utils.py 16.5 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
import os
PengGao's avatar
PengGao committed
2
3
import random
import subprocess
PengGao's avatar
PengGao committed
4
5
from typing import Optional

PengGao's avatar
PengGao committed
6
7
8
import imageio
import imageio_ffmpeg as ffmpeg
import numpy as np
9
import safetensors
helloyongyang's avatar
helloyongyang committed
10
import torch
11
import torch.distributed as dist
helloyongyang's avatar
helloyongyang committed
12
import torchvision
13
14
from einops import rearrange
from loguru import logger
helloyongyang's avatar
helloyongyang committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55


def seed_all(seed):
    random.seed(seed)
    os.environ["PYTHONHASHSEED"] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True


def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=1, fps=24):
    """save videos by video tensor
       copy from https://github.com/guoyww/AnimateDiff/blob/e92bd5671ba62c0d774a32951453e328018b7c5b/animatediff/utils/util.py#L61

    Args:
        videos (torch.Tensor): video tensor predicted by the model
        path (str): path to save video
        rescale (bool, optional): rescale the video tensor from [-1, 1] to  . Defaults to False.
        n_rows (int, optional): Defaults to 1.
        fps (int, optional): video save fps. Defaults to 8.
    """
    videos = rearrange(videos, "b c t h w -> t b c h w")
    outputs = []
    for x in videos:
        x = torchvision.utils.make_grid(x, nrow=n_rows)
        x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = torch.clamp(x, 0, 1)
        x = (x * 255).numpy().astype(np.uint8)
        outputs.append(x)

    os.makedirs(os.path.dirname(path), exist_ok=True)
    imageio.mimsave(path, outputs, fps=fps)


def cache_video(
    tensor,
PengGao's avatar
PengGao committed
56
    save_file: str,
helloyongyang's avatar
helloyongyang committed
57
58
59
60
61
62
63
    fps=30,
    suffix=".mp4",
    nrow=8,
    normalize=True,
    value_range=(-1, 1),
    retry=5,
):
GoatWu's avatar
GoatWu committed
64
65
66
67
68
69
70
71
    save_dir = os.path.dirname(save_file)
    try:
        if not os.path.exists(save_dir):
            os.makedirs(save_dir, exist_ok=True)
    except Exception as e:
        logger.error(f"Failed to create directory: {save_dir}, error: {e}")
        return None

helloyongyang's avatar
helloyongyang committed
72
73
74
75
76
77
78
    cache_file = save_file

    # save to cache
    error = None
    for _ in range(retry):
        try:
            # preprocess
PengGao's avatar
PengGao committed
79
            tensor = tensor.clamp(min(value_range), max(value_range))  # type: ignore
helloyongyang's avatar
helloyongyang committed
80
            tensor = torch.stack(
Dongz's avatar
Dongz committed
81
                [torchvision.utils.make_grid(u, nrow=nrow, normalize=normalize, value_range=value_range) for u in tensor.unbind(2)],
helloyongyang's avatar
helloyongyang committed
82
83
84
85
86
87
88
89
90
                dim=1,
            ).permute(1, 2, 3, 0)
            tensor = (tensor * 255).type(torch.uint8).cpu()

            # write video
            writer = imageio.get_writer(cache_file, fps=fps, codec="libx264", quality=8)
            for frame in tensor.numpy():
                writer.append_data(frame)
            writer.close()
gushiqiao's avatar
gushiqiao committed
91
92
            del tensor
            torch.cuda.empty_cache()
helloyongyang's avatar
helloyongyang committed
93
94
95
96
97
            return cache_file
        except Exception as e:
            error = e
            continue
    else:
root's avatar
root committed
98
        logger.info(f"cache_video failed, error: {error}", flush=True)
helloyongyang's avatar
helloyongyang committed
99
        return None
PengGao's avatar
PengGao committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132


def vae_to_comfyui_image(vae_output: torch.Tensor) -> torch.Tensor:
    """
    Convert VAE decoder output to ComfyUI Image format

