wan_runner.py 24.5 KB
Newer Older
1
import gc
PengGao's avatar
PengGao committed
2
3
import os

helloyongyang's avatar
helloyongyang committed
4
5
import numpy as np
import torch
6
import torch.distributed as dist
PengGao's avatar
PengGao committed
7
import torchvision.transforms.functional as TF
helloyongyang's avatar
helloyongyang committed
8
from PIL import Image
PengGao's avatar
PengGao committed
9
10
from loguru import logger

11
12
from lightx2v.models.input_encoders.hf.wan.t5.model import T5EncoderModel
from lightx2v.models.input_encoders.hf.wan.xlm_roberta.model import CLIPModel
PengGao's avatar
PengGao committed
13
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
helloyongyang's avatar
helloyongyang committed
14
from lightx2v.models.networks.wan.model import WanModel
helloyongyang's avatar
helloyongyang committed
15
from lightx2v.models.runners.default_runner import DefaultRunner
gushiqiao's avatar
gushiqiao committed
16
from lightx2v.models.schedulers.wan.changing_resolution.scheduler import (
17
    WanScheduler4ChangingResolutionInterface,
gushiqiao's avatar
gushiqiao committed
18
)
19
from lightx2v.models.schedulers.wan.feature_caching.scheduler import (
20
    WanSchedulerCaching,
21
    WanSchedulerTaylorCaching,
22
)
PengGao's avatar
PengGao committed
23
from lightx2v.models.schedulers.wan.scheduler import WanScheduler
helloyongyang's avatar
helloyongyang committed
24
from lightx2v.models.video_encoders.hf.wan.vae import WanVAE
25
from lightx2v.models.video_encoders.hf.wan.vae_2_2 import Wan2_2_VAE
26
from lightx2v.models.video_encoders.hf.wan.vae_tiny import Wan2_2_VAE_tiny, WanVAE_tiny
yihuiwen's avatar
yihuiwen committed
27
from lightx2v.server.metrics import monitor_cli
28
from lightx2v.utils.envs import *
29
from lightx2v.utils.profiler import *
PengGao's avatar
PengGao committed
30
31
from lightx2v.utils.registry_factory import RUNNER_REGISTER
from lightx2v.utils.utils import *
helloyongyang's avatar
helloyongyang committed
32
33
34
35
36
37


@RUNNER_REGISTER("wan2.1")
class WanRunner(DefaultRunner):
    def __init__(self, config):
        super().__init__(config)
38
39
        self.vae_cls = WanVAE
        self.tiny_vae_cls = WanVAE_tiny
gushiqiao's avatar
gushiqiao committed
40
        self.vae_name = config.get("vae_name", "Wan2.1_VAE.pth")
41
        self.tiny_vae_name = "taew2_1.pth"
helloyongyang's avatar
helloyongyang committed
42

43
44
    def load_transformer(self):
        model = WanModel(
45
            self.config["model_path"],
46
47
48
            self.config,
            self.init_device,
        )
49
        if self.config.get("lora_configs") and self.config.lora_configs:
50
            assert not self.config.get("dit_quantized", False)
51
            lora_wrapper = WanLoraWrapper(model)
52
53
54
            for lora_config in self.config.lora_configs:
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
GoatWu's avatar
GoatWu committed
55
                lora_name = lora_wrapper.load_lora(lora_path)
56
57
                lora_wrapper.apply_lora(lora_name, strength)
                logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")
58
59
        return model

