utils.py 14.9 KB
Newer Older
PengGao's avatar
PengGao committed
1
import glob
helloyongyang's avatar
helloyongyang committed
2
import os
PengGao's avatar
PengGao committed
3
4
import random
import subprocess
PengGao's avatar
PengGao committed
5
6
from typing import Optional

PengGao's avatar
PengGao committed
7
8
9
import imageio
import imageio_ffmpeg as ffmpeg
import numpy as np
helloyongyang's avatar
helloyongyang committed
10
import torch
11
import torch.distributed as dist
helloyongyang's avatar
helloyongyang committed
12
import torchvision
13
14
from einops import rearrange
from loguru import logger
helloyongyang's avatar
helloyongyang committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


def seed_all(seed):
    random.seed(seed)
    os.environ["PYTHONHASHSEED"] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True


def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=1, fps=24):
    """save videos by video tensor
       copy from https://github.com/guoyww/AnimateDiff/blob/e92bd5671ba62c0d774a32951453e328018b7c5b/animatediff/utils/util.py#L61

    Args:
        videos (torch.Tensor): video tensor predicted by the model
        path (str): path to save video
        rescale (bool, optional): rescale the video tensor from [-1, 1] to  . Defaults to False.
        n_rows (int, optional): Defaults to 1.
        fps (int, optional): video save fps. Defaults to 8.
    """
    videos = rearrange(videos, "b c t h w -> t b c h w")
    outputs = []
    for x in videos:
        x = torchvision.utils.make_grid(x, nrow=n_rows)
        x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = torch.clamp(x, 0, 1)
        x = (x * 255).numpy().astype(np.uint8)
        outputs.append(x)

    os.makedirs(os.path.dirname(path), exist_ok=True)
    imageio.mimsave(path, outputs, fps=fps)


def cache_video(
    tensor,
PengGao's avatar
PengGao committed
56
    save_file: str,
helloyongyang's avatar
helloyongyang committed
57
58
59
60
61
62
63
    fps=30,
    suffix=".mp4",
    nrow=8,
    normalize=True,
    value_range=(-1, 1),
    retry=5,
):
GoatWu's avatar
GoatWu committed
64
65
66
67
68
69
70
71
    save_dir = os.path.dirname(save_file)
    try:
        if not os.path.exists(save_dir):
            os.makedirs(save_dir, exist_ok=True)
    except Exception as e:
        logger.error(f"Failed to create directory: {save_dir}, error: {e}")
        return None

helloyongyang's avatar
helloyongyang committed
72
73
74
75
76
77
78
    cache_file = save_file

    # save to cache
    error = None
    for _ in range(retry):
        try:
            # preprocess
PengGao's avatar
PengGao committed
79
            tensor = tensor.clamp(min(value_range), max(value_range))  # type: ignore
helloyongyang's avatar
helloyongyang committed
80
            tensor = torch.stack(
Dongz's avatar
Dongz committed
81
                [torchvision.utils.make_grid(u, nrow=nrow, normalize=normalize, value_range=value_range) for u in tensor.unbind(2)],
helloyongyang's avatar
helloyongyang committed
82
83
84
85
86
87
88
89
90
                dim=1,
            ).permute(1, 2, 3, 0)
            tensor = (tensor * 255).type(torch.uint8).cpu()

            # write video
            writer = imageio.get_writer(cache_file, fps=fps, codec="libx264", quality=8)
            for frame in tensor.numpy():
                writer.append_data(frame)
            writer.close()
gushiqiao's avatar
gushiqiao committed
91
92
            del tensor
            torch.cuda.empty_cache()
helloyongyang's avatar
helloyongyang committed
93
94
95
96
97
            return cache_file
        except Exception as e:
            error = e
            continue
    else:
root's avatar
root committed
98
        logger.info(f"cache_video failed, error: {error}", flush=True)
helloyongyang's avatar
helloyongyang committed
99
        return None
PengGao's avatar
PengGao committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158


def vae_to_comfyui_image(vae_output: torch.Tensor) -> torch.Tensor:
    """
    Convert VAE decoder output to ComfyUI Image format

    Args:
        vae_output: VAE decoder output tensor, typically in range [-1, 1]
                    Shape: [B, C, T, H, W] or [B, C, H, W]

