wan_audio_runner.py 29 KB
Newer Older
wangshankun's avatar
wangshankun committed
1
2
3
4
5
6
import os
import gc
import numpy as np
import torch
import torchvision.transforms.functional as TF
from PIL import Image
7
8
9
10
from contextlib import contextmanager
from typing import Optional, Tuple, Union, List, Dict, Any
from dataclasses import dataclass

wangshankun's avatar
wangshankun committed
11
12
13
14
15
16
from lightx2v.utils.registry_factory import RUNNER_REGISTER
from lightx2v.models.runners.wan.wan_runner import WanRunner
from lightx2v.utils.profiler import ProfilingContext4Debug, ProfilingContext
from lightx2v.models.networks.wan.audio_model import WanAudioModel
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
from lightx2v.models.networks.wan.audio_adapter import AudioAdapter, AudioAdapterPipe, rank0_load_state_dict_from_path
gaclove's avatar
gaclove committed
17
from lightx2v.utils.utils import save_to_video, vae_to_comfyui_image
wangshankun's avatar
wangshankun committed
18
from lightx2v.models.schedulers.wan.audio.scheduler import ConsistencyModelScheduler
wangshankun's avatar
wangshankun committed
19

wangshankun's avatar
wangshankun committed
20
21
22
23
24
25
26
27
28
29
30
31
from loguru import logger
from einops import rearrange
import torchaudio as ta
from transformers import AutoFeatureExtractor

from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize

import subprocess
import warnings


32
33
34
35
36
37
38
39
40
41
42
@contextmanager
def memory_efficient_inference():
    """Context manager for memory-efficient inference"""
    try:
        yield
    finally:
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        gc.collect()


43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
def optimize_latent_size_with_sp(lat_h, lat_w, sp_size, patch_size):
    patched_h, patched_w = lat_h // patch_size[0], lat_w // patch_size[1]
    if (patched_h * patched_w) % sp_size == 0:
        return lat_h, lat_w
    else:
        h_ratio, w_ratio = 1, 1
        h_noevenly_n, w_noevenly_n = 0, 0
        h_backup, w_backup = patched_h, patched_w
        while sp_size // 2 != 1:
            if h_backup % 2 == 0:
                h_backup //= 2
                h_ratio *= 2
            elif w_backup % 2 == 0:
                w_backup //= 2
                w_ratio *= 2
            elif h_noevenly_n <= w_noevenly_n:
                h_backup //= 2
                h_ratio *= 2
                h_noevenly_n += 1
            else:
                w_backup //= 2
                w_ratio *= 2
                w_noevenly_n += 1
            sp_size //= 2
        new_lat_h = lat_h // h_ratio * h_ratio
        new_lat_w = lat_w // w_ratio * w_ratio
        return new_lat_h, new_lat_w


def get_crop_bbox(ori_h, ori_w, tgt_h, tgt_w):
    tgt_ar = tgt_h / tgt_w
    ori_ar = ori_h / ori_w
    if abs(ori_ar - tgt_ar) < 0.01:
        return 0, ori_h, 0, ori_w
    if ori_ar > tgt_ar:
        crop_h = int(tgt_ar * ori_w)
        y0 = (ori_h - crop_h) // 2
        y1 = y0 + crop_h
        return y0, y1, 0, ori_w
    else:
        crop_w = int(ori_h / tgt_ar)
        x0 = (ori_w - crop_w) // 2
        x1 = x0 + crop_w
        return 0, ori_h, x0, x1


def isotropic_crop_resize(frames: torch.Tensor, size: tuple):
    """
    frames: (T, C, H, W)
    size: (H, W)
    """
    ori_h, ori_w = frames.shape[2:]
    h, w = size
    y0, y1, x0, x1 = get_crop_bbox(ori_h, ori_w, h, w)
    cropped_frames = frames[:, :, y0:y1, x0:x1]
    resized_frames = resize(cropped_frames, size, InterpolationMode.BICUBIC, antialias=True)
    return resized_frames


