wan_runner.py 5.42 KB
Newer Older
helloyongyang's avatar
helloyongyang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
import os
import numpy as np
import torch
import torchvision.transforms.functional as TF
from PIL import Image
from lightx2v.utils.registry_factory import RUNNER_REGISTER
from lightx2v.models.runners.default_runner import DefaultRunner
from lightx2v.models.schedulers.wan.scheduler import WanScheduler
from lightx2v.models.schedulers.wan.feature_caching.scheduler import WanSchedulerTeaCaching
from lightx2v.utils.profiler import ProfilingContext
from lightx2v.models.input_encoders.hf.t5.model import T5EncoderModel
from lightx2v.models.input_encoders.hf.xlm_roberta.model import CLIPModel
from lightx2v.models.networks.wan.model import WanModel
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
from lightx2v.models.video_encoders.hf.wan.vae import WanVAE
import torch.distributed as dist
root's avatar
root committed
17
from loguru import logger
helloyongyang's avatar
helloyongyang committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50


@RUNNER_REGISTER("wan2.1")
class WanRunner(DefaultRunner):
    def __init__(self, config):
        super().__init__(config)

    @ProfilingContext("Load models")
    def load_model(self):
        if self.config["parallel_attn_type"]:
            cur_rank = dist.get_rank()
            torch.cuda.set_device(cur_rank)
        image_encoder = None
        if self.config.cpu_offload:
            init_device = torch.device("cpu")
        else:
            init_device = torch.device("cuda")

        text_encoder = T5EncoderModel(
            text_len=self.config["text_len"],
            dtype=torch.bfloat16,
            device=init_device,
            checkpoint_path=os.path.join(self.config.model_path, "models_t5_umt5-xxl-enc-bf16.pth"),
            tokenizer_path=os.path.join(self.config.model_path, "google/umt5-xxl"),
            shard_fn=None,
        )
        text_encoders = [text_encoder]
        model = WanModel(self.config.model_path, self.config, init_device)

        if self.config.lora_path:
            lora_wrapper = WanLoraWrapper(model)
            lora_name = lora_wrapper.load_lora(self.config.lora_path)
            lora_wrapper.apply_lora(lora_name, self.config.strength_model)
root's avatar
root committed
51
            logger.info(f"Loaded LoRA: {lora_name}")
helloyongyang's avatar
helloyongyang committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

        vae_model = WanVAE(vae_pth=os.path.join(self.config.model_path, "Wan2.1_VAE.pth"), device=init_device, parallel=self.config.parallel_vae)
        if self.config.task == "i2v":
            image_encoder = CLIPModel(
                dtype=torch.float16,
                device=init_device,
                checkpoint_path=os.path.join(self.config.model_path, "models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth"),
                tokenizer_path=os.path.join(self.config.model_path, "xlm-roberta-large"),
            )

        return model, text_encoders, vae_model, image_encoder

    def init_scheduler(self):
        if self.config.feature_caching == "NoCaching":
            scheduler = WanScheduler(self.config)
        elif self.config.feature_caching == "Tea":
            scheduler = WanSchedulerTeaCaching(self.config)
        else:
            raise NotImplementedError(f"Unsupported feature_caching type: {self.config.feature_caching}")
        self.model.set_scheduler(scheduler)

    def run_text_encoder(self, text, text_encoders, config, image_encoder_output):
        text_encoder_output = {}
        n_prompt = config.get("negative_prompt", "")
        context = text_encoders[0].infer([text], config)
        context_null = text_encoders[0].infer([n_prompt if n_prompt else ""], config)
        text_encoder_output["context"] = context
        text_encoder_output["context_null"] = context_null
        return text_encoder_output

    def run_image_encoder(self, config, image_encoder, vae_model):
        img = Image.open(config.image_path).convert("RGB")
        img = TF.to_tensor(img).sub_(0.5).div_(0.5).cuda()
        clip_encoder_out = image_encoder.visual([img[:, None, :, :]], config).squeeze(0).to(torch.bfloat16)
        h, w = img.shape[1:]
        aspect_ratio = h / w
        max_area = config.target_height * config.target_width
        lat_h = round(np.sqrt(max_area * aspect_ratio) // config.vae_stride[1] // config.patch_size[1] * config.patch_size[1])
        lat_w = round(np.sqrt(max_area / aspect_ratio) // config.vae_stride[2] // config.patch_size[2] * config.patch_size[2])
        h = lat_h * config.vae_stride[1]
        w = lat_w * config.vae_stride[2]

        config.lat_h = lat_h
        config.lat_w = lat_w

        msk = torch.ones(1, 81, lat_h, lat_w, device=torch.device("cuda"))
        msk[:, 1:] = 0
        msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
        msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
        msk = msk.transpose(1, 2)[0]
        vae_encode_out = vae_model.encode(
            [torch.concat([torch.nn.functional.interpolate(img[None].cpu(), size=(h, w), mode="bicubic").transpose(0, 1), torch.zeros(3, 80, h, w)], dim=1).cuda()], config
        )[0]
        vae_encode_out = torch.concat([msk, vae_encode_out]).to(torch.bfloat16)
        return {"clip_encoder_out": clip_encoder_out, "vae_encode_out": vae_encode_out}

    def set_target_shape(self):
        if self.config.task == "i2v":
            self.config.target_shape = (16, 21, self.config.lat_h, self.config.lat_w)
        elif self.config.task == "t2v":
            self.config.target_shape = (
                16,
                (self.config.target_video_length - 1) // 4 + 1,
                int(self.config.target_height) // self.config.vae_stride[1],
                int(self.config.target_width) // self.config.vae_stride[2],
            )