wan_audio_runner.py 33.4 KB
Newer Older
wangshankun's avatar
wangshankun committed
1
import gc
PengGao's avatar
PengGao committed
2
3
4
5
import os
import subprocess
from contextlib import contextmanager
from dataclasses import dataclass
6
from typing import Dict, List, Optional, Tuple
PengGao's avatar
PengGao committed
7

wangshankun's avatar
wangshankun committed
8
9
import numpy as np
import torch
10
import torch.distributed as dist
gushiqiao's avatar
gushiqiao committed
11
import torchaudio as ta
wangshankun's avatar
wangshankun committed
12
from PIL import Image
gushiqiao's avatar
gushiqiao committed
13
from einops import rearrange
PengGao's avatar
PengGao committed
14
from loguru import logger
gushiqiao's avatar
gushiqiao committed
15
16
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize
PengGao's avatar
PengGao committed
17
from transformers import AutoFeatureExtractor
18

wangshankun's avatar
wangshankun committed
19
from lightx2v.models.networks.wan.audio_adapter import AudioAdapter, AudioAdapterPipe, rank0_load_state_dict_from_path
PengGao's avatar
PengGao committed
20
21
22
from lightx2v.models.networks.wan.audio_model import Wan22MoeAudioModel, WanAudioModel
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
from lightx2v.models.runners.wan.wan_runner import MultiModelStruct, WanRunner
wangshankun's avatar
wangshankun committed
23
from lightx2v.models.schedulers.wan.audio.scheduler import ConsistencyModelScheduler
24
from lightx2v.utils.envs import *
PengGao's avatar
PengGao committed
25
26
27
from lightx2v.utils.profiler import ProfilingContext, ProfilingContext4Debug
from lightx2v.utils.registry_factory import RUNNER_REGISTER
from lightx2v.utils.utils import save_to_video, vae_to_comfyui_image
wangshankun's avatar
wangshankun committed
28
29


30
31
32
33
34
35
36
37
38
39
40
@contextmanager
def memory_efficient_inference():
    """Context manager for memory-efficient inference"""
    try:
        yield
    finally:
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        gc.collect()


41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
def get_optimal_patched_size_with_sp(patched_h, patched_w, sp_size):
    assert sp_size > 0 and (sp_size & (sp_size - 1)) == 0, "sp_size must be a power of 2"

    h_ratio, w_ratio = 1, 1
    while sp_size != 1:
        sp_size //= 2
        if patched_h % 2 == 0:
            patched_h //= 2
            h_ratio *= 2
        elif patched_w % 2 == 0:
            patched_w //= 2
            w_ratio *= 2
        else:
            if patched_h > patched_w:
                patched_h //= 2
56
57
                h_ratio *= 2
            else:
58
                patched_w //= 2
59
                w_ratio *= 2
60
    return patched_h * h_ratio, patched_w * w_ratio
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88


def get_crop_bbox(ori_h, ori_w, tgt_h, tgt_w):
    tgt_ar = tgt_h / tgt_w
    ori_ar = ori_h / ori_w
    if abs(ori_ar - tgt_ar) < 0.01:
        return 0, ori_h, 0, ori_w
    if ori_ar > tgt_ar:
        crop_h = int(tgt_ar * ori_w)
        y0 = (ori_h - crop_h) // 2
        y1 = y0 + crop_h
        return y0, y1, 0, ori_w
    else:
        crop_w = int(ori_h / tgt_ar)
        x0 = (ori_w - crop_w) // 2
        x1 = x0 + crop_w
        return 0, ori_h, x0, x1


def isotropic_crop_resize(frames: torch.Tensor, size: tuple):
    """
    frames: (T, C, H, W)
    size: (H, W)
    """
    ori_h, ori_w = frames.shape[2:]
    h, w = size
    y0, y1, x0, x1 = get_crop_bbox(ori_h, ori_w, h, w)
    cropped_frames = frames[:, :, y0:y1, x0:x1]
89
    resized_frames = resize(cropped_frames, [h, w], InterpolationMode.BICUBIC, antialias=True)
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    return resized_frames


def adaptive_resize(img):
    bucket_config = {
        0.667: (np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64), np.array([0.2, 0.5, 0.3])),
        1.0: (np.array([[480, 480], [576, 576], [704, 704], [960, 960]], dtype=np.int64), np.array([0.1, 0.1, 0.5, 0.3])),
        1.5: (np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64)[:, ::-1], np.array([0.2, 0.5, 0.3])),
    }
    ori_height = img.shape[-2]
    ori_weight = img.shape[-1]
    ori_ratio = ori_height / ori_weight
    aspect_ratios = np.array(np.array(list(bucket_config.keys())))
    closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
    closet_ratio = aspect_ratios[closet_aspect_idx]
    if ori_ratio < 1.0:
        target_h, target_w = 480, 832
    elif ori_ratio == 1.0:
        target_h, target_w = 480, 480
    else:
        target_h, target_w = 832, 480
    for resolution in bucket_config[closet_ratio][0]:
        if ori_height * ori_weight >= resolution[0] * resolution[1]:
            target_h, target_w = resolution
    cropped_img = isotropic_crop_resize(img, (target_h, target_w))
    return cropped_img, target_h, target_w