    Args:
        vae_output: VAE decoder output tensor, typically in range [-1, 1]
                    Shape: [B, C, T, H, W] or [B, C, H, W]

    Returns:
        ComfyUI Image tensor in range [0, 1]
        Shape: [B, H, W, C] for single frame or [B*T, H, W, C] for video
    """
    # Handle video tensor (5D) vs image tensor (4D)
    if vae_output.dim() == 5:
        # Video tensor: [B, C, T, H, W]
        B, C, T, H, W = vae_output.shape
        # Reshape to [B*T, C, H, W] for processing
        vae_output = vae_output.permute(0, 2, 1, 3, 4).reshape(B * T, C, H, W)

    # Normalize from [-1, 1] to [0, 1]
    images = (vae_output + 1) / 2

    # Clamp values to [0, 1]
    images = torch.clamp(images, 0, 1)

    # Convert from [B, C, H, W] to [B, H, W, C]
    images = images.permute(0, 2, 3, 1).cpu()

    return images


LiangLiu's avatar
LiangLiu committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
def vae_to_comfyui_image_inplace(vae_output: torch.Tensor) -> torch.Tensor:
    """
    Convert VAE decoder output to ComfyUI Image format (inplace operation)

    Args:
        vae_output: VAE decoder output tensor, typically in range [-1, 1]
                    Shape: [B, C, T, H, W] or [B, C, H, W]
                    WARNING: This tensor will be modified in-place!

    Returns:
        ComfyUI Image tensor in range [0, 1]
        Shape: [B, H, W, C] for single frame or [B*T, H, W, C] for video
        Note: The returned tensor is the same object as input (modified in-place)
    """
    # Handle video tensor (5D) vs image tensor (4D)
    if vae_output.dim() == 5:
        # Video tensor: [B, C, T, H, W]
        B, C, T, H, W = vae_output.shape
        # Reshape to [B*T, C, H, W] for processing (inplace view)
        vae_output = vae_output.permute(0, 2, 1, 3, 4).contiguous().view(B * T, C, H, W)

    # Normalize from [-1, 1] to [0, 1] (inplace)
    vae_output.add_(1).div_(2)

    # Clamp values to [0, 1] (inplace)
    vae_output.clamp_(0, 1)

    # Convert from [B, C, H, W] to [B, H, W, C] and move to CPU
    vae_output = vae_output.permute(0, 2, 3, 1).cpu()

    return vae_output


PengGao's avatar
PengGao committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
def save_to_video(
    images: torch.Tensor,
    output_path: str,
    fps: float = 24.0,
    method: str = "imageio",
    lossless: bool = False,
    output_pix_fmt: Optional[str] = "yuv420p",
) -> None:
    """
    Save ComfyUI Image tensor to video file

    Args:
        images: ComfyUI Image tensor [N, H, W, C] in range [0, 1]
        output_path: Path to save the video
        fps: Frames per second
        method: Save method - "imageio" or "ffmpeg"
        lossless: Whether to use lossless encoding (ffmpeg method only)
        output_pix_fmt: Pixel format for output (ffmpeg method only)
    """
    assert images.dim() == 4 and images.shape[-1] == 3, "Input must be [N, H, W, C] with C=3"

    # Ensure output directory exists
    os.makedirs(os.path.dirname(output_path) or ".", exist_ok=True)

    if method == "imageio":
        # Convert to uint8
192
193
        # frames = (images * 255).cpu().numpy().astype(np.uint8)
        frames = (images * 255).to(torch.uint8).cpu().numpy()
PengGao's avatar
PengGao committed
194
195
196
197
        imageio.mimsave(output_path, frames, fps=fps)  # type: ignore

    elif method == "ffmpeg":
        # Convert to numpy and scale to [0, 255]
198
199
        # frames = (images * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
        frames = (images * 255).clamp(0, 255).to(torch.uint8).cpu().numpy()
PengGao's avatar
PengGao committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

