447
448
449
    if cpu_offload:
        torch.cuda.empty_cache()

gushiqiao's avatar
gushiqiao committed
450
451
    logger.info(f"Weights distributed across {dist.get_world_size()} devices on {target_device}")
    return distributed_weight_dict
452
453


sandy's avatar
sandy committed
454
def masks_like(tensor, zero=False, generator=None, p=0.2, prev_len=1):
455
456
457
458
459
460
    assert isinstance(tensor, torch.Tensor)
    out = torch.ones_like(tensor)
    if zero:
        if generator is not None:
            random_num = torch.rand(1, generator=generator, device=generator.device).item()
            if random_num < p:
sandy's avatar
sandy committed
461
                out[:, :prev_len] = torch.zeros_like(out[:, :prev_len])
462
        else:
sandy's avatar
sandy committed
463
            out[:, :prev_len] = torch.zeros_like(out[:, :prev_len])
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
    return out


def best_output_size(w, h, dw, dh, expected_area):
    # float output size
    ratio = w / h
    ow = (expected_area * ratio) ** 0.5
    oh = expected_area / ow

    # process width first
    ow1 = int(ow // dw * dw)
    oh1 = int(expected_area / ow1 // dh * dh)
    assert ow1 % dw == 0 and oh1 % dh == 0 and ow1 * oh1 <= expected_area
    ratio1 = ow1 / oh1

    # process height first
    oh2 = int(oh // dh * dh)
    ow2 = int(expected_area / oh2 // dw * dw)
    assert oh2 % dh == 0 and ow2 % dw == 0 and ow2 * oh2 <= expected_area
    ratio2 = ow2 / oh2

    # compare ratios
    if max(ratio / ratio1, ratio1 / ratio) < max(ratio / ratio2, ratio2 / ratio):
        return ow1, oh1
    else:
        return ow2, oh2