    Returns:
        ComfyUI Image tensor in range [0, 1]
        Shape: [B, H, W, C] for single frame or [B*T, H, W, C] for video
    """
    # Handle video tensor (5D) vs image tensor (4D)
    if vae_output.dim() == 5:
        # Video tensor: [B, C, T, H, W]
        B, C, T, H, W = vae_output.shape
        # Reshape to [B*T, C, H, W] for processing
        vae_output = vae_output.permute(0, 2, 1, 3, 4).reshape(B * T, C, H, W)

    # Normalize from [-1, 1] to [0, 1]
    images = (vae_output + 1) / 2

    # Clamp values to [0, 1]
    images = torch.clamp(images, 0, 1)

    # Convert from [B, C, H, W] to [B, H, W, C]
    images = images.permute(0, 2, 3, 1).cpu()

    return images


def save_to_video(
    images: torch.Tensor,
    output_path: str,
    fps: float = 24.0,
    method: str = "imageio",
    lossless: bool = False,
    output_pix_fmt: Optional[str] = "yuv420p",
) -> None:
    """
    Save ComfyUI Image tensor to video file

    Args:
        images: ComfyUI Image tensor [N, H, W, C] in range [0, 1]
        output_path: Path to save the video
        fps: Frames per second
        method: Save method - "imageio" or "ffmpeg"
        lossless: Whether to use lossless encoding (ffmpeg method only)
        output_pix_fmt: Pixel format for output (ffmpeg method only)
    """
    assert images.dim() == 4 and images.shape[-1] == 3, "Input must be [N, H, W, C] with C=3"

    # Ensure output directory exists
    os.makedirs(os.path.dirname(output_path) or ".", exist_ok=True)

    if method == "imageio":
        # Convert to uint8
159
160
        # frames = (images * 255).cpu().numpy().astype(np.uint8)
        frames = (images * 255).to(torch.uint8).cpu().numpy()
PengGao's avatar
PengGao committed
161
162
163
164
        imageio.mimsave(output_path, frames, fps=fps)  # type: ignore

    elif method == "ffmpeg":
        # Convert to numpy and scale to [0, 255]
165
166
        # frames = (images * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
        frames = (images * 255).clamp(0, 255).to(torch.uint8).cpu().numpy()
PengGao's avatar
PengGao committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

        # Convert RGB to BGR for OpenCV/FFmpeg
        frames = frames[..., ::-1].copy()

        N, height, width, _ = frames.shape

        # Ensure even dimensions for x264
        width += width % 2
        height += height % 2

        # Get ffmpeg executable from imageio_ffmpeg
        ffmpeg_exe = ffmpeg.get_ffmpeg_exe()

        if lossless:
            command = [
                ffmpeg_exe,
                "-y",  # Overwrite output file if it exists
                "-f",
                "rawvideo",
                "-s",
                f"{int(width)}x{int(height)}",
                "-pix_fmt",
                "bgr24",
                "-r",
                f"{fps}",
                "-loglevel",
                "error",
                "-threads",
                "4",
                "-i",
                "-",  # Input from pipe
                "-vcodec",
                "libx264rgb",
                "-crf",
                "0",
                "-an",  # No audio
                output_path,
            ]
        else:
            command = [
                ffmpeg_exe,
                "-y",  # Overwrite output file if it exists
                "-f",
                "rawvideo",
                "-s",
                f"{int(width)}x{int(height)}",
                "-pix_fmt",
                "bgr24",
                "-r",
                f"{fps}",
                "-loglevel",
                "error",
                "-threads",
                "4",
                "-i",
                "-",  # Input from pipe
                "-vcodec",
                "libx264",
                "-pix_fmt",
                output_pix_fmt,
                "-an",  # No audio
                output_path,
            ]

        # Run FFmpeg
        process = subprocess.Popen(
            command,
            stdin=subprocess.PIPE,
            stderr=subprocess.PIPE,
        )

        if process.stdin is None:
            raise BrokenPipeError("No stdin buffer received.")

        # Write frames to FFmpeg
        for frame in frames:
            # Pad frame if needed
            if frame.shape[0] < height or frame.shape[1] < width:
                padded = np.zeros((height, width, 3), dtype=np.uint8)
                padded[: frame.shape[0], : frame.shape[1]] = frame
                frame = padded
            process.stdin.write(frame.tobytes())

        process.stdin.close()
        process.wait()

        if process.returncode != 0:
            error_output = process.stderr.read().decode() if process.stderr else "Unknown error"
            raise RuntimeError(f"FFmpeg failed with error: {error_output}")