def adaptive_resize(img):
    bucket_config = {
        0.667: (np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64), np.array([0.2, 0.5, 0.3])),
        1.0: (np.array([[480, 480], [576, 576], [704, 704], [960, 960]], dtype=np.int64), np.array([0.1, 0.1, 0.5, 0.3])),
        1.5: (np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64)[:, ::-1], np.array([0.2, 0.5, 0.3])),
    }
    ori_height = img.shape[-2]
    ori_weight = img.shape[-1]
    ori_ratio = ori_height / ori_weight
    aspect_ratios = np.array(np.array(list(bucket_config.keys())))
    closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
    closet_ratio = aspect_ratios[closet_aspect_idx]
    if ori_ratio < 1.0:
        target_h, target_w = 480, 832
    elif ori_ratio == 1.0:
        target_h, target_w = 480, 480
    else:
        target_h, target_w = 832, 480
    for resolution in bucket_config[closet_ratio][0]:
        if ori_height * ori_weight >= resolution[0] * resolution[1]:
            target_h, target_w = resolution
    cropped_img = isotropic_crop_resize(img, (target_h, target_w))
    return cropped_img, target_h, target_w


127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
@dataclass
class AudioSegment:
    """Data class for audio segment information"""

    audio_array: np.ndarray
    start_frame: int
    end_frame: int
    is_last: bool = False
    useful_length: Optional[int] = None


class FramePreprocessor:
    """Handles frame preprocessing including noise and masking"""

    def __init__(self, noise_mean: float = -3.0, noise_std: float = 0.5, mask_rate: float = 0.1):
        self.noise_mean = noise_mean
        self.noise_std = noise_std
        self.mask_rate = mask_rate

    def add_noise(self, frames: np.ndarray, rnd_state: Optional[np.random.RandomState] = None) -> np.ndarray:
        """Add noise to frames"""
        if self.noise_mean is None or self.noise_std is None:
            return frames

        if rnd_state is None:
            rnd_state = np.random.RandomState()

        shape = frames.shape
        bs = 1 if len(shape) == 4 else shape[0]
        sigma = rnd_state.normal(loc=self.noise_mean, scale=self.noise_std, size=(bs,))
        sigma = np.exp(sigma)
        sigma = np.expand_dims(sigma, axis=tuple(range(1, len(shape))))
        noise = rnd_state.randn(*shape) * sigma
        return frames + noise

    def add_mask(self, frames: np.ndarray, rnd_state: Optional[np.random.RandomState] = None) -> np.ndarray:
        """Add mask to frames"""
        if self.mask_rate is None:
            return frames

        if rnd_state is None:
            rnd_state = np.random.RandomState()

        h, w = frames.shape[-2:]
        mask = rnd_state.rand(h, w) > self.mask_rate
        return frames * mask

    def process_prev_frames(self, frames: torch.Tensor) -> torch.Tensor:
        """Process previous frames with noise and masking"""
        frames_np = frames.cpu().detach().numpy()
        frames_np = self.add_noise(frames_np)
        frames_np = self.add_mask(frames_np)
        return torch.from_numpy(frames_np).to(dtype=frames.dtype, device=frames.device)


class AudioProcessor:
    """Handles audio loading and segmentation"""

    def __init__(self, audio_sr: int = 16000, target_fps: int = 16):
        self.audio_sr = audio_sr
        self.target_fps = target_fps

    def load_audio(self, audio_path: str) -> np.ndarray:
        """Load and resample audio"""
        audio_array, ori_sr = ta.load(audio_path)
        audio_array = ta.functional.resample(audio_array.mean(0), orig_freq=ori_sr, new_freq=self.audio_sr)
        return audio_array.numpy()

    def get_audio_range(self, start_frame: int, end_frame: int) -> Tuple[int, int]:
        """Calculate audio range for given frame range"""
        audio_frame_rate = self.audio_sr / self.target_fps
        return round(start_frame * audio_frame_rate), round((end_frame + 1) * audio_frame_rate)

    def segment_audio(self, audio_array: np.ndarray, expected_frames: int, max_num_frames: int, prev_frame_length: int = 5) -> List[AudioSegment]:
        """Segment audio based on frame requirements"""
        segments = []