118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
@dataclass
class AudioSegment:
    """Data class for audio segment information"""

    audio_array: np.ndarray
    start_frame: int
    end_frame: int
    is_last: bool = False
    useful_length: Optional[int] = None


class FramePreprocessor:
    """Handles frame preprocessing including noise and masking"""

    def __init__(self, noise_mean: float = -3.0, noise_std: float = 0.5, mask_rate: float = 0.1):
        self.noise_mean = noise_mean
        self.noise_std = noise_std
        self.mask_rate = mask_rate

    def add_noise(self, frames: np.ndarray, rnd_state: Optional[np.random.RandomState] = None) -> np.ndarray:
        """Add noise to frames"""
        if self.noise_mean is None or self.noise_std is None:
            return frames

        if rnd_state is None:
            rnd_state = np.random.RandomState()

        shape = frames.shape
        bs = 1 if len(shape) == 4 else shape[0]
        sigma = rnd_state.normal(loc=self.noise_mean, scale=self.noise_std, size=(bs,))
        sigma = np.exp(sigma)
        sigma = np.expand_dims(sigma, axis=tuple(range(1, len(shape))))
        noise = rnd_state.randn(*shape) * sigma
        return frames + noise

    def add_mask(self, frames: np.ndarray, rnd_state: Optional[np.random.RandomState] = None) -> np.ndarray:
        """Add mask to frames"""
        if self.mask_rate is None:
            return frames

        if rnd_state is None:
            rnd_state = np.random.RandomState()

        h, w = frames.shape[-2:]
        mask = rnd_state.rand(h, w) > self.mask_rate
        return frames * mask

    def process_prev_frames(self, frames: torch.Tensor) -> torch.Tensor:
        """Process previous frames with noise and masking"""
        frames_np = frames.cpu().detach().numpy()
        frames_np = self.add_noise(frames_np)
        frames_np = self.add_mask(frames_np)
        return torch.from_numpy(frames_np).to(dtype=frames.dtype, device=frames.device)


class AudioProcessor:
    """Handles audio loading and segmentation"""

    def __init__(self, audio_sr: int = 16000, target_fps: int = 16):
        self.audio_sr = audio_sr
        self.target_fps = target_fps

    def load_audio(self, audio_path: str) -> np.ndarray:
        """Load and resample audio"""
        audio_array, ori_sr = ta.load(audio_path)
        audio_array = ta.functional.resample(audio_array.mean(0), orig_freq=ori_sr, new_freq=self.audio_sr)
        return audio_array.numpy()

    def get_audio_range(self, start_frame: int, end_frame: int) -> Tuple[int, int]:
        """Calculate audio range for given frame range"""
        audio_frame_rate = self.audio_sr / self.target_fps
        return round(start_frame * audio_frame_rate), round((end_frame + 1) * audio_frame_rate)

    def segment_audio(self, audio_array: np.ndarray, expected_frames: int, max_num_frames: int, prev_frame_length: int = 5) -> List[AudioSegment]:
        """Segment audio based on frame requirements"""
        segments = []

        # Calculate intervals
        interval_num = 1
        res_frame_num = 0

        if expected_frames <= max_num_frames:
            interval_num = 1
        else:
            interval_num = max(int((expected_frames - max_num_frames) / (max_num_frames - prev_frame_length)) + 1, 1)
            res_frame_num = expected_frames - interval_num * (max_num_frames - prev_frame_length)
            if res_frame_num > 5:
                interval_num += 1