60
    def load_image_encoder(self):
helloyongyang's avatar
helloyongyang committed
61
        image_encoder = None
62
        if self.config["task"] in ["i2v", "flf2v", "animate", "s2v"] and self.config.get("use_image_encoder", True):
gushiqiao's avatar
gushiqiao committed
63
64
65
66
67
68
            # offload config
            clip_offload = self.config.get("clip_cpu_offload", self.config.get("cpu_offload", False))
            if clip_offload:
                clip_device = torch.device("cpu")
            else:
                clip_device = torch.device("cuda")
gushiqiao's avatar
gushiqiao committed
69
70
71
72
73
            # quant_config
            clip_quantized = self.config.get("clip_quantized", False)
            if clip_quantized:
                clip_quant_scheme = self.config.get("clip_quant_scheme", None)
                assert clip_quant_scheme is not None
gushiqiao's avatar
gushiqiao committed
74
                tmp_clip_quant_scheme = clip_quant_scheme.split("-")[0]
gushiqiao's avatar
gushiqiao committed
75
                clip_model_name = f"models_clip_open-clip-xlm-roberta-large-vit-huge-14-{tmp_clip_quant_scheme}.pth"
76
                clip_quantized_ckpt = find_torch_model_path(self.config, "clip_quantized_ckpt", clip_model_name)
77
                clip_original_ckpt = None
gushiqiao's avatar
gushiqiao committed
78
79
80
            else:
                clip_quantized_ckpt = None
                clip_quant_scheme = None
81
                clip_model_name = "models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth"
82
                clip_original_ckpt = find_torch_model_path(self.config, "clip_original_ckpt", clip_model_name)
gushiqiao's avatar
gushiqiao committed
83

84
85
            image_encoder = CLIPModel(
                dtype=torch.float16,
gushiqiao's avatar
gushiqiao committed
86
                device=clip_device,
87
                checkpoint_path=clip_original_ckpt,
gushiqiao's avatar
gushiqiao committed
88
89
90
                clip_quantized=clip_quantized,
                clip_quantized_ckpt=clip_quantized_ckpt,
                quant_scheme=clip_quant_scheme,
gushiqiao's avatar
gushiqiao committed
91
                cpu_offload=clip_offload,
gushiqiao's avatar
gushiqiao committed
92
                use_31_block=self.config.get("use_31_block", True),
93
                load_from_rank0=self.config.get("load_from_rank0", False),
94
            )
95

96
        return image_encoder
helloyongyang's avatar
helloyongyang committed
97

98
    def load_text_encoder(self):
gushiqiao's avatar
gushiqiao committed
99
        # offload config
100
        t5_offload = self.config.get("t5_cpu_offload", self.config.get("cpu_offload"))
gushiqiao's avatar
gushiqiao committed
101
102
103
104
        if t5_offload:
            t5_device = torch.device("cpu")
        else:
            t5_device = torch.device("cuda")
gushiqiao's avatar
gushiqiao committed
105
106
107
108
109
110

        # quant_config
        t5_quantized = self.config.get("t5_quantized", False)
        if t5_quantized:
            t5_quant_scheme = self.config.get("t5_quant_scheme", None)
            assert t5_quant_scheme is not None
111
112
            tmp_t5_quant_scheme = t5_quant_scheme.split("-")[0]
            t5_model_name = f"models_t5_umt5-xxl-enc-{tmp_t5_quant_scheme}.pth"
113
            t5_quantized_ckpt = find_torch_model_path(self.config, "t5_quantized_ckpt", t5_model_name)
114
            t5_original_ckpt = None
gushiqiao's avatar
gushiqiao committed
115
            tokenizer_path = os.path.join(os.path.dirname(t5_quantized_ckpt), "google/umt5-xxl")
gushiqiao's avatar
gushiqiao committed
116
117
118
        else:
            t5_quant_scheme = None
            t5_quantized_ckpt = None
119
            t5_model_name = "models_t5_umt5-xxl-enc-bf16.pth"
120
            t5_original_ckpt = find_torch_model_path(self.config, "t5_original_ckpt", t5_model_name)
gushiqiao's avatar
gushiqiao committed
121
            tokenizer_path = os.path.join(os.path.dirname(t5_original_ckpt), "google/umt5-xxl")
gushiqiao's avatar
Fix  
gushiqiao committed
122

