wan_runner.py 21.3 KB
Newer Older
1
import gc
PengGao's avatar
PengGao committed
2
3
import os

helloyongyang's avatar
helloyongyang committed
4
5
import numpy as np
import torch
6
import torch.distributed as dist
PengGao's avatar
PengGao committed
7
import torchvision.transforms.functional as TF
helloyongyang's avatar
helloyongyang committed
8
from PIL import Image
PengGao's avatar
PengGao committed
9
10
11
12
13
from loguru import logger

from lightx2v.models.input_encoders.hf.t5.model import T5EncoderModel
from lightx2v.models.input_encoders.hf.xlm_roberta.model import CLIPModel
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
helloyongyang's avatar
helloyongyang committed
14
from lightx2v.models.networks.wan.model import WanModel
helloyongyang's avatar
helloyongyang committed
15
from lightx2v.models.runners.default_runner import DefaultRunner
gushiqiao's avatar
gushiqiao committed
16
from lightx2v.models.schedulers.wan.changing_resolution.scheduler import (
17
    WanScheduler4ChangingResolutionInterface,
gushiqiao's avatar
gushiqiao committed
18
)
19
from lightx2v.models.schedulers.wan.feature_caching.scheduler import (
20
    WanSchedulerCaching,
21
    WanSchedulerTaylorCaching,
22
)
PengGao's avatar
PengGao committed
23
from lightx2v.models.schedulers.wan.scheduler import WanScheduler
helloyongyang's avatar
helloyongyang committed
24
from lightx2v.models.video_encoders.hf.wan.vae import WanVAE
25
from lightx2v.models.video_encoders.hf.wan.vae_2_2 import Wan2_2_VAE
26
from lightx2v.models.video_encoders.hf.wan.vae_tiny import WanVAE_tiny
27
from lightx2v.utils.envs import *
PengGao's avatar
PengGao committed
28
29
30
from lightx2v.utils.registry_factory import RUNNER_REGISTER
from lightx2v.utils.utils import *
from lightx2v.utils.utils import best_output_size, cache_video
helloyongyang's avatar
helloyongyang committed
31
32
33
34
35
36
37


@RUNNER_REGISTER("wan2.1")
class WanRunner(DefaultRunner):
    def __init__(self, config):
        super().__init__(config)

38
39
40
41
42
43
    def load_transformer(self):
        model = WanModel(
            self.config.model_path,
            self.config,
            self.init_device,
        )
44
        if self.config.get("lora_configs") and self.config.lora_configs:
45
            assert not self.config.get("dit_quantized", False) or self.config.mm_config.get("weight_auto_quant", False)
46
            lora_wrapper = WanLoraWrapper(model)
47
48
49
            for lora_config in self.config.lora_configs:
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
GoatWu's avatar
GoatWu committed
50
                lora_name = lora_wrapper.load_lora(lora_path)
51
52
                lora_wrapper.apply_lora(lora_name, strength)
                logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")
53
54
        return model

55
    def load_image_encoder(self):
helloyongyang's avatar
helloyongyang committed
56
        image_encoder = None
gushiqiao's avatar
gushiqiao committed
57
        if self.config.task in ["i2v", "flf2v"] and self.config.get("use_image_encoder", True):
gushiqiao's avatar
gushiqiao committed
58
59
60
61
62
            # quant_config
            clip_quantized = self.config.get("clip_quantized", False)
            if clip_quantized:
                clip_quant_scheme = self.config.get("clip_quant_scheme", None)
                assert clip_quant_scheme is not None
gushiqiao's avatar
gushiqiao committed
63
                tmp_clip_quant_scheme = clip_quant_scheme.split("-")[0]
64
                clip_model_name = f"clip-{tmp_clip_quant_scheme}.pth"
65
                clip_quantized_ckpt = find_torch_model_path(self.config, "clip_quantized_ckpt", clip_model_name)
66
                clip_original_ckpt = None
gushiqiao's avatar
gushiqiao committed
67
68
69
            else:
                clip_quantized_ckpt = None
                clip_quant_scheme = None
70
                clip_model_name = "models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth"
71
                clip_original_ckpt = find_torch_model_path(self.config, "clip_original_ckpt", clip_model_name)
gushiqiao's avatar
gushiqiao committed
72