        # Create segments
        for idx in range(interval_num):
            if idx == 0:
                # First segment
                audio_start, audio_end = self.get_audio_range(0, max_num_frames)
                segment_audio = audio_array[audio_start:audio_end]
                useful_length = None

                if expected_frames < max_num_frames:
                    useful_length = segment_audio.shape[0]
                    max_num_audio_length = int((max_num_frames + 1) / self.target_fps * self.audio_sr)
                    segment_audio = np.concatenate((segment_audio, np.zeros(max_num_audio_length - useful_length)), axis=0)

                segments.append(AudioSegment(segment_audio, 0, max_num_frames, False, useful_length))

            elif res_frame_num > 5 and idx == interval_num - 1:
                # Last segment (might be shorter)
                start_frame = idx * max_num_frames - idx * prev_frame_length
                audio_start, audio_end = self.get_audio_range(start_frame, expected_frames)
                segment_audio = audio_array[audio_start:audio_end]
                useful_length = segment_audio.shape[0]

                max_num_audio_length = int((max_num_frames + 1) / self.target_fps * self.audio_sr)
                segment_audio = np.concatenate((segment_audio, np.zeros(max_num_audio_length - useful_length)), axis=0)

                segments.append(AudioSegment(segment_audio, start_frame, expected_frames, True, useful_length))

            else:
                # Middle segments
                start_frame = idx * max_num_frames - idx * prev_frame_length
                end_frame = (idx + 1) * max_num_frames - idx * prev_frame_length
                audio_start, audio_end = self.get_audio_range(start_frame, end_frame)
                segment_audio = audio_array[audio_start:audio_end]

                segments.append(AudioSegment(segment_audio, start_frame, end_frame, False))

        return segments


class VideoGenerator:
    """Handles video generation for each segment"""

249
    def __init__(self, model, vae_encoder, vae_decoder, config, progress_callback=None):
250
251
252
253
254
        self.model = model
        self.vae_encoder = vae_encoder
        self.vae_decoder = vae_decoder
        self.config = config
        self.frame_preprocessor = FramePreprocessor()
255
256
        self.progress_callback = progress_callback
        self.total_segments = 1
257
258
259
260
261
262

    def prepare_prev_latents(self, prev_video: Optional[torch.Tensor], prev_frame_length: int) -> Optional[Dict[str, torch.Tensor]]:
        """Prepare previous latents for conditioning"""
        if prev_video is None:
            return None

wangshankun's avatar
wangshankun committed
263
        device = torch.device("cuda")
264
        dtype = GET_DTYPE()
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
        vae_dtype = torch.float

        tgt_h, tgt_w = self.config.tgt_h, self.config.tgt_w
        prev_frames = torch.zeros((1, 3, self.config.target_video_length, tgt_h, tgt_w), device=device)

        # Extract and process last frames
        last_frames = prev_video[:, :, -prev_frame_length:].clone().to(device)
        last_frames = self.frame_preprocessor.process_prev_frames(last_frames)

        prev_frames[:, :, :prev_frame_length] = last_frames
        prev_latents = self.vae_encoder.encode(prev_frames.to(vae_dtype), self.config)[0].to(dtype)

        # Create mask
        prev_token_length = (prev_frame_length - 1) // 4 + 1
        _, nframe, height, width = self.model.scheduler.latents.shape
        frames_n = (nframe - 1) * 4 + 1
        prev_frame_len = max((prev_token_length - 1) * 4 + 1, 0)

        prev_mask = torch.ones((1, frames_n, height, width), device=device, dtype=dtype)
        prev_mask[:, prev_frame_len:] = 0
        prev_mask = self._wan_mask_rearrange(prev_mask).unsqueeze(0)
helloyongyang's avatar
fix ci  
helloyongyang committed
286

287
288
        if prev_latents.shape[-2:] != (height, width):
            logger.warning(f"Size mismatch: prev_latents {prev_latents.shape} vs scheduler latents (H={height}, W={width}). Config tgt_h={self.config.tgt_h}, tgt_w={self.config.tgt_w}")
helloyongyang's avatar
fix ci  
helloyongyang committed
289
            prev_latents = torch.nn.functional.interpolate(prev_latents, size=(height, width), mode="bilinear", align_corners=False)
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305

        return {"prev_latents": prev_latents, "prev_mask": prev_mask}

    def _wan_mask_rearrange(self, mask: torch.Tensor) -> torch.Tensor:
        """Rearrange mask for WAN model"""
        if mask.ndim == 3:
            mask = mask[None]
        assert mask.ndim == 4
        _, t, h, w = mask.shape
        assert t == ((t - 1) // 4 * 4 + 1)
        mask_first_frame = torch.repeat_interleave(mask[:, 0:1], repeats=4, dim=1)
        mask = torch.concat([mask_first_frame, mask[:, 1:]], dim=1)
        mask = mask.view(mask.shape[1] // 4, 4, h, w)
        return mask.transpose(0, 1)

    @torch.no_grad()
306
    def generate_segment(self, inputs, audio_features, prev_video=None, prev_frame_length=5, segment_idx=0, total_steps=None):
307
308
309
310
311
312
313
314
315
        """Generate video segment"""
        # Update inputs with audio features
        inputs["audio_encoder_output"] = audio_features