        # Calculate intervals
        interval_num = 1
        res_frame_num = 0

        if expected_frames <= max_num_frames:
            interval_num = 1
        else:
            interval_num = max(int((expected_frames - max_num_frames) / (max_num_frames - prev_frame_length)) + 1, 1)
            res_frame_num = expected_frames - interval_num * (max_num_frames - prev_frame_length)
            if res_frame_num > 5:
                interval_num += 1

        # Create segments
        for idx in range(interval_num):
            if idx == 0:
                # First segment
                audio_start, audio_end = self.get_audio_range(0, max_num_frames)
                segment_audio = audio_array[audio_start:audio_end]
                useful_length = None

                if expected_frames < max_num_frames:
                    useful_length = segment_audio.shape[0]
                    max_num_audio_length = int((max_num_frames + 1) / self.target_fps * self.audio_sr)
                    segment_audio = np.concatenate((segment_audio, np.zeros(max_num_audio_length - useful_length)), axis=0)

                segments.append(AudioSegment(segment_audio, 0, max_num_frames, False, useful_length))

            elif res_frame_num > 5 and idx == interval_num - 1:
                # Last segment (might be shorter)
                start_frame = idx * max_num_frames - idx * prev_frame_length
                audio_start, audio_end = self.get_audio_range(start_frame, expected_frames)
                segment_audio = audio_array[audio_start:audio_end]
                useful_length = segment_audio.shape[0]

                max_num_audio_length = int((max_num_frames + 1) / self.target_fps * self.audio_sr)
                segment_audio = np.concatenate((segment_audio, np.zeros(max_num_audio_length - useful_length)), axis=0)

                segments.append(AudioSegment(segment_audio, start_frame, expected_frames, True, useful_length))

            else:
                # Middle segments
                start_frame = idx * max_num_frames - idx * prev_frame_length
                end_frame = (idx + 1) * max_num_frames - idx * prev_frame_length
                audio_start, audio_end = self.get_audio_range(start_frame, end_frame)
                segment_audio = audio_array[audio_start:audio_end]

                segments.append(AudioSegment(segment_audio, start_frame, end_frame, False))

        return segments


class VideoGenerator:
    """Handles video generation for each segment"""

258
    def __init__(self, model, vae_encoder, vae_decoder, config, progress_callback=None):
259
260
261
262
263
        self.model = model
        self.vae_encoder = vae_encoder
        self.vae_decoder = vae_decoder
        self.config = config
        self.frame_preprocessor = FramePreprocessor()
264
265
        self.progress_callback = progress_callback
        self.total_segments = 1
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

    def prepare_prev_latents(self, prev_video: Optional[torch.Tensor], prev_frame_length: int) -> Optional[Dict[str, torch.Tensor]]:
        """Prepare previous latents for conditioning"""
        if prev_video is None:
            return None

        device = self.model.device
        dtype = torch.bfloat16
        vae_dtype = torch.float

        tgt_h, tgt_w = self.config.tgt_h, self.config.tgt_w
        prev_frames = torch.zeros((1, 3, self.config.target_video_length, tgt_h, tgt_w), device=device)

        # Extract and process last frames
        last_frames = prev_video[:, :, -prev_frame_length:].clone().to(device)
        last_frames = self.frame_preprocessor.process_prev_frames(last_frames)

        prev_frames[:, :, :prev_frame_length] = last_frames
        prev_latents = self.vae_encoder.encode(prev_frames.to(vae_dtype), self.config)[0].to(dtype)

        # Create mask
        prev_token_length = (prev_frame_length - 1) // 4 + 1
        _, nframe, height, width = self.model.scheduler.latents.shape
        frames_n = (nframe - 1) * 4 + 1
        prev_frame_len = max((prev_token_length - 1) * 4 + 1, 0)

        prev_mask = torch.ones((1, frames_n, height, width), device=device, dtype=dtype)
        prev_mask[:, prev_frame_len:] = 0
        prev_mask = self._wan_mask_rearrange(prev_mask).unsqueeze(0)
helloyongyang's avatar
fix ci  
helloyongyang committed
295