73
74
            image_encoder = CLIPModel(
                dtype=torch.float16,
75
                device=self.init_device,
76
                checkpoint_path=clip_original_ckpt,
gushiqiao's avatar
gushiqiao committed
77
78
79
                clip_quantized=clip_quantized,
                clip_quantized_ckpt=clip_quantized_ckpt,
                quant_scheme=clip_quant_scheme,
gushiqiao's avatar
gushiqiao committed
80
81
                cpu_offload=self.config.get("clip_cpu_offload", self.config.get("cpu_offload", False)),
                use_31_block=self.config.get("use_31_block", True),
82
            )
83

84
        return image_encoder
helloyongyang's avatar
helloyongyang committed
85

86
    def load_text_encoder(self):
gushiqiao's avatar
gushiqiao committed
87
        # offload config
88
        t5_offload = self.config.get("t5_cpu_offload", self.config.get("cpu_offload"))
gushiqiao's avatar
gushiqiao committed
89
90
91
92
        if t5_offload:
            t5_device = torch.device("cpu")
        else:
            t5_device = torch.device("cuda")
gushiqiao's avatar
gushiqiao committed
93
94
95
96
97
98

        # quant_config
        t5_quantized = self.config.get("t5_quantized", False)
        if t5_quantized:
            t5_quant_scheme = self.config.get("t5_quant_scheme", None)
            assert t5_quant_scheme is not None
99
100
            tmp_t5_quant_scheme = t5_quant_scheme.split("-")[0]
            t5_model_name = f"models_t5_umt5-xxl-enc-{tmp_t5_quant_scheme}.pth"
101
            t5_quantized_ckpt = find_torch_model_path(self.config, "t5_quantized_ckpt", t5_model_name)
102
            t5_original_ckpt = None
gushiqiao's avatar
gushiqiao committed
103
            tokenizer_path = os.path.join(os.path.dirname(t5_quantized_ckpt), "google/umt5-xxl")
gushiqiao's avatar
gushiqiao committed
104
105
106
        else:
            t5_quant_scheme = None
            t5_quantized_ckpt = None
107
            t5_model_name = "models_t5_umt5-xxl-enc-bf16.pth"
108
            t5_original_ckpt = find_torch_model_path(self.config, "t5_original_ckpt", t5_model_name)
gushiqiao's avatar
gushiqiao committed
109
            tokenizer_path = os.path.join(os.path.dirname(t5_original_ckpt), "google/umt5-xxl")
gushiqiao's avatar
Fix  
gushiqiao committed
110

helloyongyang's avatar
helloyongyang committed
111
112
113
        text_encoder = T5EncoderModel(
            text_len=self.config["text_len"],
            dtype=torch.bfloat16,
gushiqiao's avatar
gushiqiao committed
114
            device=t5_device,
115
            checkpoint_path=t5_original_ckpt,
gushiqiao's avatar
gushiqiao committed
116
            tokenizer_path=tokenizer_path,
helloyongyang's avatar
helloyongyang committed
117
            shard_fn=None,
gushiqiao's avatar
gushiqiao committed
118
            cpu_offload=t5_offload,
119
            offload_granularity=self.config.get("t5_offload_granularity", "model"),  # support ['model', 'block']
gushiqiao's avatar
gushiqiao committed
120
121
122
            t5_quantized=t5_quantized,
            t5_quantized_ckpt=t5_quantized_ckpt,
            quant_scheme=t5_quant_scheme,
helloyongyang's avatar
helloyongyang committed
123
124
        )
        text_encoders = [text_encoder]
125
        return text_encoders
helloyongyang's avatar
helloyongyang committed
126

127
    def load_vae_encoder(self):
128
129
130
131
132
133
134
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")

135
        vae_config = {
gushiqiao's avatar
gushiqiao committed
136
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.1_VAE.pth"),
137
            "device": vae_device,
138
            "parallel": self.config.parallel and self.config.parallel.get("vae_p_size", False) and self.config.parallel.vae_p_size > 1,
139
            "use_tiling": self.config.get("use_tiling_vae", False),
140
            "cpu_offload": vae_offload,
141
        }
gushiqiao's avatar
gushiqiao committed
142
        if self.config.task not in ["i2v", "flf2v"]:
143
144
145
146
147
            return None
        else:
            return WanVAE(**vae_config)

    def load_vae_decoder(self):
148
149
150
151
152
153
154
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")