        # Reset scheduler for non-first segments
        if segment_idx > 0:
            self.model.scheduler.reset()

        # Prepare previous latents - ALWAYS needed, even for first segment
wangshankun's avatar
wangshankun committed
316
        device = torch.device("cuda")
317
        dtype = GET_DTYPE()
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
        vae_dtype = torch.float
        tgt_h, tgt_w = self.config.tgt_h, self.config.tgt_w
        max_num_frames = self.config.target_video_length

        if segment_idx == 0:
            # First segment - create zero frames
            prev_frames = torch.zeros((1, 3, max_num_frames, tgt_h, tgt_w), device=device)
            prev_latents = self.vae_encoder.encode(prev_frames.to(vae_dtype), self.config)[0].to(dtype)
            prev_len = 0
        else:
            # Subsequent segments - use previous video
            previmg_encoder_output = self.prepare_prev_latents(prev_video, prev_frame_length)
            if previmg_encoder_output:
                prev_latents = previmg_encoder_output["prev_latents"]
                prev_len = (prev_frame_length - 1) // 4 + 1
            else:
                # Fallback to zeros if prepare_prev_latents fails
                prev_frames = torch.zeros((1, 3, max_num_frames, tgt_h, tgt_w), device=device)
                prev_latents = self.vae_encoder.encode(prev_frames.to(vae_dtype), self.config)[0].to(dtype)
                prev_len = 0

        # Create mask for prev_latents
        _, nframe, height, width = self.model.scheduler.latents.shape
        frames_n = (nframe - 1) * 4 + 1
        prev_frame_len = max((prev_len - 1) * 4 + 1, 0)

        prev_mask = torch.ones((1, frames_n, height, width), device=device, dtype=dtype)
        prev_mask[:, prev_frame_len:] = 0
        prev_mask = self._wan_mask_rearrange(prev_mask).unsqueeze(0)
helloyongyang's avatar
fix ci  
helloyongyang committed
347

348
349
        if prev_latents.shape[-2:] != (height, width):
            logger.warning(f"Size mismatch: prev_latents {prev_latents.shape} vs scheduler latents (H={height}, W={width}). Config tgt_h={self.config.tgt_h}, tgt_w={self.config.tgt_w}")
helloyongyang's avatar
fix ci  
helloyongyang committed
350
            prev_latents = torch.nn.functional.interpolate(prev_latents, size=(height, width), mode="bilinear", align_corners=False)
wangshankun's avatar
wangshankun committed
351

352
353
        # Always set previmg_encoder_output
        inputs["previmg_encoder_output"] = {"prev_latents": prev_latents, "prev_mask": prev_mask}
wangshankun's avatar
wangshankun committed
354

355
        # Run inference loop
356
357
        if total_steps is None:
            total_steps = self.model.scheduler.infer_steps
358
359
        for step_index in range(total_steps):
            logger.info(f"==> Segment {segment_idx}, Step {step_index}/{total_steps}")
wangshankun's avatar
wangshankun committed
360

361
362
            with ProfilingContext4Debug("step_pre"):
                self.model.scheduler.step_pre(step_index=step_index)
wangshankun's avatar
wangshankun committed
363

helloyongyang's avatar
helloyongyang committed
364
            with ProfilingContext4Debug("🚀 infer_main"):
365
                self.model.infer(inputs)
wangshankun's avatar
wangshankun committed
366

367
368
            with ProfilingContext4Debug("step_post"):
                self.model.scheduler.step_post()
wangshankun's avatar
wangshankun committed
369

370
371
372
373
            if self.progress_callback:
                segment_progress = (segment_idx * total_steps + step_index + 1) / (self.total_segments * total_steps)
                self.progress_callback(int(segment_progress * 100), 100)

374
375
376
377
378
379
380
        # Decode latents
        latents = self.model.scheduler.latents
        generator = self.model.scheduler.generator
        gen_video = self.vae_decoder.decode(latents, generator=generator, config=self.config)
        gen_video = torch.clamp(gen_video, -1, 1).to(torch.float)

        return gen_video
wangshankun's avatar
wangshankun committed
381
382


383
@RUNNER_REGISTER("wan2.1_audio")
384
class WanAudioRunner(WanRunner):  # type:ignore
385
386
387
388
389
390
    def __init__(self, config):
        super().__init__(config)
        self._audio_adapter_pipe = None
        self._audio_processor = None
        self._video_generator = None
        self._audio_preprocess = None
PengGao's avatar
PengGao committed
391

392
    def initialize(self):
393
        """Initialize all models once for multiple runs"""
wangshankun's avatar
wangshankun committed
394

