converter.py 35.9 KB
Newer Older
PengGao's avatar
PengGao committed
1
import argparse
2
3
4
import gc
import glob
import json
gushiqiao's avatar
gushiqiao committed
5
import multiprocessing
PengGao's avatar
PengGao committed
6
7
import os
import re
gushiqiao's avatar
gushiqiao committed
8
import shutil
PengGao's avatar
PengGao committed
9
from collections import defaultdict
gushiqiao's avatar
gushiqiao committed
10
from concurrent.futures import ThreadPoolExecutor, as_completed
PengGao's avatar
PengGao committed
11

12
13
import torch
from loguru import logger
gushiqiao's avatar
gushiqiao committed
14
from lora_loader import LoRALoader
PengGao's avatar
PengGao committed
15
16
17
from safetensors import safe_open
from safetensors import torch as st
from tqdm import tqdm
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297


def get_key_mapping_rules(direction, model_type):
    if model_type == "wan_dit":
        unified_rules = [
            {
                "forward": (r"^head\.head$", "proj_out"),
                "backward": (r"^proj_out$", "head.head"),
            },
            {
                "forward": (r"^head\.modulation$", "scale_shift_table"),
                "backward": (r"^scale_shift_table$", "head.modulation"),
            },
            {
                "forward": (
                    r"^text_embedding\.0\.",
                    "condition_embedder.text_embedder.linear_1.",
                ),
                "backward": (
                    r"^condition_embedder.text_embedder.linear_1\.",
                    "text_embedding.0.",
                ),
            },
            {
                "forward": (
                    r"^text_embedding\.2\.",
                    "condition_embedder.text_embedder.linear_2.",
                ),
                "backward": (
                    r"^condition_embedder.text_embedder.linear_2\.",
                    "text_embedding.2.",
                ),
            },
            {
                "forward": (
                    r"^time_embedding\.0\.",
                    "condition_embedder.time_embedder.linear_1.",
                ),
                "backward": (
                    r"^condition_embedder.time_embedder.linear_1\.",
                    "time_embedding.0.",
                ),
            },
            {
                "forward": (
                    r"^time_embedding\.2\.",
                    "condition_embedder.time_embedder.linear_2.",
                ),
                "backward": (
                    r"^condition_embedder.time_embedder.linear_2\.",
                    "time_embedding.2.",
                ),
            },
            {
                "forward": (r"^time_projection\.1\.", "condition_embedder.time_proj."),
                "backward": (r"^condition_embedder.time_proj\.", "time_projection.1."),
            },
            {
                "forward": (r"blocks\.(\d+)\.self_attn\.q\.", r"blocks.\1.attn1.to_q."),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_q\.",
                    r"blocks.\1.self_attn.q.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.self_attn\.k\.", r"blocks.\1.attn1.to_k."),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_k\.",
                    r"blocks.\1.self_attn.k.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.self_attn\.v\.", r"blocks.\1.attn1.to_v."),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_v\.",
                    r"blocks.\1.self_attn.v.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.self_attn\.o\.",
                    r"blocks.\1.attn1.to_out.0.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_out\.0\.",
                    r"blocks.\1.self_attn.o.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.q\.",
                    r"blocks.\1.attn2.to_q.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_q\.",
                    r"blocks.\1.cross_attn.q.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.k\.",
                    r"blocks.\1.attn2.to_k.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_k\.",
                    r"blocks.\1.cross_attn.k.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.v\.",
                    r"blocks.\1.attn2.to_v.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_v\.",
                    r"blocks.\1.cross_attn.v.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.o\.",
                    r"blocks.\1.attn2.to_out.0.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_out\.0\.",
                    r"blocks.\1.cross_attn.o.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.norm3\.", r"blocks.\1.norm2."),
                "backward": (r"blocks\.(\d+)\.norm2\.", r"blocks.\1.norm3."),
            },
            {
                "forward": (r"blocks\.(\d+)\.ffn\.0\.", r"blocks.\1.ffn.net.0.proj."),
                "backward": (
                    r"blocks\.(\d+)\.ffn\.net\.0\.proj\.",
                    r"blocks.\1.ffn.0.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.ffn\.2\.", r"blocks.\1.ffn.net.2."),
                "backward": (r"blocks\.(\d+)\.ffn\.net\.2\.", r"blocks.\1.ffn.2."),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.modulation\.",
                    r"blocks.\1.scale_shift_table.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.scale_shift_table(?=\.|$)",
                    r"blocks.\1.modulation",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.k_img\.",
                    r"blocks.\1.attn2.add_k_proj.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.add_k_proj\.",
                    r"blocks.\1.cross_attn.k_img.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.v_img\.",
                    r"blocks.\1.attn2.add_v_proj.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.add_v_proj\.",
                    r"blocks.\1.cross_attn.v_img.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.norm_k_img\.weight",
                    r"blocks.\1.attn2.norm_added_k.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.norm_added_k\.weight",
                    r"blocks.\1.cross_attn.norm_k_img.weight",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.0\.",
                    r"condition_embedder.image_embedder.norm1.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.norm1\.",
                    r"img_emb.proj.0.",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.1\.",
                    r"condition_embedder.image_embedder.ff.net.0.proj.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.ff\.net\.0\.proj\.",
                    r"img_emb.proj.1.",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.3\.",
                    r"condition_embedder.image_embedder.ff.net.2.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.ff\.net\.2\.",
                    r"img_emb.proj.3.",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.4\.",
                    r"condition_embedder.image_embedder.norm2.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.norm2\.",
                    r"img_emb.proj.4.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.self_attn\.norm_q\.weight",
                    r"blocks.\1.attn1.norm_q.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.norm_q\.weight",
                    r"blocks.\1.self_attn.norm_q.weight",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.self_attn\.norm_k\.weight",
                    r"blocks.\1.attn1.norm_k.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.norm_k\.weight",
                    r"blocks.\1.self_attn.norm_k.weight",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.norm_q\.weight",
                    r"blocks.\1.attn2.norm_q.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.norm_q\.weight",
                    r"blocks.\1.cross_attn.norm_q.weight",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.norm_k\.weight",
                    r"blocks.\1.attn2.norm_k.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.norm_k\.weight",
                    r"blocks.\1.cross_attn.norm_k.weight",
                ),
            },
            # head projection mapping
            {
                "forward": (r"^head\.head\.", "proj_out."),
                "backward": (r"^proj_out\.", "head.head."),
            },
        ]