155
        vae_config = {
gushiqiao's avatar
gushiqiao committed
156
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.1_VAE.pth"),
157
            "device": vae_device,
158
            "parallel": self.config.parallel and self.config.parallel.get("vae_p_size", False) and self.config.parallel.vae_p_size > 1,
159
            "use_tiling": self.config.get("use_tiling_vae", False),
160
            "cpu_offload": vae_offload,
161
        }
helloyongyang's avatar
helloyongyang committed
162
        if self.config.get("use_tiny_vae", False):
gushiqiao's avatar
gushiqiao committed
163
            tiny_vae_path = find_torch_model_path(self.config, "tiny_vae_path", "taew2_1.pth")
164
            vae_decoder = WanVAE_tiny(
gushiqiao's avatar
gushiqiao committed
165
                vae_pth=tiny_vae_path,
166
                device=self.init_device,
167
            ).to("cuda")
168
        else:
169
            vae_decoder = WanVAE(**vae_config)
170
        return vae_decoder
helloyongyang's avatar
helloyongyang committed
171

172
    def load_vae(self):
gushiqiao's avatar
gushiqiao committed
173
        vae_encoder = self.load_vae_encoder()
helloyongyang's avatar
helloyongyang committed
174
        if vae_encoder is None or self.config.get("use_tiny_vae", False):
gushiqiao's avatar
gushiqiao committed
175
176
177
178
            vae_decoder = self.load_vae_decoder()
        else:
            vae_decoder = vae_encoder
        return vae_encoder, vae_decoder
helloyongyang's avatar
helloyongyang committed
179
180

    def init_scheduler(self):
181
182
183
184
185
186
187
188
189
        if self.config.feature_caching == "NoCaching":
            scheduler_class = WanScheduler
        elif self.config.feature_caching == "TaylorSeer":
            scheduler_class = WanSchedulerTaylorCaching
        elif self.config.feature_caching in ["Tea", "Ada", "Custom", "FirstBlock", "DualBlock", "DynamicBlock"]:
            scheduler_class = WanSchedulerCaching
        else:
            raise NotImplementedError(f"Unsupported feature_caching type: {self.config.feature_caching}")

190
        if self.config.get("changing_resolution", False):
191
            scheduler = WanScheduler4ChangingResolutionInterface(scheduler_class, self.config)
helloyongyang's avatar
helloyongyang committed
192
        else:
193
            scheduler = scheduler_class(self.config)
helloyongyang's avatar
helloyongyang committed
194
195
        self.model.set_scheduler(scheduler)

gushiqiao's avatar
gushiqiao committed
196
    def run_text_encoder(self, text, img=None):
gushiqiao's avatar
gushiqiao committed
197
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
198
            self.text_encoders = self.load_text_encoder()
199
        n_prompt = self.config.get("negative_prompt", "")
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

        if self.config["cfg_parallel"]:
            cfg_p_group = self.config["device_mesh"].get_group(mesh_dim="cfg_p")
            cfg_p_rank = dist.get_rank(cfg_p_group)
            if cfg_p_rank == 0:
                context = self.text_encoders[0].infer([text])
                text_encoder_output = {"context": context}
            else:
                context_null = self.text_encoders[0].infer([n_prompt])
                text_encoder_output = {"context_null": context_null}
        else:
            context = self.text_encoders[0].infer([text])
            context_null = self.text_encoders[0].infer([n_prompt])
            text_encoder_output = {
                "context": context,
                "context_null": context_null,
            }

gushiqiao's avatar
gushiqiao committed
218
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
219
220
221
            del self.text_encoders[0]
            torch.cuda.empty_cache()
            gc.collect()
222

helloyongyang's avatar
helloyongyang committed
223
224
        return text_encoder_output