395
396
397
398
        # Initialize audio processor
        audio_sr = self.config.get("audio_sr", 16000)
        target_fps = self.config.get("target_fps", 16)
        self._audio_processor = AudioProcessor(audio_sr, target_fps)
PengGao's avatar
PengGao committed
399

400
401
        # Initialize scheduler
        self.init_scheduler()
wangshankun's avatar
wangshankun committed
402

wangshankun's avatar
wangshankun committed
403
    def init_scheduler(self):
404
        """Initialize consistency model scheduler"""
wangshankun's avatar
wangshankun committed
405
        scheduler = ConsistencyModelScheduler(self.config)
wangshankun's avatar
wangshankun committed
406
407
        self.model.set_scheduler(scheduler)

408
409
410
411
    def load_audio_adapter_lazy(self):
        """Lazy load audio adapter when needed"""
        if self._audio_adapter_pipe is not None:
            return self._audio_adapter_pipe
wangshankun's avatar
wangshankun committed
412

413
        # Audio adapter
wangshankun's avatar
wangshankun committed
414
        audio_adapter_path = self.config["model_path"] + "/audio_adapter.safetensors"
415
        audio_adapter = AudioAdapter.from_transformer(
wangshankun's avatar
wangshankun committed
416
417
418
419
420
421
422
            self.model,
            audio_feature_dim=1024,
            interval=1,
            time_freq_dim=256,
            projection_transformer_layers=4,
        )

423
        # Audio encoder
gushiqiao's avatar
gushiqiao committed
424
425
426
427
428
        cpu_offload = self.config.get("cpu_offload", False)
        if cpu_offload:
            device = torch.device("cpu")
        else:
            device = torch.device("cuda")
wangshankun's avatar
wangshankun committed
429
        audio_encoder_repo = self.config["model_path"] + "/audio_encoder"
wangshankun's avatar
wangshankun committed
430
431
432
433
434
435

        if self.model.transformer_infer.seq_p_group is not None:
            seq_p_group = self.model.transformer_infer.seq_p_group
        else:
            seq_p_group = None

436
        audio_adapter = rank0_load_state_dict_from_path(audio_adapter, audio_adapter_path, strict=False)
437

wangshankun's avatar
wangshankun committed
438
439
440
        self._audio_adapter_pipe = AudioAdapterPipe(
            audio_adapter, audio_encoder_repo=audio_encoder_repo, dtype=GET_DTYPE(), device=device, weight=1.0, cpu_offload=cpu_offload, seq_p_group=seq_p_group
        )
wangshankun's avatar
wangshankun committed
441

442
443
444
445
446
447
448
449
        return self._audio_adapter_pipe

    def prepare_inputs(self):
        """Prepare inputs for the model"""
        image_encoder_output = None

        if os.path.isfile(self.config.image_path):
            with ProfilingContext("Run Img Encoder"):
450
                vae_encoder_out, clip_encoder_out = self.run_image_encoder(self.config, self.vae_encoder)
451
452
                image_encoder_output = {
                    "clip_encoder_out": clip_encoder_out,
453
                    "vae_encoder_out": vae_encoder_out,
454
455
456
457
458
459
460
461
462
463
464
465
466
                }

        with ProfilingContext("Run Text Encoder"):
            img = Image.open(self.config["image_path"]).convert("RGB")
            text_encoder_output = self.run_text_encoder(self.config["prompt"], img)

        self.set_target_shape()

        return {"text_encoder_output": text_encoder_output, "image_encoder_output": image_encoder_output, "audio_adapter_pipe": self.load_audio_adapter_lazy()}

    def run_pipeline(self, save_video=True):
        """Optimized pipeline with modular components"""

467
468
        try:
            self.initialize()
469

470
471
            assert self._audio_processor is not None
            assert self._audio_preprocess is not None
472

473
            self._video_generator = VideoGenerator(self.model, self.vae_encoder, self.vae_decoder, self.config, self.progress_callback)
474

475
476
477
            with memory_efficient_inference():
                if self.config["use_prompt_enhancer"]:
                    self.config["prompt_enhanced"] = self.post_prompt_enhancer()
478

479
480
481
482
                self.inputs = self.prepare_inputs()
                # Re-initialize scheduler after image encoding sets correct dimensions
                self.init_scheduler()
                self.model.scheduler.prepare(self.inputs["image_encoder_output"])
483

484
485
            # Re-create video generator with updated model/scheduler
            self._video_generator = VideoGenerator(self.model, self.vae_encoder, self.vae_decoder, self.config, self.progress_callback)
486

