wan_runner.py 7.18 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
4
5
6
7
8
import os
import numpy as np
import torch
import torchvision.transforms.functional as TF
from PIL import Image
from lightx2v.utils.registry_factory import RUNNER_REGISTER
from lightx2v.models.runners.default_runner import DefaultRunner
from lightx2v.models.schedulers.wan.scheduler import WanScheduler
9
10
11
from lightx2v.models.schedulers.wan.feature_caching.scheduler import (
    WanSchedulerTeaCaching,
)
helloyongyang's avatar
helloyongyang committed
12
13
14
15
16
17
from lightx2v.utils.profiler import ProfilingContext
from lightx2v.models.input_encoders.hf.t5.model import T5EncoderModel
from lightx2v.models.input_encoders.hf.xlm_roberta.model import CLIPModel
from lightx2v.models.networks.wan.model import WanModel
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
from lightx2v.models.video_encoders.hf.wan.vae import WanVAE
18
from lightx2v.models.video_encoders.hf.wan.vae_tiny import WanVAE_tiny
helloyongyang's avatar
helloyongyang committed
19
import torch.distributed as dist
root's avatar
root committed
20
from loguru import logger
helloyongyang's avatar
helloyongyang committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45


@RUNNER_REGISTER("wan2.1")
class WanRunner(DefaultRunner):
    def __init__(self, config):
        super().__init__(config)

    @ProfilingContext("Load models")
    def load_model(self):
        if self.config["parallel_attn_type"]:
            cur_rank = dist.get_rank()
            torch.cuda.set_device(cur_rank)
        image_encoder = None
        if self.config.cpu_offload:
            init_device = torch.device("cpu")
        else:
            init_device = torch.device("cuda")

        text_encoder = T5EncoderModel(
            text_len=self.config["text_len"],
            dtype=torch.bfloat16,
            device=init_device,
            checkpoint_path=os.path.join(self.config.model_path, "models_t5_umt5-xxl-enc-bf16.pth"),
            tokenizer_path=os.path.join(self.config.model_path, "google/umt5-xxl"),
            shard_fn=None,
46
47
            cpu_offload=self.config.cpu_offload,
            offload_granularity=self.config.get("text_encoder_offload_granularity", "model"),
helloyongyang's avatar
helloyongyang committed
48
49
50
51
52
53
54
55
        )
        text_encoders = [text_encoder]
        model = WanModel(self.config.model_path, self.config, init_device)

        if self.config.lora_path:
            lora_wrapper = WanLoraWrapper(model)
            lora_name = lora_wrapper.load_lora(self.config.lora_path)
            lora_wrapper.apply_lora(lora_name, self.config.strength_model)
root's avatar
root committed
56
            logger.info(f"Loaded LoRA: {lora_name}")
helloyongyang's avatar
helloyongyang committed
57

58
59
60
61
62
63
64
65
66
67
68
69
70
        if self.config.get("tiny_vae", False):
            vae_model = WanVAE_tiny(
                vae_pth=self.config.tiny_vae_path,
                device=init_device,
            )
            vae_model = vae_model.to("cuda")
        else:
            vae_model = WanVAE(
                vae_pth=os.path.join(self.config.model_path, "Wan2.1_VAE.pth"),
                device=init_device,
                parallel=self.config.parallel_vae,
                use_tiling=self.config.get("use_tiling_vae", False),
            )
helloyongyang's avatar
helloyongyang committed
71
72
73
74
        if self.config.task == "i2v":
            image_encoder = CLIPModel(
                dtype=torch.float16,
                device=init_device,
75
76
77
78
                checkpoint_path=os.path.join(
                    self.config.model_path,
                    "models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth",
                ),
helloyongyang's avatar
helloyongyang committed
79
80
                tokenizer_path=os.path.join(self.config.model_path, "xlm-roberta-large"),
            )
81
82
83
84
85
86
87
88
            if self.config.get("tiny_vae", False):
                org_vae = WanVAE(
                    vae_pth=os.path.join(self.config.model_path, "Wan2.1_VAE.pth"),
                    device=init_device,
                    parallel=self.config.parallel_vae,
                    use_tiling=self.config.get("use_tiling_vae", False),
                )
                image_encoder = [image_encoder, org_vae]
helloyongyang's avatar
helloyongyang committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