helloyongyang's avatar
helloyongyang committed
123
124
125
        text_encoder = T5EncoderModel(
            text_len=self.config["text_len"],
            dtype=torch.bfloat16,
gushiqiao's avatar
gushiqiao committed
126
            device=t5_device,
127
            checkpoint_path=t5_original_ckpt,
gushiqiao's avatar
gushiqiao committed
128
            tokenizer_path=tokenizer_path,
helloyongyang's avatar
helloyongyang committed
129
            shard_fn=None,
gushiqiao's avatar
gushiqiao committed
130
            cpu_offload=t5_offload,
131
            offload_granularity=self.config.get("t5_offload_granularity", "model"),  # support ['model', 'block']
gushiqiao's avatar
gushiqiao committed
132
133
134
            t5_quantized=t5_quantized,
            t5_quantized_ckpt=t5_quantized_ckpt,
            quant_scheme=t5_quant_scheme,
135
            load_from_rank0=self.config.get("load_from_rank0", False),
helloyongyang's avatar
helloyongyang committed
136
137
        )
        text_encoders = [text_encoder]
138
        return text_encoders
helloyongyang's avatar
helloyongyang committed
139

140
    def load_vae_encoder(self):
141
142
143
144
145
146
147
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")

148
        vae_config = {
149
            "vae_pth": find_torch_model_path(self.config, "vae_pth", self.vae_name),
150
            "device": vae_device,
151
            "parallel": self.config["parallel"],
152
            "use_tiling": self.config.get("use_tiling_vae", False),
153
            "cpu_offload": vae_offload,
154
            "dtype": GET_DTYPE(),
155
            "load_from_rank0": self.config.get("load_from_rank0", False),
gushiqiao's avatar
gushiqiao committed
156
            "use_lightvae": self.config.get("use_lightvae", False),
157
        }
158
        if self.config["task"] not in ["i2v", "flf2v", "animate", "vace", "s2v"]:
159
160
            return None
        else:
161
            return self.vae_cls(**vae_config)
162
163

    def load_vae_decoder(self):
164
165
166
167
168
169
170
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")

171
        vae_config = {
172
            "vae_pth": find_torch_model_path(self.config, "vae_pth", self.vae_name),
173
            "device": vae_device,
174
            "parallel": self.config["parallel"],
175
            "use_tiling": self.config.get("use_tiling_vae", False),
176
            "cpu_offload": vae_offload,
gushiqiao's avatar
gushiqiao committed
177
            "use_lightvae": self.config.get("use_lightvae", False),
178
            "dtype": GET_DTYPE(),
179
            "load_from_rank0": self.config.get("load_from_rank0", False),
180
        }
gushiqiao's avatar
gushiqiao committed
181
182
183
        if self.config.get("use_tae", False):
            tae_pth = find_torch_model_path(self.config, "tae_pth", self.tiny_vae_name)
            vae_decoder = self.tiny_vae_cls(vae_pth=tae_pth, device=self.init_device, need_scaled=self.config.get("need_scaled", False)).to("cuda")
184
        else:
185
            vae_decoder = self.vae_cls(**vae_config)
186
        return vae_decoder
helloyongyang's avatar
helloyongyang committed
187

188
    def load_vae(self):
gushiqiao's avatar
gushiqiao committed
189
        vae_encoder = self.load_vae_encoder()
gushiqiao's avatar
gushiqiao committed
190
        if vae_encoder is None or self.config.get("use_tae", False):
gushiqiao's avatar
gushiqiao committed
191
192
193
194
            vae_decoder = self.load_vae_decoder()
        else:
            vae_decoder = vae_encoder
        return vae_encoder, vae_decoder
helloyongyang's avatar
helloyongyang committed
195
196

    def init_scheduler(self):
197
        if self.config["feature_caching"] == "NoCaching":
198
            scheduler_class = WanScheduler
199
        elif self.config["feature_caching"] == "TaylorSeer":
200
            scheduler_class = WanSchedulerTaylorCaching
Musisoul's avatar
Musisoul committed
201
        elif self.config.feature_caching in ["Tea", "Ada", "Custom", "FirstBlock", "DualBlock", "DynamicBlock", "Mag"]:
202
203
204
205
            scheduler_class = WanSchedulerCaching
        else:
            raise NotImplementedError(f"Unsupported feature_caching type: {self.config.feature_caching}")