296
297
        if prev_latents.shape[-2:] != (height, width):
            logger.warning(f"Size mismatch: prev_latents {prev_latents.shape} vs scheduler latents (H={height}, W={width}). Config tgt_h={self.config.tgt_h}, tgt_w={self.config.tgt_w}")
helloyongyang's avatar
fix ci  
helloyongyang committed
298
            prev_latents = torch.nn.functional.interpolate(prev_latents, size=(height, width), mode="bilinear", align_corners=False)
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

        return {"prev_latents": prev_latents, "prev_mask": prev_mask}

    def _wan_mask_rearrange(self, mask: torch.Tensor) -> torch.Tensor:
        """Rearrange mask for WAN model"""
        if mask.ndim == 3:
            mask = mask[None]
        assert mask.ndim == 4
        _, t, h, w = mask.shape
        assert t == ((t - 1) // 4 * 4 + 1)
        mask_first_frame = torch.repeat_interleave(mask[:, 0:1], repeats=4, dim=1)
        mask = torch.concat([mask_first_frame, mask[:, 1:]], dim=1)
        mask = mask.view(mask.shape[1] // 4, 4, h, w)
        return mask.transpose(0, 1)

    @torch.no_grad()
    def generate_segment(self, inputs: Dict[str, Any], audio_features: torch.Tensor, prev_video: Optional[torch.Tensor] = None, prev_frame_length: int = 5, segment_idx: int = 0) -> torch.Tensor:
        """Generate video segment"""
        # Update inputs with audio features
        inputs["audio_encoder_output"] = audio_features

        # Reset scheduler for non-first segments
        if segment_idx > 0:
            self.model.scheduler.reset()

        # Prepare previous latents - ALWAYS needed, even for first segment
        device = self.model.device
        dtype = torch.bfloat16
        vae_dtype = torch.float
        tgt_h, tgt_w = self.config.tgt_h, self.config.tgt_w
        max_num_frames = self.config.target_video_length

        if segment_idx == 0:
            # First segment - create zero frames
            prev_frames = torch.zeros((1, 3, max_num_frames, tgt_h, tgt_w), device=device)
            prev_latents = self.vae_encoder.encode(prev_frames.to(vae_dtype), self.config)[0].to(dtype)
            prev_len = 0
        else:
            # Subsequent segments - use previous video
            previmg_encoder_output = self.prepare_prev_latents(prev_video, prev_frame_length)
            if previmg_encoder_output:
                prev_latents = previmg_encoder_output["prev_latents"]
                prev_len = (prev_frame_length - 1) // 4 + 1
            else:
                # Fallback to zeros if prepare_prev_latents fails
                prev_frames = torch.zeros((1, 3, max_num_frames, tgt_h, tgt_w), device=device)
                prev_latents = self.vae_encoder.encode(prev_frames.to(vae_dtype), self.config)[0].to(dtype)
                prev_len = 0

        # Create mask for prev_latents
        _, nframe, height, width = self.model.scheduler.latents.shape
        frames_n = (nframe - 1) * 4 + 1
        prev_frame_len = max((prev_len - 1) * 4 + 1, 0)

        prev_mask = torch.ones((1, frames_n, height, width), device=device, dtype=dtype)
        prev_mask[:, prev_frame_len:] = 0
        prev_mask = self._wan_mask_rearrange(prev_mask).unsqueeze(0)
helloyongyang's avatar
fix ci  
helloyongyang committed
356

357
358
        if prev_latents.shape[-2:] != (height, width):
            logger.warning(f"Size mismatch: prev_latents {prev_latents.shape} vs scheduler latents (H={height}, W={width}). Config tgt_h={self.config.tgt_h}, tgt_w={self.config.tgt_w}")
helloyongyang's avatar
fix ci  
helloyongyang committed
359
            prev_latents = torch.nn.functional.interpolate(prev_latents, size=(height, width), mode="bilinear", align_corners=False)
wangshankun's avatar
wangshankun committed
360