        if direction == "forward":
            return [rule["forward"] for rule in unified_rules]
        elif direction == "backward":
            return [rule["backward"] for rule in unified_rules]
        else:
            raise ValueError(f"Invalid direction: {direction}")
    else:
        raise ValueError(f"Unsupported model type: {model_type}")


gushiqiao's avatar
gushiqiao committed
298
def quantize_tensor(w, w_bit=8, dtype=torch.int8, comfyui_mode=False):
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    """
    Quantize a 2D tensor to specified bit width using symmetric min-max quantization

    Args:
        w: Input tensor to quantize (must be 2D)
        w_bit: Quantization bit width (default: 8)

    Returns:
        quantized: Quantized tensor (int8)
        scales: Scaling factors per row
    """
    if w.dim() != 2:
        raise ValueError(f"Only 2D tensors supported. Got {w.dim()}D tensor")
    if torch.isnan(w).any():
        raise ValueError("Tensor contains NaN values")
    if w_bit != 8:
        raise ValueError("Only support 8 bits")

    org_w_shape = w.shape
    # Calculate quantization parameters
gushiqiao's avatar
gushiqiao committed
319
320
321
322
    if not comfyui_mode:
        max_val = w.abs().amax(dim=1, keepdim=True).clamp(min=1e-5)
    else:
        max_val = w.abs().max()
323
324

    if dtype == torch.float8_e4m3fn:
gushiqiao's avatar
gushiqiao committed
325
326
        finfo = torch.finfo(dtype)
        qmin, qmax = finfo.min, finfo.max
327
328
329
330
331
332
    elif dtype == torch.int8:
        qmin, qmax = -128, 127
    # Quantize tensor
    scales = max_val / qmax

    if dtype == torch.float8_e4m3fn:
gushiqiao's avatar
gushiqiao committed
333
334
        from qtorch.quant import float_quantize