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
            # Process audio
            audio_array = self._audio_processor.load_audio(self.config["audio_path"])
            video_duration = self.config.get("video_duration", 5)
            target_fps = self.config.get("target_fps", 16)
            max_num_frames = self.config.get("target_video_length", 81)

            audio_len = int(audio_array.shape[0] / self._audio_processor.audio_sr * target_fps)
            expected_frames = min(max(1, int(video_duration * target_fps)), audio_len)

            # Segment audio
            audio_segments = self._audio_processor.segment_audio(audio_array, expected_frames, max_num_frames)

            self._video_generator.total_segments = len(audio_segments)

            # Generate video segments
            gen_video_list = []
            cut_audio_list = []
            prev_video = None

            for idx, segment in enumerate(audio_segments):
                self.config.seed = self.config.seed + idx
                torch.manual_seed(self.config.seed)
                logger.info(f"Processing segment {idx + 1}/{len(audio_segments)}, seed: {self.config.seed}")

                # Process audio features
                audio_features = self._audio_preprocess(segment.audio_array, sampling_rate=self._audio_processor.audio_sr, return_tensors="pt").input_values.squeeze(0).to(self.model.device)

                # Generate video segment
                with memory_efficient_inference():
                    gen_video = self._video_generator.generate_segment(
                        self.inputs.copy(),  # Copy to avoid modifying original
                        audio_features,
                        prev_video=prev_video,
                        prev_frame_length=5,
                        segment_idx=idx,
                    )

                # Extract relevant frames
                start_frame = 0 if idx == 0 else 5
                start_audio_frame = 0 if idx == 0 else int(6 * self._audio_processor.audio_sr / target_fps)

                if segment.is_last and segment.useful_length:
                    end_frame = segment.end_frame - segment.start_frame
                    gen_video_list.append(gen_video[:, :, start_frame:end_frame].cpu())
                    cut_audio_list.append(segment.audio_array[start_audio_frame : segment.useful_length])
                elif segment.useful_length and expected_frames < max_num_frames:
                    gen_video_list.append(gen_video[:, :, start_frame:expected_frames].cpu())
                    cut_audio_list.append(segment.audio_array[start_audio_frame : segment.useful_length])
                else:
                    gen_video_list.append(gen_video[:, :, start_frame:].cpu())
                    cut_audio_list.append(segment.audio_array[start_audio_frame:])

                # Update prev_video for next iteration
                prev_video = gen_video

                # Clean up GPU memory after each segment
                del gen_video
                torch.cuda.empty_cache()

            # Merge results
547
            with memory_efficient_inference():
548
549
550
551
552
553
554
555
556
557
558
559
                gen_lvideo = torch.cat(gen_video_list, dim=2).float()
                merge_audio = np.concatenate(cut_audio_list, axis=0).astype(np.float32)
                comfyui_images = vae_to_comfyui_image(gen_lvideo)

            # Apply frame interpolation if configured
            if "video_frame_interpolation" in self.config and self.vfi_model is not None:
                interpolation_target_fps = self.config["video_frame_interpolation"]["target_fps"]
                logger.info(f"Interpolating frames from {target_fps} to {interpolation_target_fps}")
                comfyui_images = self.vfi_model.interpolate_frames(
                    comfyui_images,
                    source_fps=target_fps,
                    target_fps=interpolation_target_fps,
560
                )
561
                target_fps = interpolation_target_fps
562

563
564
565
            # Convert audio to ComfyUI format
            audio_waveform = torch.from_numpy(merge_audio).unsqueeze(0).unsqueeze(0)
            comfyui_audio = {"waveform": audio_waveform, "sample_rate": self._audio_processor.audio_sr}
566

567
            # Save video if requested
568
569
570
            if (self.config.get("device_mesh") is not None and dist.get_rank() == 0) or self.config.get("device_mesh") is None:
                if save_video and self.config.get("save_video_path", None):
                    self._save_video_with_audio(comfyui_images, merge_audio, target_fps)
571

572
573
574
575
            # Final cleanup
            self.end_run()

            return comfyui_images, comfyui_audio
576

577
578
579
580
581
        finally:
            self._video_generator = None
            gc.collect()
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
582
583
584
585
586
587
588
589
590
591
592
593
594

    def _save_video_with_audio(self, images, audio_array, fps):
        """Save video with audio"""
        import tempfile

        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as video_tmp:
            video_path = video_tmp.name