361
362
        # Always set previmg_encoder_output
        inputs["previmg_encoder_output"] = {"prev_latents": prev_latents, "prev_mask": prev_mask}
wangshankun's avatar
wangshankun committed
363

364
        # Run inference loop
365
366
367
        total_steps = self.model.scheduler.infer_steps
        for step_index in range(total_steps):
            logger.info(f"==> Segment {segment_idx}, Step {step_index}/{total_steps}")
wangshankun's avatar
wangshankun committed
368

369
370
            with ProfilingContext4Debug("step_pre"):
                self.model.scheduler.step_pre(step_index=step_index)
wangshankun's avatar
wangshankun committed
371

372
373
            with ProfilingContext4Debug("infer"):
                self.model.infer(inputs)
wangshankun's avatar
wangshankun committed
374

375
376
            with ProfilingContext4Debug("step_post"):
                self.model.scheduler.step_post()
wangshankun's avatar
wangshankun committed
377

378
379
380
381
            if self.progress_callback:
                segment_progress = (segment_idx * total_steps + step_index + 1) / (self.total_segments * total_steps)
                self.progress_callback(int(segment_progress * 100), 100)

382
383
384
385
386
387
388
        # Decode latents
        latents = self.model.scheduler.latents
        generator = self.model.scheduler.generator
        gen_video = self.vae_decoder.decode(latents, generator=generator, config=self.config)
        gen_video = torch.clamp(gen_video, -1, 1).to(torch.float)

        return gen_video
wangshankun's avatar
wangshankun committed
389
390


391
392
393
394
395
396
397
398
@RUNNER_REGISTER("wan2.1_audio")
class WanAudioRunner(WanRunner):
    def __init__(self, config):
        super().__init__(config)
        self._audio_adapter_pipe = None
        self._audio_processor = None
        self._video_generator = None
        self._audio_preprocess = None
PengGao's avatar
PengGao committed
399

400
    def initialize(self):
401
        """Initialize all models once for multiple runs"""
wangshankun's avatar
wangshankun committed
402

403
404
405
406
        # Initialize audio processor
        audio_sr = self.config.get("audio_sr", 16000)
        target_fps = self.config.get("target_fps", 16)
        self._audio_processor = AudioProcessor(audio_sr, target_fps)
PengGao's avatar
PengGao committed
407

408
409
        # Initialize scheduler
        self.init_scheduler()
wangshankun's avatar
wangshankun committed
410

wangshankun's avatar
wangshankun committed
411
    def init_scheduler(self):
412
        """Initialize consistency model scheduler"""
wangshankun's avatar
wangshankun committed
413
        scheduler = ConsistencyModelScheduler(self.config)
wangshankun's avatar
wangshankun committed
414
415
        self.model.set_scheduler(scheduler)

416
417
418
419
    def load_audio_adapter_lazy(self):
        """Lazy load audio adapter when needed"""
        if self._audio_adapter_pipe is not None:
            return self._audio_adapter_pipe
wangshankun's avatar
wangshankun committed
420

421
        # Audio adapter
wangshankun's avatar
wangshankun committed
422
        audio_adapter_path = self.config["model_path"] + "/audio_adapter.safetensors"
423
        audio_adapter = AudioAdapter.from_transformer(
wangshankun's avatar
wangshankun committed
424
425
426
427
428
429
            self.model,
            audio_feature_dim=1024,
            interval=1,
            time_freq_dim=256,
            projection_transformer_layers=4,
        )
430
        audio_adapter = rank0_load_state_dict_from_path(audio_adapter, audio_adapter_path, strict=False)
wangshankun's avatar
wangshankun committed
431

432
        # Audio encoder
wangshankun's avatar
wangshankun committed
433
        device = self.model.device
wangshankun's avatar
wangshankun committed
434
        audio_encoder_repo = self.config["model_path"] + "/audio_encoder"
435
        self._audio_adapter_pipe = AudioAdapterPipe(audio_adapter, audio_encoder_repo=audio_encoder_repo, dtype=torch.bfloat16, device=device, generator=torch.Generator(device), weight=1.0)
wangshankun's avatar
wangshankun committed
436