gushiqiao's avatar
gushiqiao committed
335
336
337
        scaled_tensor = w / scales
        scaled_tensor = torch.clip(scaled_tensor, qmin, qmax)
        w_q = float_quantize(scaled_tensor.float(), 4, 3, rounding="nearest").to(dtype)
338
339
340
341
342
343
    else:
        w_q = torch.clamp(torch.round(w / scales), qmin, qmax).to(dtype)

    assert torch.isnan(scales).sum() == 0
    assert torch.isnan(w_q).sum() == 0

gushiqiao's avatar
gushiqiao committed
344
345
346
    if not comfyui_mode:
        scales = scales.view(org_w_shape[0], -1)
        w_q = w_q.reshape(org_w_shape)
347
348
349
350
351

    return w_q, scales


def quantize_model(
gushiqiao's avatar
gushiqiao committed
352
    weights, w_bit=8, target_keys=["attn", "ffn"], adapter_keys=None, key_idx=2, ignore_key=None, linear_dtype=torch.int8, non_linear_dtype=torch.float, comfyui_mode=False, comfyui_keys=[]
353
354
355
356
357
358
359
360
361
362
363
364
365
):
    """
    Quantize model weights in-place

    Args:
        weights: Model state dictionary
        w_bit: Quantization bit width
        target_keys: List of module names to quantize

    Returns:
        Modified state dictionary with quantized weights and scales
    """
    total_quantized = 0
gushiqiao's avatar
gushiqiao committed
366
367
368
    original_size = 0
    quantized_size = 0
    non_quantized_size = 0
369
370
371
372
373
374
    keys = list(weights.keys())

    with tqdm(keys, desc="Quantizing weights") as pbar:
        for key in pbar:
            pbar.set_postfix(current_key=key, refresh=False)

375
            if ignore_key is not None and any(ig_key in key for ig_key in ignore_key):
376
377
378
379
380
                del weights[key]
                continue

            tensor = weights[key]

381
            # Skip non-tensors and non-2D tensors
gushiqiao's avatar
gushiqiao committed
382
            if not isinstance(tensor, torch.Tensor) or tensor.dim() != 2:
gushiqiao's avatar
gushiqiao committed
383
384
                if tensor.dtype != non_linear_dtype:
                    weights[key] = tensor.to(non_linear_dtype)
gushiqiao's avatar
gushiqiao committed
385
386
387
                    non_quantized_size += weights[key].numel() * weights[key].element_size()
                else:
                    non_quantized_size += tensor.numel() * tensor.element_size()
388
389
390
391
                continue

            # Check if key matches target modules
            parts = key.split(".")
392

gushiqiao's avatar
gushiqiao committed
393
394
395
396
            if comfyui_mode and key in comfyui_keys:
                pass
            elif len(parts) < key_idx + 1 or parts[key_idx] not in target_keys:
                if adapter_keys is None:
397
398
                    if tensor.dtype != non_linear_dtype:
                        weights[key] = tensor.to(non_linear_dtype)
gushiqiao's avatar
gushiqiao committed
399
400
401
402
403
404
405
406
407
408
409
410
                        non_quantized_size += weights[key].numel() * weights[key].element_size()
                    else:
                        non_quantized_size += tensor.numel() * tensor.element_size()
                elif not any(adapter_key in parts for adapter_key in adapter_keys):
                    if tensor.dtype != non_linear_dtype:
                        weights[key] = tensor.to(non_linear_dtype)
                        non_quantized_size += weights[key].numel() * weights[key].element_size()
                    else:
                        non_quantized_size += tensor.numel() * tensor.element_size()
                else:
                    non_quantized_size += tensor.numel() * tensor.element_size()
                continue
411

gushiqiao's avatar
gushiqiao committed
412
413
414
415
416
417
            # try:
            original_tensor_size = tensor.numel() * tensor.element_size()
            original_size += original_tensor_size