206
        if self.config.get("changing_resolution", False):
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
207
            self.scheduler = WanScheduler4ChangingResolutionInterface(scheduler_class, self.config)
helloyongyang's avatar
helloyongyang committed
208
        else:
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
209
            self.scheduler = scheduler_class(self.config)
helloyongyang's avatar
helloyongyang committed
210

yihuiwen's avatar
yihuiwen committed
211
212
213
214
215
216
    @ProfilingContext4DebugL1(
        "Run Text Encoder",
        recorder_mode=GET_RECORDER_MODE(),
        metrics_func=monitor_cli.lightx2v_run_text_encode_duration,
        metrics_labels=["WanRunner"],
    )
217
    def run_text_encoder(self, input_info):
gushiqiao's avatar
gushiqiao committed
218
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
219
            self.text_encoders = self.load_text_encoder()
220
221

        prompt = input_info.prompt_enhanced if self.config["use_prompt_enhancer"] else input_info.prompt
yihuiwen's avatar
yihuiwen committed
222
223
        if GET_RECORDER_MODE():
            monitor_cli.lightx2v_input_prompt_len.observe(len(prompt))
224
        neg_prompt = input_info.negative_prompt
225
226
227
228
229

        if self.config["cfg_parallel"]:
            cfg_p_group = self.config["device_mesh"].get_group(mesh_dim="cfg_p")
            cfg_p_rank = dist.get_rank(cfg_p_group)
            if cfg_p_rank == 0:
230
                context = self.text_encoders[0].infer([prompt])
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
231
                context = torch.stack([torch.cat([u, u.new_zeros(self.config["text_len"] - u.size(0), u.size(1))]) for u in context])
232
233
                text_encoder_output = {"context": context}
            else:
234
                context_null = self.text_encoders[0].infer([neg_prompt])
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
235
                context_null = torch.stack([torch.cat([u, u.new_zeros(self.config["text_len"] - u.size(0), u.size(1))]) for u in context_null])
236
237
                text_encoder_output = {"context_null": context_null}
        else:
238
            context = self.text_encoders[0].infer([prompt])
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
239
            context = torch.stack([torch.cat([u, u.new_zeros(self.config["text_len"] - u.size(0), u.size(1))]) for u in context])
240
            context_null = self.text_encoders[0].infer([neg_prompt])
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
241
            context_null = torch.stack([torch.cat([u, u.new_zeros(self.config["text_len"] - u.size(0), u.size(1))]) for u in context_null])
242
243
244
245
246
            text_encoder_output = {
                "context": context,
                "context_null": context_null,
            }

gushiqiao's avatar
gushiqiao committed
247
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
248
249
250
            del self.text_encoders[0]
            torch.cuda.empty_cache()
            gc.collect()
251

helloyongyang's avatar
helloyongyang committed
252
253
        return text_encoder_output