        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as audio_tmp:
            audio_path = audio_tmp.name

        try:
            save_to_video(images, video_path, fps)
595
            ta.save(audio_path, torch.tensor(audio_array[None]), sample_rate=self._audio_processor.audio_sr)  # type: ignore
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611

            output_path = self.config.get("save_video_path")
            parent_dir = os.path.dirname(output_path)
            if parent_dir and not os.path.exists(parent_dir):
                os.makedirs(parent_dir, exist_ok=True)

            subprocess.call(["/usr/bin/ffmpeg", "-y", "-i", video_path, "-i", audio_path, output_path])

            logger.info(f"Saved video with audio to: {output_path}")

        finally:
            # Clean up temp files
            if os.path.exists(video_path):
                os.remove(video_path)
            if os.path.exists(audio_path):
                os.remove(audio_path)
wangshankun's avatar
wangshankun committed
612
613

    def load_transformer(self):
614
        """Load transformer with LoRA support"""
615
        base_model = WanAudioModel(self.config.model_path, self.config, self.init_device, self.seq_p_group)
wangshankun's avatar
wangshankun committed
616

617
        if self.config.get("lora_configs") and self.config.lora_configs:
wangshankun's avatar
wangshankun committed
618
619
            assert not self.config.get("dit_quantized", False) or self.config.mm_config.get("weight_auto_quant", False)
            lora_wrapper = WanLoraWrapper(base_model)
620
621
622
623
624
625
            for lora_config in self.config.lora_configs:
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
                lora_name = lora_wrapper.load_lora(lora_path)
                lora_wrapper.apply_lora(lora_name, strength)
                logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")
wangshankun's avatar
wangshankun committed
626

627
628
629
        # XXX: trick
        self._audio_preprocess = AutoFeatureExtractor.from_pretrained(self.config["model_path"], subfolder="audio_encoder")

wangshankun's avatar
wangshankun committed
630
631
632
        return base_model

    def run_image_encoder(self, config, vae_model):
633
634
        """Run image encoder"""

wangshankun's avatar
wangshankun committed
635
636
        ref_img = Image.open(config.image_path)
        ref_img = (np.array(ref_img).astype(np.float32) - 127.5) / 127.5
gushiqiao's avatar
gushiqiao committed
637
        ref_img = torch.from_numpy(ref_img).cuda()
wangshankun's avatar
wangshankun committed
638
639
640
        ref_img = rearrange(ref_img, "H W C -> 1 C H W")
        ref_img = ref_img[:, :3]

641
642
643
        adaptive = config.get("adaptive_resize", False)

        if adaptive:
644
            # Use adaptive_resize to modify aspect ratio
645
646
647
648
649
            ref_img, h, w = adaptive_resize(ref_img)

            patched_h = h // self.config.vae_stride[1] // self.config.patch_size[1]
            patched_w = w // self.config.vae_stride[2] // self.config.patch_size[2]

650
651
652
653
654
        else:
            h, w = ref_img.shape[2:]
            aspect_ratio = h / w
            max_area = config.target_height * config.target_width

655
656
657
            patched_h = round(np.sqrt(max_area * aspect_ratio) // config.vae_stride[1] // config.patch_size[1])
            patched_w = round(np.sqrt(max_area / aspect_ratio) // config.vae_stride[2] // config.patch_size[2])

658
        patched_h, patched_w = get_optimal_patched_size_with_sp(patched_h, patched_w, 1)
659

660
661
        config.lat_h = patched_h * self.config.patch_size[1]
        config.lat_w = patched_w * self.config.patch_size[2]
662

663
664
        config.tgt_h = config.lat_h * self.config.vae_stride[1]
        config.tgt_w = config.lat_w * self.config.vae_stride[2]
665

666
        logger.info(f"[wan_audio] adaptive_resize: {adaptive}, tgt_h: {config.tgt_h}, tgt_w: {config.tgt_w}, lat_h: {config.lat_h}, lat_w: {config.lat_w}")
667

668
        cond_frms = torch.nn.functional.interpolate(ref_img, size=(config.tgt_h, config.tgt_w), mode="bicubic")
669
670

        # clip encoder
gushiqiao's avatar
gushiqiao committed
671
        clip_encoder_out = self.image_encoder.visual([cond_frms]).squeeze(0).to(GET_DTYPE()) if self.config.get("use_image_encoder", True) else None
672
673

        # vae encode
674
        cond_frms = rearrange(cond_frms, "1 C H W -> 1 C 1 H W")
675
676
        vae_encoder_out = vae_model.encode(cond_frms.to(torch.float), config)
        if isinstance(vae_encoder_out, list):
677
            vae_encoder_out = torch.stack(vae_encoder_out, dim=0).to(GET_DTYPE())
wangshankun's avatar
wangshankun committed
678