        # Convert RGB to BGR for OpenCV/FFmpeg
        frames = frames[..., ::-1].copy()

        N, height, width, _ = frames.shape

        # Ensure even dimensions for x264
        width += width % 2
        height += height % 2

        # Get ffmpeg executable from imageio_ffmpeg
        ffmpeg_exe = ffmpeg.get_ffmpeg_exe()

        if lossless:
            command = [
                ffmpeg_exe,
                "-y",  # Overwrite output file if it exists
                "-f",
                "rawvideo",
                "-s",
                f"{int(width)}x{int(height)}",
                "-pix_fmt",
                "bgr24",
                "-r",
                f"{fps}",
                "-loglevel",
                "error",
                "-threads",
                "4",
                "-i",
                "-",  # Input from pipe
                "-vcodec",
                "libx264rgb",
                "-crf",
                "0",
                "-an",  # No audio
                output_path,
            ]
        else:
            command = [
                ffmpeg_exe,
                "-y",  # Overwrite output file if it exists
                "-f",
                "rawvideo",
                "-s",
                f"{int(width)}x{int(height)}",
                "-pix_fmt",
                "bgr24",
                "-r",
                f"{fps}",
                "-loglevel",
                "error",
                "-threads",
                "4",
                "-i",
                "-",  # Input from pipe
                "-vcodec",
                "libx264",
                "-pix_fmt",
                output_pix_fmt,
                "-an",  # No audio
                output_path,
            ]

        # Run FFmpeg
        process = subprocess.Popen(
            command,
            stdin=subprocess.PIPE,
            stderr=subprocess.PIPE,
        )

        if process.stdin is None:
            raise BrokenPipeError("No stdin buffer received.")

        # Write frames to FFmpeg
        for frame in frames:
            # Pad frame if needed
            if frame.shape[0] < height or frame.shape[1] < width:
                padded = np.zeros((height, width, 3), dtype=np.uint8)
                padded[: frame.shape[0], : frame.shape[1]] = frame
                frame = padded
            process.stdin.write(frame.tobytes())

        process.stdin.close()
        process.wait()

        if process.returncode != 0:
            error_output = process.stderr.read().decode() if process.stderr else "Unknown error"
            raise RuntimeError(f"FFmpeg failed with error: {error_output}")

    else:
        raise ValueError(f"Unknown save method: {method}")
292
293


294
295
296
297
298
299
300
def remove_substrings_from_keys(original_dict, substr):
    new_dict = {}
    for key, value in original_dict.items():
        new_dict[key.replace(substr, "")] = value
    return new_dict


301
def find_torch_model_path(config, ckpt_config_key=None, filename=None, subdir=["original", "fp8", "int8", "distill_models", "distill_fp8", "distill_int8"]):
302
303
304
305
    if ckpt_config_key and config.get(ckpt_config_key, None) is not None:
        return config.get(ckpt_config_key)

    paths_to_check = [
306
        os.path.join(config["model_path"], filename),
307
    ]
gushiqiao's avatar
gushiqiao committed
308
309
    if isinstance(subdir, list):
        for sub in subdir:
310
            paths_to_check.insert(0, os.path.join(config["model_path"], sub, filename))
gushiqiao's avatar
gushiqiao committed
311
    else:
312
        paths_to_check.insert(0, os.path.join(config["model_path"], subdir, filename))
gushiqiao's avatar
gushiqiao committed
313

314
315
316
317
318
319
    for path in paths_to_check:
        if os.path.exists(path):
            return path
    raise FileNotFoundError(f"PyTorch model file '{filename}' not found.\nPlease download the model from https://huggingface.co/lightx2v/ or specify the model path in the configuration file.")