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
        return self._audio_adapter_pipe

    def prepare_inputs(self):
        """Prepare inputs for the model"""
        image_encoder_output = None

        if os.path.isfile(self.config.image_path):
            with ProfilingContext("Run Img Encoder"):
                vae_encode_out, clip_encoder_out = self.run_image_encoder(self.config, self.vae_encoder)
                image_encoder_output = {
                    "clip_encoder_out": clip_encoder_out,
                    "vae_encode_out": vae_encode_out,
                }

        with ProfilingContext("Run Text Encoder"):
            img = Image.open(self.config["image_path"]).convert("RGB")
            text_encoder_output = self.run_text_encoder(self.config["prompt"], img)

        self.set_target_shape()

        return {"text_encoder_output": text_encoder_output, "image_encoder_output": image_encoder_output, "audio_adapter_pipe": self.load_audio_adapter_lazy()}

    def run_pipeline(self, save_video=True):
        """Optimized pipeline with modular components"""
        # Ensure models are initialized
462
        self.initialize()
463
464
465

        # Initialize video generator if needed
        if self._video_generator is None:
466
            self._video_generator = VideoGenerator(self.model, self.vae_encoder, self.vae_decoder, self.config, self.progress_callback)
467
468
469
470
471
472
473

        # Prepare inputs
        with memory_efficient_inference():
            if self.config["use_prompt_enhancer"]:
                self.config["prompt_enhanced"] = self.post_prompt_enhancer()

            self.inputs = self.prepare_inputs()
474
475
            # Re-initialize scheduler after image encoding sets correct dimensions
            self.init_scheduler()
476
477
            self.model.scheduler.prepare(self.inputs["image_encoder_output"])

478
479
480
        # Re-create video generator with updated model/scheduler
        self._video_generator = VideoGenerator(self.model, self.vae_encoder, self.vae_decoder, self.config, self.progress_callback)

481
482
483
484
485
486
487
488
489
490
491
492
        # Process audio
        audio_array = self._audio_processor.load_audio(self.config["audio_path"])
        video_duration = self.config.get("video_duration", 5)
        target_fps = self.config.get("target_fps", 16)
        max_num_frames = self.config.get("target_video_length", 81)

        audio_len = int(audio_array.shape[0] / self._audio_processor.audio_sr * target_fps)
        expected_frames = min(max(1, int(video_duration * target_fps)), audio_len)

        # Segment audio
        audio_segments = self._audio_processor.segment_audio(audio_array, expected_frames, max_num_frames)

493
494
        self._video_generator.total_segments = len(audio_segments)

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
        # Generate video segments
        gen_video_list = []
        cut_audio_list = []
        prev_video = None

        for idx, segment in enumerate(audio_segments):
            # Update seed for each segment
            self.config.seed = self.config.seed + idx
            torch.manual_seed(self.config.seed)
            logger.info(f"Processing segment {idx + 1}/{len(audio_segments)}, seed: {self.config.seed}")

            # Process audio features
            audio_features = self._audio_preprocess(segment.audio_array, sampling_rate=self._audio_processor.audio_sr, return_tensors="pt").input_values.squeeze(0).to(self.model.device)

            # Generate video segment
            with memory_efficient_inference():
                gen_video = self._video_generator.generate_segment(
                    self.inputs.copy(),  # Copy to avoid modifying original
                    audio_features,
                    prev_video=prev_video,
                    prev_frame_length=5,
                    segment_idx=idx,
                )