yihuiwen's avatar
yihuiwen committed
254
255
256
257
258
259
    @ProfilingContext4DebugL1(
        "Run Image Encoder",
        recorder_mode=GET_RECORDER_MODE(),
        metrics_func=monitor_cli.lightx2v_run_img_encode_duration,
        metrics_labels=["WanRunner"],
    )
gushiqiao's avatar
gushiqiao committed
260
    def run_image_encoder(self, first_frame, last_frame=None):
gushiqiao's avatar
gushiqiao committed
261
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
262
            self.image_encoder = self.load_image_encoder()
gushiqiao's avatar
gushiqiao committed
263
        if last_frame is None:
helloyongyang's avatar
helloyongyang committed
264
            clip_encoder_out = self.image_encoder.visual([first_frame]).squeeze(0).to(GET_DTYPE())
gushiqiao's avatar
gushiqiao committed
265
        else:
helloyongyang's avatar
helloyongyang committed
266
            clip_encoder_out = self.image_encoder.visual([first_frame, last_frame]).squeeze(0).to(GET_DTYPE())
gushiqiao's avatar
gushiqiao committed
267
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
268
269
270
            del self.image_encoder
            torch.cuda.empty_cache()
            gc.collect()
271
272
        return clip_encoder_out

yihuiwen's avatar
yihuiwen committed
273
274
275
    @ProfilingContext4DebugL1(
        "Run VAE Encoder",
        recorder_mode=GET_RECORDER_MODE(),
276
        metrics_func=monitor_cli.lightx2v_run_vae_encoder_image_duration,
yihuiwen's avatar
yihuiwen committed
277
278
        metrics_labels=["WanRunner"],
    )
gushiqiao's avatar
gushiqiao committed
279
    def run_vae_encoder(self, first_frame, last_frame=None):
helloyongyang's avatar
helloyongyang committed
280
        h, w = first_frame.shape[2:]
helloyongyang's avatar
helloyongyang committed
281
        aspect_ratio = h / w
282
283
284
285
        max_area = self.config["target_height"] * self.config["target_width"]
        latent_h = round(np.sqrt(max_area * aspect_ratio) // self.config["vae_stride"][1] // self.config["patch_size"][1] * self.config["patch_size"][1])
        latent_w = round(np.sqrt(max_area / aspect_ratio) // self.config["vae_stride"][2] // self.config["patch_size"][2] * self.config["patch_size"][2])
        latent_shape = self.get_latent_shape_with_lat_hw(latent_h, latent_w)  # Important: latent_shape is used to set the input_info
286
287

        if self.config.get("changing_resolution", False):
gushiqiao's avatar
gushiqiao committed
288
            assert last_frame is None
289
290
            vae_encode_out_list = []
            for i in range(len(self.config["resolution_rate"])):
291
292
293
                latent_h_tmp, latent_w_tmp = (
                    int(latent_h * self.config["resolution_rate"][i]) // 2 * 2,
                    int(latent_w * self.config["resolution_rate"][i]) // 2 * 2,
294
                )
295
296
297
                vae_encode_out_list.append(self.get_vae_encoder_output(first_frame, latent_h_tmp, latent_w_tmp))
            vae_encode_out_list.append(self.get_vae_encoder_output(first_frame, latent_h, latent_w))
            return vae_encode_out_list, latent_shape
298
        else:
gushiqiao's avatar
gushiqiao committed
299
            if last_frame is not None:
helloyongyang's avatar
helloyongyang committed
300
301
                first_frame_size = first_frame.shape[2:]
                last_frame_size = last_frame.shape[2:]
gushiqiao's avatar
gushiqiao committed
302
303
304
305
306
307
308
                if first_frame_size != last_frame_size:
                    last_frame_resize_ratio = max(first_frame_size[0] / last_frame_size[0], first_frame_size[1] / last_frame_size[1])
                    last_frame_size = [
                        round(last_frame_size[0] * last_frame_resize_ratio),
                        round(last_frame_size[1] * last_frame_resize_ratio),
                    ]
                    last_frame = TF.center_crop(last_frame, last_frame_size)
309
310
            vae_encoder_out = self.get_vae_encoder_output(first_frame, latent_h, latent_w, last_frame)
            return vae_encoder_out, latent_shape
311