gushiqiao's avatar
gushiqiao committed
225
    def run_image_encoder(self, first_frame, last_frame=None):
gushiqiao's avatar
gushiqiao committed
226
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
227
            self.image_encoder = self.load_image_encoder()
gushiqiao's avatar
gushiqiao committed
228
229
230
231
232
233
        first_frame = TF.to_tensor(first_frame).sub_(0.5).div_(0.5).cuda()
        if last_frame is None:
            clip_encoder_out = self.image_encoder.visual([first_frame[None, :, :, :]]).squeeze(0).to(GET_DTYPE())
        else:
            last_frame = TF.to_tensor(last_frame).sub_(0.5).div_(0.5).cuda()
            clip_encoder_out = self.image_encoder.visual([first_frame[:, None, :, :].transpose(0, 1), last_frame[:, None, :, :].transpose(0, 1)]).squeeze(0).to(GET_DTYPE())
gushiqiao's avatar
gushiqiao committed
234
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
235
236
237
            del self.image_encoder
            torch.cuda.empty_cache()
            gc.collect()
238
239
        return clip_encoder_out

gushiqiao's avatar
gushiqiao committed
240
241
242
243
    def run_vae_encoder(self, first_frame, last_frame=None):
        first_frame_size = first_frame.size
        first_frame = TF.to_tensor(first_frame).sub_(0.5).div_(0.5).cuda()
        h, w = first_frame.shape[1:]
helloyongyang's avatar
helloyongyang committed
244
        aspect_ratio = h / w
245
246
247
        max_area = self.config.target_height * self.config.target_width
        lat_h = round(np.sqrt(max_area * aspect_ratio) // self.config.vae_stride[1] // self.config.patch_size[1] * self.config.patch_size[1])
        lat_w = round(np.sqrt(max_area / aspect_ratio) // self.config.vae_stride[2] // self.config.patch_size[2] * self.config.patch_size[2])
248
249

        if self.config.get("changing_resolution", False):
gushiqiao's avatar
gushiqiao committed
250
            assert last_frame is None
251
            self.config.lat_h, self.config.lat_w = lat_h, lat_w
252
253
            vae_encode_out_list = []
            for i in range(len(self.config["resolution_rate"])):
254
255
256
257
                lat_h, lat_w = (
                    int(self.config.lat_h * self.config.resolution_rate[i]) // 2 * 2,
                    int(self.config.lat_w * self.config.resolution_rate[i]) // 2 * 2,
                )
gushiqiao's avatar
gushiqiao committed
258
259
                vae_encode_out_list.append(self.get_vae_encoder_output(first_frame, lat_h, lat_w))
            vae_encode_out_list.append(self.get_vae_encoder_output(first_frame, self.config.lat_h, self.config.lat_w))
260
            return vae_encode_out_list
261
        else:
gushiqiao's avatar
gushiqiao committed
262
263
264
265
266
267
268
269
270
271
            if last_frame is not None:
                last_frame_size = last_frame.size
                last_frame = TF.to_tensor(last_frame).sub_(0.5).div_(0.5).cuda()
                if first_frame_size != last_frame_size:
                    last_frame_resize_ratio = max(first_frame_size[0] / last_frame_size[0], first_frame_size[1] / last_frame_size[1])
                    last_frame_size = [
                        round(last_frame_size[0] * last_frame_resize_ratio),
                        round(last_frame_size[1] * last_frame_resize_ratio),
                    ]
                    last_frame = TF.center_crop(last_frame, last_frame_size)
272
            self.config.lat_h, self.config.lat_w = lat_h, lat_w
gushiqiao's avatar
gushiqiao committed
273
            vae_encoder_out = self.get_vae_encoder_output(first_frame, lat_h, lat_w, last_frame)
274
            return vae_encoder_out
275

gushiqiao's avatar
gushiqiao committed
276
    def get_vae_encoder_output(self, first_frame, lat_h, lat_w, last_frame=None):
277
278
        h = lat_h * self.config.vae_stride[1]
        w = lat_w * self.config.vae_stride[2]
279
280
281
282
283
284
285
        msk = torch.ones(
            1,
            self.config.target_video_length,
            lat_h,
            lat_w,
            device=torch.device("cuda"),
        )
gushiqiao's avatar
gushiqiao committed
286
287
288
289
290
        if last_frame is not None:
            msk[:, 1:-1] = 0
        else:
            msk[:, 1:] = 0