679
        return vae_encoder_out, clip_encoder_out
wangshankun's avatar
wangshankun committed
680
681

    def set_target_shape(self):
682
        """Set target shape for generation"""
wangshankun's avatar
wangshankun committed
683
684
685
686
687
688
689
690
691
692
693
694
695
        ret = {}
        num_channels_latents = 16
        if self.config.task == "i2v":
            self.config.target_shape = (
                num_channels_latents,
                (self.config.target_video_length - 1) // self.config.vae_stride[0] + 1,
                self.config.lat_h,
                self.config.lat_w,
            )
            ret["lat_h"] = self.config.lat_h
            ret["lat_w"] = self.config.lat_w
        else:
            error_msg = "t2v task is not supported in WanAudioRunner"
696
            assert False, error_msg
wangshankun's avatar
wangshankun committed
697
698
699

        ret["target_shape"] = self.config.target_shape
        return ret
wangshankun's avatar
wangshankun committed
700

701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
    def run_step(self):
        """Optimized pipeline with modular components"""

        self.initialize()

        assert self._audio_processor is not None
        assert self._audio_preprocess is not None

        self._video_generator = VideoGenerator(self.model, self.vae_encoder, self.vae_decoder, self.config, self.progress_callback)

        with memory_efficient_inference():
            if self.config["use_prompt_enhancer"]:
                self.config["prompt_enhanced"] = self.post_prompt_enhancer()

            self.inputs = self.prepare_inputs()
            # Re-initialize scheduler after image encoding sets correct dimensions
            self.init_scheduler()
            self.model.scheduler.prepare(self.inputs["image_encoder_output"])

        # Re-create video generator with updated model/scheduler
        self._video_generator = VideoGenerator(self.model, self.vae_encoder, self.vae_decoder, self.config, self.progress_callback)

        # Process audio
        audio_array = self._audio_processor.load_audio(self.config["audio_path"])
        video_duration = self.config.get("video_duration", 5)
        target_fps = self.config.get("target_fps", 16)
        max_num_frames = self.config.get("target_video_length", 81)

        audio_len = int(audio_array.shape[0] / self._audio_processor.audio_sr * target_fps)
        expected_frames = min(max(1, int(video_duration * target_fps)), audio_len)

        # Segment audio
        audio_segments = self._audio_processor.segment_audio(audio_array, expected_frames, max_num_frames)

        self._video_generator.total_segments = len(audio_segments)

        # Generate video segments
        prev_video = None

        torch.manual_seed(self.config.seed)
        # Process audio features
        audio_features = self._audio_preprocess(audio_segments[0].audio_array, sampling_rate=self._audio_processor.audio_sr, return_tensors="pt").input_values.squeeze(0).to(self.model.device)

        # Generate video segment
        with memory_efficient_inference():
            self._video_generator.generate_segment(
                self.inputs.copy(),  # Copy to avoid modifying original
                audio_features,
                prev_video=prev_video,
                prev_frame_length=5,
                segment_idx=0,
752
                total_steps=1,
753
754
755
756
            )
            # Final cleanup
            self.end_run()

wangshankun's avatar
wangshankun committed
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796

@RUNNER_REGISTER("wan2.2_moe_audio")
class Wan22MoeAudioRunner(WanAudioRunner):
    def __init__(self, config):
        super().__init__(config)

    def load_transformer(self):
        # encoder -> high_noise_model -> low_noise_model -> vae -> video_output
        high_noise_model = Wan22MoeAudioModel(
            os.path.join(self.config.model_path, "high_noise_model"),
            self.config,
            self.init_device,
        )
        low_noise_model = Wan22MoeAudioModel(
            os.path.join(self.config.model_path, "low_noise_model"),
            self.config,
            self.init_device,
        )

        if self.config.get("lora_configs") and self.config.lora_configs:
            assert not self.config.get("dit_quantized", False) or self.config.mm_config.get("weight_auto_quant", False)

            for lora_config in self.config.lora_configs:
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
                if lora_config.name == "high_noise_model":
                    lora_wrapper = WanLoraWrapper(high_noise_model)
                    lora_name = lora_wrapper.load_lora(lora_path)
                    lora_wrapper.apply_lora(lora_name, strength)
                    logger.info(f"{lora_config.name} Loaded LoRA: {lora_name} with strength: {strength}")

                if lora_config.name == "low_noise_model":
                    lora_wrapper = WanLoraWrapper(low_noise_model)
                    lora_name = lora_wrapper.load_lora(lora_path)
                    lora_wrapper.apply_lora(lora_name, strength)
                    logger.info(f"{lora_config.name} Loaded LoRA: {lora_name} with strength: {strength}")
        # XXX: trick
        self._audio_preprocess = AutoFeatureExtractor.from_pretrained(self.config["model_path"], subfolder="audio_encoder")

        return MultiModelStruct([high_noise_model, low_noise_model], self.config, self.config.boundary)