gushiqiao's avatar
gushiqiao committed
312
    def get_vae_encoder_output(self, first_frame, lat_h, lat_w, last_frame=None):
313
314
        h = lat_h * self.config["vae_stride"][1]
        w = lat_w * self.config["vae_stride"][2]
315
316
        msk = torch.ones(
            1,
317
            self.config["target_video_length"],
318
319
320
321
            lat_h,
            lat_w,
            device=torch.device("cuda"),
        )
gushiqiao's avatar
gushiqiao committed
322
323
324
325
326
        if last_frame is not None:
            msk[:, 1:-1] = 0
        else:
            msk[:, 1:] = 0

helloyongyang's avatar
helloyongyang committed
327
328
329
        msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1)
        msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
        msk = msk.transpose(1, 2)[0]
gushiqiao's avatar
gushiqiao committed
330

gushiqiao's avatar
gushiqiao committed
331
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
332
            self.vae_encoder = self.load_vae_encoder()
gushiqiao's avatar
gushiqiao committed
333
334
335
336

        if last_frame is not None:
            vae_input = torch.concat(
                [
helloyongyang's avatar
helloyongyang committed
337
                    torch.nn.functional.interpolate(first_frame.cpu(), size=(h, w), mode="bicubic").transpose(0, 1),
338
                    torch.zeros(3, self.config["target_video_length"] - 2, h, w),
helloyongyang's avatar
helloyongyang committed
339
                    torch.nn.functional.interpolate(last_frame.cpu(), size=(h, w), mode="bicubic").transpose(0, 1),
gushiqiao's avatar
gushiqiao committed
340
341
342
343
344
345
                ],
                dim=1,
            ).cuda()
        else:
            vae_input = torch.concat(
                [
helloyongyang's avatar
helloyongyang committed
346
                    torch.nn.functional.interpolate(first_frame.cpu(), size=(h, w), mode="bicubic").transpose(0, 1),
347
                    torch.zeros(3, self.config["target_video_length"] - 1, h, w),
gushiqiao's avatar
gushiqiao committed
348
349
350
351
                ],
                dim=1,
            ).cuda()

352
        vae_encoder_out = self.vae_encoder.encode(vae_input.unsqueeze(0).to(GET_DTYPE()))
gushiqiao's avatar
gushiqiao committed
353

gushiqiao's avatar
gushiqiao committed
354
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
355
356
357
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()
358
        vae_encoder_out = torch.concat([msk, vae_encoder_out]).to(GET_DTYPE())
359
        return vae_encoder_out
360

gushiqiao's avatar
gushiqiao committed
361
    def get_encoder_output_i2v(self, clip_encoder_out, vae_encoder_out, text_encoder_output, img=None):
362
363
        image_encoder_output = {
            "clip_encoder_out": clip_encoder_out,
364
            "vae_encoder_out": vae_encoder_out,
365
        }
366
367
368
369
        return {
            "text_encoder_output": text_encoder_output,
            "image_encoder_output": image_encoder_output,
        }
helloyongyang's avatar
helloyongyang committed
370

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
    def get_latent_shape_with_lat_hw(self, latent_h, latent_w):
        latent_shape = [
            self.config.get("num_channels_latents", 16),
            (self.config["target_video_length"] - 1) // self.config["vae_stride"][0] + 1,
            latent_h,
            latent_w,
        ]
        return latent_shape

    def get_latent_shape_with_target_hw(self, target_h, target_w):
        latent_shape = [
            self.config.get("num_channels_latents", 16),
            (self.config["target_video_length"] - 1) // self.config["vae_stride"][0] + 1,
            int(target_h) // self.config["vae_stride"][1],
            int(target_w) // self.config["vae_stride"][2],
        ]
        return latent_shape
helloyongyang's avatar
helloyongyang committed
388
389
390
391
392
393
394
395
396
397
398
399


class MultiModelStruct:
    def __init__(self, model_list, config, boundary=0.875, num_train_timesteps=1000):
        self.model = model_list  # [high_noise_model, low_noise_model]
        assert len(self.model) == 2, "MultiModelStruct only supports 2 models now."
        self.config = config
        self.boundary = boundary
        self.boundary_timestep = self.boundary * num_train_timesteps
        self.cur_model_index = -1
        logger.info(f"boundary: {self.boundary}, boundary_timestep: {self.boundary_timestep}")