helloyongyang's avatar
helloyongyang committed
291
292
293
        msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
        msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
        msk = msk.transpose(1, 2)[0]
gushiqiao's avatar
gushiqiao committed
294

gushiqiao's avatar
gushiqiao committed
295
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
296
            self.vae_encoder = self.load_vae_encoder()
gushiqiao's avatar
gushiqiao committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

        if last_frame is not None:
            vae_input = torch.concat(
                [
                    torch.nn.functional.interpolate(first_frame[None].cpu(), size=(h, w), mode="bicubic").transpose(0, 1),
                    torch.zeros(3, self.config.target_video_length - 2, h, w),
                    torch.nn.functional.interpolate(last_frame[None].cpu(), size=(h, w), mode="bicubic").transpose(0, 1),
                ],
                dim=1,
            ).cuda()
        else:
            vae_input = torch.concat(
                [
                    torch.nn.functional.interpolate(first_frame[None].cpu(), size=(h, w), mode="bicubic").transpose(0, 1),
                    torch.zeros(3, self.config.target_video_length - 1, h, w),
                ],
                dim=1,
            ).cuda()

        vae_encoder_out = self.vae_encoder.encode([vae_input], self.config)[0]

gushiqiao's avatar
gushiqiao committed
318
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
319
320
321
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()
322
        vae_encoder_out = torch.concat([msk, vae_encoder_out]).to(GET_DTYPE())
323
        return vae_encoder_out
324

gushiqiao's avatar
gushiqiao committed
325
    def get_encoder_output_i2v(self, clip_encoder_out, vae_encoder_out, text_encoder_output, img=None):
326
327
        image_encoder_output = {
            "clip_encoder_out": clip_encoder_out,
328
            "vae_encoder_out": vae_encoder_out,
329
        }
330
331
332
333
        return {
            "text_encoder_output": text_encoder_output,
            "image_encoder_output": image_encoder_output,
        }
helloyongyang's avatar
helloyongyang committed
334
335

    def set_target_shape(self):
336
        num_channels_latents = self.config.get("num_channels_latents", 16)
gushiqiao's avatar
gushiqiao committed
337
        if self.config.task in ["i2v", "flf2v"]:
338
339
            self.config.target_shape = (
                num_channels_latents,
340
                (self.config.target_video_length - 1) // self.config.vae_stride[0] + 1,
341
342
343
                self.config.lat_h,
                self.config.lat_w,
            )
helloyongyang's avatar
helloyongyang committed
344
345
        elif self.config.task == "t2v":
            self.config.target_shape = (
346
                num_channels_latents,
347
                (self.config.target_video_length - 1) // self.config.vae_stride[0] + 1,
helloyongyang's avatar
helloyongyang committed
348
349
350
                int(self.config.target_height) // self.config.vae_stride[1],
                int(self.config.target_width) // self.config.vae_stride[2],
            )
351
352

    def save_video_func(self, images):
353
354
355
356
357
358
359
360
        cache_video(
            tensor=images,
            save_file=self.config.save_video_path,
            fps=self.config.get("fps", 16),
            nrow=1,
            normalize=True,
            value_range=(-1, 1),
        )
helloyongyang's avatar
helloyongyang committed
361
362
363
364
365
366
367
368
369
370
371
372


class MultiModelStruct:
    def __init__(self, model_list, config, boundary=0.875, num_train_timesteps=1000):
        self.model = model_list  # [high_noise_model, low_noise_model]
        assert len(self.model) == 2, "MultiModelStruct only supports 2 models now."
        self.config = config
        self.boundary = boundary
        self.boundary_timestep = self.boundary * num_train_timesteps
        self.cur_model_index = -1
        logger.info(f"boundary: {self.boundary}, boundary_timestep: {self.boundary_timestep}")

wangshankun's avatar
wangshankun committed
373
374
375
376
    @property
    def device(self):
        return self.model[self.cur_model_index].device

helloyongyang's avatar
helloyongyang committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
    def set_scheduler(self, shared_scheduler):
        self.scheduler = shared_scheduler
        for model in self.model:
            model.set_scheduler(shared_scheduler)

    def infer(self, inputs):
        self.get_current_model_index()
        self.model[self.cur_model_index].infer(inputs)