    else:
        raise ValueError(f"Unknown save method: {method}")
259
260


261
def find_torch_model_path(config, ckpt_config_key=None, filename=None, subdir=["original", "fp8", "int8", "distill_models", "distill_fp8", "distill_int8"]):
262
263
264
265
266
267
    if ckpt_config_key and config.get(ckpt_config_key, None) is not None:
        return config.get(ckpt_config_key)

    paths_to_check = [
        os.path.join(config.model_path, filename),
    ]
gushiqiao's avatar
gushiqiao committed
268
269
270
271
    if isinstance(subdir, list):
        for sub in subdir:
            paths_to_check.append(os.path.join(config.model_path, sub, filename))
    else:
272
        paths_to_check.append(os.path.join(config.model_path, subdir, filename))
gushiqiao's avatar
gushiqiao committed
273

274
275
276
277
278
279
    for path in paths_to_check:
        if os.path.exists(path):
            return path
    raise FileNotFoundError(f"PyTorch model file '{filename}' not found.\nPlease download the model from https://huggingface.co/lightx2v/ or specify the model path in the configuration file.")


280
def find_hf_model_path(config, model_path, ckpt_config_key=None, subdir=["original", "fp8", "int8", "distill_models", "distill_fp8", "distill_int8"]):
281
282
283
    if ckpt_config_key and config.get(ckpt_config_key, None) is not None:
        return config.get(ckpt_config_key)

helloyongyang's avatar
helloyongyang committed
284
    paths_to_check = [model_path]
gushiqiao's avatar
gushiqiao committed
285
286
    if isinstance(subdir, list):
        for sub in subdir:
helloyongyang's avatar
helloyongyang committed
287
            paths_to_check.append(os.path.join(model_path, sub))
gushiqiao's avatar
gushiqiao committed
288
    else:
gushiqiao's avatar
gushiqiao committed
289
        paths_to_check.append(os.path.join(model_path, subdir))
290
291
292
293
294
295
296

    for path in paths_to_check:
        safetensors_pattern = os.path.join(path, "*.safetensors")
        safetensors_files = glob.glob(safetensors_pattern)
        if safetensors_files:
            return path
    raise FileNotFoundError(f"No Hugging Face model files (.safetensors) found.\nPlease download the model from: https://huggingface.co/lightx2v/ or specify the model path in the configuration file.")
297
298


299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
def find_gguf_model_path(config, ckpt_config_key=None, subdir=None):
    gguf_path = config.get(ckpt_config_key, None)
    if gguf_path is None:
        raise ValueError(f"GGUF path not found in config with key '{ckpt_config_key}'")
    if not isinstance(gguf_path, str) or not gguf_path.endswith(".gguf"):
        raise ValueError(f"GGUF path must be a string ending with '.gguf', got: {gguf_path}")
    if os.sep in gguf_path or (os.altsep and os.altsep in gguf_path):
        if os.path.exists(gguf_path):
            logger.info(f"Found GGUF model file in: {gguf_path}")
            return os.path.abspath(gguf_path)
        else:
            raise FileNotFoundError(f"GGUF file not found at path: {gguf_path}")
    else:
        # It's just a filename, search in predefined paths
        paths_to_check = [config.model_path]
        if subdir:
            paths_to_check.append(os.path.join(config.model_path, subdir))

        for path in paths_to_check:
            gguf_file_path = os.path.join(path, gguf_path)
            gguf_file = glob.glob(gguf_file_path)
            if gguf_file:
                logger.info(f"Found GGUF model file in: {gguf_file_path}")
                return gguf_file_path

    raise FileNotFoundError(f"No GGUF model files (.gguf) found.\nPlease download the model from: https://huggingface.co/lightx2v/ or specify the model path in the configuration file.")


gushiqiao's avatar
gushiqiao committed
327
def load_weights(checkpoint_path, cpu_offload=False, remove_key=None):
328
    if not dist.is_initialized():
gushiqiao's avatar
gushiqiao committed
329
        # Single GPU mode
330
331
332
        logger.info(f"Loading weights from {checkpoint_path}")
        return torch.load(checkpoint_path, map_location="cpu", weights_only=True)

gushiqiao's avatar
gushiqiao committed
333
334
    # Multi-GPU mode
    is_weight_loader = False
335
    current_rank = dist.get_rank()
336
    if current_rank == 0:
gushiqiao's avatar
gushiqiao committed
337
        is_weight_loader = True
338
339

    cpu_weight_dict = {}
gushiqiao's avatar
gushiqiao committed
340
    if is_weight_loader:  # rank0在 CPU 上加载完整的权重字典
341
342
        logger.info(f"Loading weights from {checkpoint_path}")
        cpu_weight_dict = torch.load(checkpoint_path, map_location="cpu", weights_only=True)
gushiqiao's avatar
gushiqiao committed
343
344
345
        for key in list(cpu_weight_dict.keys()):
            if remove_key and remove_key in key:
                cpu_weight_dict.pop(key)
346
347
348