wangshankun's avatar
wangshankun committed
400
401
402
403
    @property
    def device(self):
        return self.model[self.cur_model_index].device

helloyongyang's avatar
helloyongyang committed
404
405
406
407
408
409
410
411
412
    def set_scheduler(self, shared_scheduler):
        self.scheduler = shared_scheduler
        for model in self.model:
            model.set_scheduler(shared_scheduler)

    def infer(self, inputs):
        self.get_current_model_index()
        self.model[self.cur_model_index].infer(inputs)

413
    @ProfilingContext4DebugL2("Swtich models in infer_main costs")
helloyongyang's avatar
helloyongyang committed
414
415
416
    def get_current_model_index(self):
        if self.scheduler.timesteps[self.scheduler.step_index] >= self.boundary_timestep:
            logger.info(f"using - HIGH - noise model at step_index {self.scheduler.step_index + 1}")
417
            self.scheduler.sample_guide_scale = self.config["sample_guide_scale"][0]
418
419
420
421
422
423
            if self.config.get("cpu_offload", False) and self.config.get("offload_granularity", "block") == "model":
                if self.cur_model_index == -1:
                    self.to_cuda(model_index=0)
                elif self.cur_model_index == 1:  # 1 -> 0
                    self.offload_cpu(model_index=1)
                    self.to_cuda(model_index=0)
helloyongyang's avatar
helloyongyang committed
424
425
426
            self.cur_model_index = 0
        else:
            logger.info(f"using - LOW - noise model at step_index {self.scheduler.step_index + 1}")
427
            self.scheduler.sample_guide_scale = self.config["sample_guide_scale"][1]
428
429
430
431
432
433
            if self.config.get("cpu_offload", False) and self.config.get("offload_granularity", "block") == "model":
                if self.cur_model_index == -1:
                    self.to_cuda(model_index=1)
                elif self.cur_model_index == 0:  # 0 -> 1
                    self.offload_cpu(model_index=0)
                    self.to_cuda(model_index=1)
helloyongyang's avatar
helloyongyang committed
434
435
436
437
438
439
440
441
442
443
444
445
446
            self.cur_model_index = 1

    def offload_cpu(self, model_index):
        self.model[model_index].to_cpu()

    def to_cuda(self, model_index):
        self.model[model_index].to_cuda()


@RUNNER_REGISTER("wan2.2_moe")
class Wan22MoeRunner(WanRunner):
    def __init__(self, config):
        super().__init__(config)
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
        self.high_noise_model_path = os.path.join(self.config["model_path"], "high_noise_model")
        if not os.path.isdir(self.high_noise_model_path):
            self.high_noise_model_path = os.path.join(self.config["model_path"], "distill_models", "high_noise_model")
        if self.config.get("dit_quantized", False) and self.config.get("high_noise_quantized_ckpt", None):
            self.high_noise_model_path = self.config["high_noise_quantized_ckpt"]
        elif self.config.get("high_noise_original_ckpt", None):
            self.high_noise_model_path = self.config["high_noise_original_ckpt"]

        self.low_noise_model_path = os.path.join(self.config["model_path"], "low_noise_model")
        if not os.path.isdir(self.low_noise_model_path):
            self.low_noise_model_path = os.path.join(self.config["model_path"], "distill_models", "low_noise_model")
        if self.config.get("dit_quantized", False) and self.config.get("low_noise_quantized_ckpt", None):
            self.low_noise_model_path = self.config["low_noise_quantized_ckpt"]
        elif not self.config.get("dit_quantized", False) and self.config.get("low_noise_original_ckpt", None):
            self.low_noise_model_path = self.config["low_noise_original_ckpt"]
helloyongyang's avatar
helloyongyang committed
462
463
464