        return model, text_encoders, vae_model, image_encoder

    def init_scheduler(self):
        if self.config.feature_caching == "NoCaching":
            scheduler = WanScheduler(self.config)
        elif self.config.feature_caching == "Tea":
            scheduler = WanSchedulerTeaCaching(self.config)
        else:
            raise NotImplementedError(f"Unsupported feature_caching type: {self.config.feature_caching}")
        self.model.set_scheduler(scheduler)

    def run_text_encoder(self, text, text_encoders, config, image_encoder_output):
        text_encoder_output = {}
        n_prompt = config.get("negative_prompt", "")
104
105
        context = text_encoders[0].infer([text])
        context_null = text_encoders[0].infer([n_prompt if n_prompt else ""])
helloyongyang's avatar
helloyongyang committed
106
107
108
109
110
        text_encoder_output["context"] = context
        text_encoder_output["context_null"] = context_null
        return text_encoder_output

    def run_image_encoder(self, config, image_encoder, vae_model):
111
112
113
114
        if self.config.get("tiny_vae", False):
            clip_image_encoder, vae_image_encoder = image_encoder[0], image_encoder[1]
        else:
            clip_image_encoder, vae_image_encoder = image_encoder, vae_model
helloyongyang's avatar
helloyongyang committed
115
116
        img = Image.open(config.image_path).convert("RGB")
        img = TF.to_tensor(img).sub_(0.5).div_(0.5).cuda()
117
        clip_encoder_out = clip_image_encoder.visual([img[:, None, :, :]], config).squeeze(0).to(torch.bfloat16)
helloyongyang's avatar
helloyongyang committed
118
119
120
121
122
123
124
125
126
127
128
        h, w = img.shape[1:]
        aspect_ratio = h / w
        max_area = config.target_height * config.target_width
        lat_h = round(np.sqrt(max_area * aspect_ratio) // config.vae_stride[1] // config.patch_size[1] * config.patch_size[1])
        lat_w = round(np.sqrt(max_area / aspect_ratio) // config.vae_stride[2] // config.patch_size[2] * config.patch_size[2])
        h = lat_h * config.vae_stride[1]
        w = lat_w * config.vae_stride[2]

        config.lat_h = lat_h
        config.lat_w = lat_w

129
        msk = torch.ones(1, config.target_video_length, lat_h, lat_w, device=torch.device("cuda"))
helloyongyang's avatar
helloyongyang committed
130
131
132
133
        msk[:, 1:] = 0
        msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
        msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
        msk = msk.transpose(1, 2)[0]
134
        vae_encode_out = vae_image_encoder.encode(
135
136
137
138
            [
                torch.concat(
                    [
                        torch.nn.functional.interpolate(img[None].cpu(), size=(h, w), mode="bicubic").transpose(0, 1),
139
                        torch.zeros(3, config.target_video_length - 1, h, w),
140
141
142
143
144
                    ],
                    dim=1,
                ).cuda()
            ],
            config,
helloyongyang's avatar
helloyongyang committed
145
146
147
148
149
        )[0]
        vae_encode_out = torch.concat([msk, vae_encode_out]).to(torch.bfloat16)
        return {"clip_encoder_out": clip_encoder_out, "vae_encode_out": vae_encode_out}

    def set_target_shape(self):
150
        num_channels_latents = self.config.get("num_channels_latents", 16)
helloyongyang's avatar
helloyongyang committed
151
        if self.config.task == "i2v":
152
153
            self.config.target_shape = (
                num_channels_latents,
154
                (self.config.target_video_length - 1) // self.config.vae_stride[0] + 1,
155
156
157
                self.config.lat_h,
                self.config.lat_w,
            )
helloyongyang's avatar
helloyongyang committed
158
159
        elif self.config.task == "t2v":
            self.config.target_shape = (
160
                num_channels_latents,
161
                (self.config.target_video_length - 1) // self.config.vae_stride[0] + 1,
helloyongyang's avatar
helloyongyang committed
162
163
164
                int(self.config.target_height) // self.config.vae_stride[1],
                int(self.config.target_width) // self.config.vae_stride[2],
            )