    # 同步字典的结构
    meta_dict = {}
gushiqiao's avatar
gushiqiao committed
349
    if is_weight_loader:
350
351
352
        for key, tensor in cpu_weight_dict.items():
            meta_dict[key] = {"shape": tensor.shape, "dtype": tensor.dtype}

gushiqiao's avatar
gushiqiao committed
353
    obj_list = [meta_dict] if is_weight_loader else [None]
354
355

    # 获取rank0的全局 rank 用于广播
356
357
    src_global_rank = 0
    dist.broadcast_object_list(obj_list, src=src_global_rank)
358
359
    synced_meta_dict = obj_list[0]

gushiqiao's avatar
gushiqiao committed
360
361
362
363
364
365
366
367
368
369
370
371
372
    # 根据offload配置决定目标设备
    if cpu_offload:
        # Multi-GPU + offload: weights on CPU
        target_device = "cpu"
        distributed_weight_dict = {key: torch.empty(meta["shape"], dtype=meta["dtype"], device=target_device) for key, meta in synced_meta_dict.items()}
        # CPU分发使用普通barrier
        dist.barrier()
    else:
        # Multi-GPU + non-offload: weights on GPU
        target_device = torch.device(f"cuda:{current_rank}")
        distributed_weight_dict = {key: torch.empty(meta["shape"], dtype=meta["dtype"], device=target_device) for key, meta in synced_meta_dict.items()}
        # GPU分发使用CUDA barrier
        dist.barrier(device_ids=[torch.cuda.current_device()])
373

gushiqiao's avatar
gushiqiao committed
374
    # 广播权重
375
    for key in sorted(synced_meta_dict.keys()):
gushiqiao's avatar
gushiqiao committed
376
377
378
379
380
381
382
383
384
385
386
        tensor_to_broadcast = distributed_weight_dict[key]
        if is_weight_loader:
            # rank0将CPU权重拷贝到目标设备,准备广播
            if cpu_offload:
                # CPU模式:直接复制
                tensor_to_broadcast.copy_(cpu_weight_dict[key], non_blocking=True)
            else:
                # GPU模式:先复制到当前GPU,再广播
                tensor_to_broadcast.copy_(cpu_weight_dict[key], non_blocking=True)

        # 广播到所有ranks
387
        dist.broadcast(tensor_to_broadcast, src=src_global_rank)
388

gushiqiao's avatar
gushiqiao committed
389
    if is_weight_loader:
390
391
        del cpu_weight_dict

gushiqiao's avatar
gushiqiao committed
392
393
    logger.info(f"Weights distributed across {dist.get_world_size()} devices on {target_device}")
    return distributed_weight_dict
394
395


396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
def masks_like(tensor, zero=False, generator=None, p=0.2):
    assert isinstance(tensor, torch.Tensor)
    out = torch.ones_like(tensor)
    if zero:
        if generator is not None:
            # 生成随机数判断是否需要修改
            random_num = torch.rand(1, generator=generator, device=generator.device).item()
            if random_num < p:
                out[:, 0] = torch.zeros_like(out[:, 0])
        else:
            out[:, 0] = torch.zeros_like(out[:, 0])

    return out


def best_output_size(w, h, dw, dh, expected_area):
    # float output size
    ratio = w / h
    ow = (expected_area * ratio) ** 0.5
    oh = expected_area / ow

    # process width first
    ow1 = int(ow // dw * dw)
    oh1 = int(expected_area / ow1 // dh * dh)
    assert ow1 % dw == 0 and oh1 % dh == 0 and ow1 * oh1 <= expected_area
    ratio1 = ow1 / oh1

    # process height first
    oh2 = int(oh // dh * dh)
    ow2 = int(expected_area / oh2 // dw * dw)
    assert oh2 % dh == 0 and ow2 % dw == 0 and ow2 * oh2 <= expected_area
    ratio2 = ow2 / oh2

    # compare ratios
    if max(ratio / ratio1, ratio1 / ratio) < max(ratio / ratio2, ratio2 / ratio):
        return ow1, oh1
    else:
        return ow2, oh2