    def load_transformer(self):
        # encoder -> high_noise_model -> low_noise_model -> vae -> video_output
helloyongyang's avatar
helloyongyang committed
465
        high_noise_model = WanModel(
466
            self.high_noise_model_path,
helloyongyang's avatar
helloyongyang committed
467
468
            self.config,
            self.init_device,
469
            model_type="wan2.2_moe_high_noise",
helloyongyang's avatar
helloyongyang committed
470
        )
helloyongyang's avatar
helloyongyang committed
471
        low_noise_model = WanModel(
472
            self.low_noise_model_path,
helloyongyang's avatar
helloyongyang committed
473
474
            self.config,
            self.init_device,
475
            model_type="wan2.2_moe_low_noise",
helloyongyang's avatar
helloyongyang committed
476
        )
477

478
        if self.config.get("lora_configs") and self.config["lora_configs"]:
479
            assert not self.config.get("dit_quantized", False)
480

481
            for lora_config in self.config["lora_configs"]:
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
                base_name = os.path.basename(lora_path)
                if base_name.startswith("high"):
                    lora_wrapper = WanLoraWrapper(high_noise_model)
                    lora_name = lora_wrapper.load_lora(lora_path)
                    lora_wrapper.apply_lora(lora_name, strength)
                    logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")
                elif base_name.startswith("low"):
                    lora_wrapper = WanLoraWrapper(low_noise_model)
                    lora_name = lora_wrapper.load_lora(lora_path)
                    lora_wrapper.apply_lora(lora_name, strength)
                    logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")
                else:
                    raise ValueError(f"Unsupported LoRA path: {lora_path}")

498
        return MultiModelStruct([high_noise_model, low_noise_model], self.config, self.config["boundary"])
499
500
501
502
503
504


@RUNNER_REGISTER("wan2.2")
class Wan22DenseRunner(WanRunner):
    def __init__(self, config):
        super().__init__(config)
505
        self.vae_encoder_need_img_original = True
506
507
508
509
        self.vae_cls = Wan2_2_VAE
        self.tiny_vae_cls = Wan2_2_VAE_tiny
        self.vae_name = "Wan2.2_VAE.pth"
        self.tiny_vae_name = "taew2_2.pth"
510

yihuiwen's avatar
yihuiwen committed
511
512
513
    @ProfilingContext4DebugL1(
        "Run VAE Encoder",
        recorder_mode=GET_RECORDER_MODE(),
514
        metrics_func=monitor_cli.lightx2v_run_vae_encoder_image_duration,
yihuiwen's avatar
yihuiwen committed
515
516
        metrics_labels=["Wan22DenseRunner"],
    )
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    def run_vae_encoder(self, img):
        max_area = self.config.target_height * self.config.target_width
        ih, iw = img.height, img.width
        dh, dw = self.config.patch_size[1] * self.config.vae_stride[1], self.config.patch_size[2] * self.config.vae_stride[2]
        ow, oh = best_output_size(iw, ih, dw, dh, max_area)

        scale = max(ow / iw, oh / ih)
        img = img.resize((round(iw * scale), round(ih * scale)), Image.LANCZOS)

        # center-crop
        x1 = (img.width - ow) // 2
        y1 = (img.height - oh) // 2
        img = img.crop((x1, y1, x1 + ow, y1 + oh))
        assert img.width == ow and img.height == oh

        # to tensor
        img = TF.to_tensor(img).sub_(0.5).div_(0.5).cuda().unsqueeze(1)
        vae_encoder_out = self.get_vae_encoder_output(img)
        self.config.lat_w, self.config.lat_h = ow // self.config.vae_stride[2], oh // self.config.vae_stride[1]

        return vae_encoder_out

    def get_vae_encoder_output(self, img):
540
        z = self.vae_encoder.encode(img.to(GET_DTYPE()))
541
        return z