    def get_current_model_index(self):
        if self.scheduler.timesteps[self.scheduler.step_index] >= self.boundary_timestep:
            logger.info(f"using - HIGH - noise model at step_index {self.scheduler.step_index + 1}")
            self.scheduler.sample_guide_scale = self.config.sample_guide_scale[0]
            if self.cur_model_index == -1:
                self.to_cuda(model_index=0)
            elif self.cur_model_index == 1:  # 1 -> 0
                self.offload_cpu(model_index=1)
                self.to_cuda(model_index=0)
            self.cur_model_index = 0
        else:
            logger.info(f"using - LOW - noise model at step_index {self.scheduler.step_index + 1}")
            self.scheduler.sample_guide_scale = self.config.sample_guide_scale[1]
            if self.cur_model_index == -1:
                self.to_cuda(model_index=1)
            elif self.cur_model_index == 0:  # 0 -> 1
                self.offload_cpu(model_index=0)
                self.to_cuda(model_index=1)
            self.cur_model_index = 1

    def offload_cpu(self, model_index):
        self.model[model_index].to_cpu()

    def to_cuda(self, model_index):
        self.model[model_index].to_cuda()


@RUNNER_REGISTER("wan2.2_moe")
class Wan22MoeRunner(WanRunner):
    def __init__(self, config):
        super().__init__(config)

    def load_transformer(self):
        # encoder -> high_noise_model -> low_noise_model -> vae -> video_output
helloyongyang's avatar
helloyongyang committed
420
        high_noise_model = WanModel(
helloyongyang's avatar
helloyongyang committed
421
422
423
424
            os.path.join(self.config.model_path, "high_noise_model"),
            self.config,
            self.init_device,
        )
helloyongyang's avatar
helloyongyang committed
425
        low_noise_model = WanModel(
helloyongyang's avatar
helloyongyang committed
426
427
428
429
430
            os.path.join(self.config.model_path, "low_noise_model"),
            self.config,
            self.init_device,
        )
        return MultiModelStruct([high_noise_model, low_noise_model], self.config, self.config.boundary)
431
432
433
434
435
436
437
438


@RUNNER_REGISTER("wan2.2")
class Wan22DenseRunner(WanRunner):
    def __init__(self, config):
        super().__init__(config)

    def load_vae_decoder(self):
439
440
441
442
443
444
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")
445
446
        vae_config = {
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.2_VAE.pth"),
447
448
449
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
450
451
452
453
454
        }
        vae_decoder = Wan2_2_VAE(**vae_config)
        return vae_decoder

    def load_vae_encoder(self):
455
456
457
458
459
460
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")
461
462
        vae_config = {
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.2_VAE.pth"),
463
464
465
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
466
        }
gushiqiao's avatar
gushiqiao committed
467
        if self.config.task != ["i2v", "flf2v"]:
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
            return None
        else:
            return Wan2_2_VAE(**vae_config)

    def load_vae(self):
        vae_encoder = self.load_vae_encoder()
        vae_decoder = self.load_vae_decoder()
        return vae_encoder, vae_decoder

    def run_vae_encoder(self, img):
        max_area = self.config.target_height * self.config.target_width
        ih, iw = img.height, img.width
        dh, dw = self.config.patch_size[1] * self.config.vae_stride[1], self.config.patch_size[2] * self.config.vae_stride[2]
        ow, oh = best_output_size(iw, ih, dw, dh, max_area)

        scale = max(ow / iw, oh / ih)
        img = img.resize((round(iw * scale), round(ih * scale)), Image.LANCZOS)

        # center-crop
        x1 = (img.width - ow) // 2
        y1 = (img.height - oh) // 2
        img = img.crop((x1, y1, x1 + ow, y1 + oh))
        assert img.width == ow and img.height == oh

        # to tensor
        img = TF.to_tensor(img).sub_(0.5).div_(0.5).cuda().unsqueeze(1)
        vae_encoder_out = self.get_vae_encoder_output(img)
        self.config.lat_w, self.config.lat_h = ow // self.config.vae_stride[2], oh // self.config.vae_stride[1]

        return vae_encoder_out

    def get_vae_encoder_output(self, img):
500
        z = self.vae_encoder.encode(img, self.config)
501
        return z