320
321
322
def load_safetensors(in_path, remove_key=None, include_keys=None):
    """加载safetensors文件或目录,支持按key包含筛选或排除"""
    include_keys = include_keys or []
323
    if os.path.isdir(in_path):
324
        return load_safetensors_from_dir(in_path, remove_key, include_keys)
325
    elif os.path.isfile(in_path):
326
        return load_safetensors_from_path(in_path, remove_key, include_keys)
327
328
329
330
    else:
        raise ValueError(f"{in_path} does not exist")


331
332
333
def load_safetensors_from_path(in_path, remove_key=None, include_keys=None):
    """从单个safetensors文件加载权重,支持按key筛选"""
    include_keys = include_keys or []
334
335
336
    tensors = {}
    with safetensors.safe_open(in_path, framework="pt", device="cpu") as f:
        for key in f.keys():
337
338
339
340
341
342
343
344
            # 优先处理include_keys:如果非空,只保留包含任意指定key的条目
            if include_keys:
                if any(inc_key in key for inc_key in include_keys):
                    tensors[key] = f.get_tensor(key)
            # 否则使用remove_key排除
            else:
                if not (remove_key and remove_key in key):
                    tensors[key] = f.get_tensor(key)
345
346
347
    return tensors


348
349
350
def load_safetensors_from_dir(in_dir, remove_key=None, include_keys=None):
    """从目录加载所有safetensors文件,支持按key筛选"""
    include_keys = include_keys or []
351
    tensors = {}
352
353
354
355
    safetensors_files = os.listdir(in_dir)
    safetensors_files = [f for f in safetensors_files if f.endswith(".safetensors")]
    for f in safetensors_files:
        tensors.update(load_safetensors_from_path(os.path.join(in_dir, f), remove_key, include_keys))
356
357
358
    return tensors


359
360
361
def load_pt_safetensors(in_path, remove_key=None, include_keys=None):
    """加载pt/pth或safetensors权重,支持按key筛选"""
    include_keys = include_keys or []
362
363
364
    ext = os.path.splitext(in_path)[-1]
    if ext in (".pt", ".pth", ".tar"):
        state_dict = torch.load(in_path, map_location="cpu", weights_only=True)
365
366
367
368
369
370
371
372
373
374
375
        # 处理筛选逻辑
        keys_to_keep = []
        for key in state_dict.keys():
            if include_keys:
                if any(inc_key in key for inc_key in include_keys):
                    keys_to_keep.append(key)
            else:
                if not (remove_key and remove_key in key):
                    keys_to_keep.append(key)
        # 只保留符合条件的key
        state_dict = {k: state_dict[k] for k in keys_to_keep}
376
    else:
377
        state_dict = load_safetensors(in_path, remove_key, include_keys)
378
379
380
    return state_dict


381
def load_weights(checkpoint_path, cpu_offload=False, remove_key=None, load_from_rank0=False, include_keys=None):
gushiqiao's avatar
gushiqiao committed
382
    if not dist.is_initialized() or not load_from_rank0:
gushiqiao's avatar
gushiqiao committed
383
        # Single GPU mode
384
        logger.info(f"Loading weights from {checkpoint_path}")
385
        cpu_weight_dict = load_pt_safetensors(checkpoint_path, remove_key, include_keys)
gushiqiao's avatar
Fix  
gushiqiao committed
386
        return cpu_weight_dict
387

gushiqiao's avatar
gushiqiao committed
388
    # Multi-GPU mode
gushiqiao's avatar
gushiqiao committed
389
    is_weight_loader = False
390
    current_rank = dist.get_rank()
gushiqiao's avatar
gushiqiao committed
391
392
    if current_rank == 0:
        is_weight_loader = True
393
394

    cpu_weight_dict = {}
gushiqiao's avatar
Fix  
gushiqiao committed
395
    if is_weight_loader:
396
        logger.info(f"Loading weights from {checkpoint_path}")
LiangLiu's avatar
LiangLiu committed
397
        cpu_weight_dict = load_pt_safetensors(checkpoint_path, remove_key)
398
399

    meta_dict = {}
gushiqiao's avatar
gushiqiao committed
400
    if is_weight_loader:
401
402
403
        for key, tensor in cpu_weight_dict.items():
            meta_dict[key] = {"shape": tensor.shape, "dtype": tensor.dtype}

gushiqiao's avatar
gushiqiao committed
404
    obj_list = [meta_dict] if is_weight_loader else [None]
405