            # Extract relevant frames
            start_frame = 0 if idx == 0 else 5
            start_audio_frame = 0 if idx == 0 else int(6 * self._audio_processor.audio_sr / target_fps)

            if segment.is_last and segment.useful_length:
                end_frame = segment.end_frame - segment.start_frame
                gen_video_list.append(gen_video[:, :, start_frame:end_frame].cpu())
                cut_audio_list.append(segment.audio_array[start_audio_frame : segment.useful_length])
            elif segment.useful_length and expected_frames < max_num_frames:
                gen_video_list.append(gen_video[:, :, start_frame:expected_frames].cpu())
                cut_audio_list.append(segment.audio_array[start_audio_frame : segment.useful_length])
            else:
                gen_video_list.append(gen_video[:, :, start_frame:].cpu())
                cut_audio_list.append(segment.audio_array[start_audio_frame:])

            # Update prev_video for next iteration
            prev_video = gen_video

            # Clean up GPU memory after each segment
            del gen_video
            torch.cuda.empty_cache()

        # Merge results
        with memory_efficient_inference():
            gen_lvideo = torch.cat(gen_video_list, dim=2).float()
            merge_audio = np.concatenate(cut_audio_list, axis=0).astype(np.float32)
            comfyui_images = vae_to_comfyui_image(gen_lvideo)

        # Apply frame interpolation if configured
        if "video_frame_interpolation" in self.config and self.vfi_model is not None:
            interpolation_target_fps = self.config["video_frame_interpolation"]["target_fps"]
            logger.info(f"Interpolating frames from {target_fps} to {interpolation_target_fps}")
            comfyui_images = self.vfi_model.interpolate_frames(
                comfyui_images,
                source_fps=target_fps,
                target_fps=interpolation_target_fps,
            )
            target_fps = interpolation_target_fps

        # Convert audio to ComfyUI format
        audio_waveform = torch.from_numpy(merge_audio).unsqueeze(0).unsqueeze(0)
        comfyui_audio = {"waveform": audio_waveform, "sample_rate": self._audio_processor.audio_sr}

        # Save video if requested
        if save_video and self.config.get("save_video_path", None):
            self._save_video_with_audio(comfyui_images, merge_audio, target_fps)

        # Final cleanup
        self.end_run()

        return comfyui_images, comfyui_audio

    def _save_video_with_audio(self, images, audio_array, fps):
        """Save video with audio"""
        import tempfile

        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as video_tmp:
            video_path = video_tmp.name

        with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as audio_tmp:
            audio_path = audio_tmp.name

        try:
            # Save video
            save_to_video(images, video_path, fps)

            # Save audio
            ta.save(audio_path, torch.tensor(audio_array[None]), sample_rate=self._audio_processor.audio_sr)

            # Merge video and audio
            output_path = self.config.get("save_video_path")
            parent_dir = os.path.dirname(output_path)
            if parent_dir and not os.path.exists(parent_dir):
                os.makedirs(parent_dir, exist_ok=True)

            subprocess.call(["/usr/bin/ffmpeg", "-y", "-i", video_path, "-i", audio_path, output_path])

            logger.info(f"Saved video with audio to: {output_path}")

        finally:
            # Clean up temp files
            if os.path.exists(video_path):
                os.remove(video_path)
            if os.path.exists(audio_path):
                os.remove(audio_path)
wangshankun's avatar
wangshankun committed
604
605

    def load_transformer(self):
606
        """Load transformer with LoRA support"""
wangshankun's avatar
wangshankun committed
607
        base_model = WanAudioModel(self.config.model_path, self.config, self.init_device)
wangshankun's avatar
wangshankun committed
608

609
        if self.config.get("lora_configs") and self.config.lora_configs:
wangshankun's avatar
wangshankun committed
610
611
            assert not self.config.get("dit_quantized", False) or self.config.mm_config.get("weight_auto_quant", False)
            lora_wrapper = WanLoraWrapper(base_model)
612
613
614
615
616
617
            for lora_config in self.config.lora_configs:
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
                lora_name = lora_wrapper.load_lora(lora_path)
                lora_wrapper.apply_lora(lora_name, strength)
                logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")
wangshankun's avatar
wangshankun committed
618

619
620
621
        # XXX: trick
        self._audio_preprocess = AutoFeatureExtractor.from_pretrained(self.config["model_path"], subfolder="audio_encoder")

wangshankun's avatar
wangshankun committed
622
623
624
        return base_model

    def run_image_encoder(self, config, vae_model):
625
626
        """Run image encoder"""

wangshankun's avatar
wangshankun committed
627
628
629
630
631
632
        ref_img = Image.open(config.image_path)
        ref_img = (np.array(ref_img).astype(np.float32) - 127.5) / 127.5
        ref_img = torch.from_numpy(ref_img).to(vae_model.device)
        ref_img = rearrange(ref_img, "H W C -> 1 C H W")
        ref_img = ref_img[:, :3]

633
634
635
        adaptive = config.get("adaptive_resize", False)

        if adaptive:
636
            # Use adaptive_resize to modify aspect ratio
637
638
639
640
641
642
643
644
645
646
647
648
649
            ref_img, h, w = adaptive_resize(ref_img)

            patched_h = h // self.config.vae_stride[1] // self.config.patch_size[1]
            patched_w = w // self.config.vae_stride[2] // self.config.patch_size[2]

            patched_h, patched_w = optimize_latent_size_with_sp(patched_h, patched_w, 1, self.config.patch_size[1:])

            config.lat_h = patched_h * self.config.patch_size[1]
            config.lat_w = patched_w * self.config.patch_size[2]

            config.tgt_h = config.lat_h * self.config.vae_stride[1]
            config.tgt_w = config.lat_w * self.config.vae_stride[2]

650
651
652
653
654
        else:
            h, w = ref_img.shape[2:]
            aspect_ratio = h / w
            max_area = config.target_height * config.target_width

655
656
657
658
659
660
661
662
663
664
            patched_h = round(np.sqrt(max_area * aspect_ratio) // config.vae_stride[1] // config.patch_size[1])
            patched_w = round(np.sqrt(max_area / aspect_ratio) // config.vae_stride[2] // config.patch_size[2])

            patched_h, patched_w = optimize_latent_size_with_sp(patched_h, patched_w, 1, config.patch_size[1:])

            config.lat_h = patched_h * config.patch_size[1]
            config.lat_w = patched_w * config.patch_size[2]

            config.tgt_h = config.lat_h * config.vae_stride[1]
            config.tgt_w = config.lat_w * config.vae_stride[2]
665

666
        logger.info(f"[wan_audio] adaptive_resize: {adaptive}, tgt_h: {config.tgt_h}, tgt_w: {config.tgt_w}, lat_h: {config.lat_h}, lat_w: {config.lat_w}")
667

668
        clip_encoder_out = self.image_encoder.visual([ref_img], self.config).squeeze(0).to(torch.bfloat16)
669

670
671
672
673
674
        cond_frms = torch.nn.functional.interpolate(ref_img, size=(config.tgt_h, config.tgt_w), mode="bicubic")
        cond_frms = rearrange(cond_frms, "1 C H W -> 1 C 1 H W")
        vae_encode_out = vae_model.encode(cond_frms.to(torch.float), config)
        if isinstance(vae_encode_out, list):
            vae_encode_out = torch.stack(vae_encode_out, dim=0).to(torch.bfloat16)
wangshankun's avatar
wangshankun committed
675
676
677
678

        return vae_encode_out, clip_encoder_out

    def set_target_shape(self):
679
        """Set target shape for generation"""
wangshankun's avatar
wangshankun committed
680
681
682
683
684
685
686
687
688
689
690
691
692
        ret = {}
        num_channels_latents = 16
        if self.config.task == "i2v":
            self.config.target_shape = (
                num_channels_latents,
                (self.config.target_video_length - 1) // self.config.vae_stride[0] + 1,
                self.config.lat_h,
                self.config.lat_w,
            )
            ret["lat_h"] = self.config.lat_h
            ret["lat_w"] = self.config.lat_w
        else:
            error_msg = "t2v task is not supported in WanAudioRunner"
693
            assert False, error_msg
wangshankun's avatar
wangshankun committed
694
695
696

        ret["target_shape"] = self.config.target_shape
        return ret