406
407
    src_global_rank = 0
    dist.broadcast_object_list(obj_list, src=src_global_rank)
408
409
    synced_meta_dict = obj_list[0]

gushiqiao's avatar
gushiqiao committed
410
411
412
413
414
415
416
417
    if cpu_offload:
        target_device = "cpu"
        distributed_weight_dict = {key: torch.empty(meta["shape"], dtype=meta["dtype"], device=target_device) for key, meta in synced_meta_dict.items()}
        dist.barrier()
    else:
        target_device = torch.device(f"cuda:{current_rank}")
        distributed_weight_dict = {key: torch.empty(meta["shape"], dtype=meta["dtype"], device=target_device) for key, meta in synced_meta_dict.items()}
        dist.barrier(device_ids=[torch.cuda.current_device()])
418
419

    for key in sorted(synced_meta_dict.keys()):
gushiqiao's avatar
gushiqiao committed
420
421
        tensor_to_broadcast = distributed_weight_dict[key]
        if is_weight_loader:
gushiqiao's avatar
gushiqiao committed
422
            tensor_to_broadcast.copy_(cpu_weight_dict[key], non_blocking=True)
gushiqiao's avatar
gushiqiao committed
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

        if cpu_offload:
            if is_weight_loader:
                gpu_tensor = tensor_to_broadcast.cuda()
                dist.broadcast(gpu_tensor, src=src_global_rank)
                tensor_to_broadcast.copy_(gpu_tensor.cpu(), non_blocking=True)
                del gpu_tensor
                torch.cuda.empty_cache()
            else:
                gpu_tensor = torch.empty_like(tensor_to_broadcast, device="cuda")
                dist.broadcast(gpu_tensor, src=src_global_rank)
                tensor_to_broadcast.copy_(gpu_tensor.cpu(), non_blocking=True)
                del gpu_tensor
                torch.cuda.empty_cache()
        else:
            dist.broadcast(tensor_to_broadcast, src=src_global_rank)
439

gushiqiao's avatar
gushiqiao committed
440
    if is_weight_loader:
441
442
        del cpu_weight_dict

gushiqiao's avatar
gushiqiao committed
443
444
445
    if cpu_offload:
        torch.cuda.empty_cache()

gushiqiao's avatar
gushiqiao committed
446
447
    logger.info(f"Weights distributed across {dist.get_world_size()} devices on {target_device}")
    return distributed_weight_dict
448
449


sandy's avatar
sandy committed
450
def masks_like(tensor, zero=False, generator=None, p=0.2, prev_len=1):
451
452
453
454
455
456
    assert isinstance(tensor, torch.Tensor)
    out = torch.ones_like(tensor)
    if zero:
        if generator is not None:
            random_num = torch.rand(1, generator=generator, device=generator.device).item()
            if random_num < p:
sandy's avatar
sandy committed
457
                out[:, :prev_len] = torch.zeros_like(out[:, :prev_len])
458
        else:
sandy's avatar
sandy committed
459
            out[:, :prev_len] = torch.zeros_like(out[:, :prev_len])
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
    return out


def best_output_size(w, h, dw, dh, expected_area):
    # float output size
    ratio = w / h
    ow = (expected_area * ratio) ** 0.5
    oh = expected_area / ow

    # process width first
    ow1 = int(ow // dw * dw)
    oh1 = int(expected_area / ow1 // dh * dh)
    assert ow1 % dw == 0 and oh1 % dh == 0 and ow1 * oh1 <= expected_area
    ratio1 = ow1 / oh1

    # process height first
    oh2 = int(oh // dh * dh)
    ow2 = int(expected_area / oh2 // dw * dw)
    assert oh2 % dh == 0 and ow2 % dw == 0 and ow2 * oh2 <= expected_area
    ratio2 = ow2 / oh2

    # compare ratios
    if max(ratio / ratio1, ratio1 / ratio) < max(ratio / ratio2, ratio2 / ratio):
        return ow1, oh1
    else:
        return ow2, oh2