            # Quantize tensor and store results
            w_q, scales = quantize_tensor(tensor, w_bit, linear_dtype, comfyui_mode)
418

gushiqiao's avatar
gushiqiao committed
419
420
421
422
423
            # Replace original tensor and store scales
            weights[key] = w_q
            if comfyui_mode:
                weights[key.replace(".weight", ".scale_weight")] = scales
            else:
424
425
                weights[key + "_scale"] = scales

gushiqiao's avatar
gushiqiao committed
426
427
428
            quantized_tensor_size = w_q.numel() * w_q.element_size()
            scale_size = scales.numel() * scales.element_size()
            quantized_size += quantized_tensor_size + scale_size
429

gushiqiao's avatar
gushiqiao committed
430
431
432
433
434
            total_quantized += 1
            del w_q, scales

            # except Exception as e:
            #     logger.error(f"Error quantizing {key}: {str(e)}")
435
436
437

            gc.collect()

gushiqiao's avatar
gushiqiao committed
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    original_size_mb = original_size / (1024**2)
    quantized_size_mb = quantized_size / (1024**2)
    non_quantized_size_mb = non_quantized_size / (1024**2)
    total_final_size_mb = (quantized_size + non_quantized_size) / (1024**2)
    size_reduction_mb = original_size_mb - quantized_size_mb

    logger.info(f"Quantized {total_quantized} tensors")
    logger.info(f"Original quantized tensors size: {original_size_mb:.2f} MB")
    logger.info(f"After quantization size: {quantized_size_mb:.2f} MB (includes scales)")
    logger.info(f"Non-quantized tensors size: {non_quantized_size_mb:.2f} MB")
    logger.info(f"Total final model size: {total_final_size_mb:.2f} MB")
    logger.info(f"Size reduction in quantized tensors: {size_reduction_mb:.2f} MB ({size_reduction_mb / original_size_mb * 100:.1f}%)")

    if comfyui_mode:
        weights["scaled_fp8"] = torch.zeros(2, dtype=torch.float8_e4m3fn)

454
455
456
    return weights


gushiqiao's avatar
gushiqiao committed
457
458
459
def load_loras(lora_path, weight_dict, alpha, key_mapping_rules=None, strength=1.0):
    """
    Load and apply LoRA weights to model weights using the LoRALoader class.
gushiqiao's avatar
gushiqiao committed
460

gushiqiao's avatar
gushiqiao committed
461
462
463
464
465
466
467
468
    Args:
        lora_path: Path to LoRA safetensors file
        weight_dict: Model weights dictionary (will be modified in place)
        alpha: Global alpha scaling factor
        key_mapping_rules: Optional list of (pattern, replacement) regex rules for key mapping
        strength: Additional strength factor for LoRA deltas
    """
    logger.info(f"Loading LoRA from: {lora_path} with alpha={alpha}, strength={strength}")
gushiqiao's avatar
gushiqiao committed
469

gushiqiao's avatar
gushiqiao committed
470
471
472
    # Load LoRA weights from safetensors file
    with safe_open(lora_path, framework="pt") as f:
        lora_weights = {k: f.get_tensor(k) for k in f.keys()}
gushiqiao's avatar
gushiqiao committed
473

gushiqiao's avatar
gushiqiao committed
474
475
    # Create LoRA loader with key mapping rules
    lora_loader = LoRALoader(key_mapping_rules=key_mapping_rules)
gushiqiao's avatar
gushiqiao committed
476

gushiqiao's avatar
gushiqiao committed
477
478
479
480
481
482
483
    # Apply LoRA weights to model
    lora_loader.apply_lora(
        weight_dict=weight_dict,
        lora_weights=lora_weights,
        alpha=alpha,
        strength=strength,
    )
GoatWu's avatar
GoatWu committed
484
485


486
487
488
489
490
491
492
493
494
495
def convert_weights(args):
    if os.path.isdir(args.source):
        src_files = glob.glob(os.path.join(args.source, "*.safetensors"), recursive=True)
    elif args.source.endswith((".pth", ".safetensors", "pt")):
        src_files = [args.source]
    else:
        raise ValueError("Invalid input path")

    merged_weights = {}
    logger.info(f"Processing source files: {src_files}")
gushiqiao's avatar
gushiqiao committed
496
497

    # Optimize loading for better memory usage
498
499
500
501
502
503
504
    for file_path in tqdm(src_files, desc="Loading weights"):
        logger.info(f"Loading weights from: {file_path}")
        if file_path.endswith(".pt") or file_path.endswith(".pth"):
            weights = torch.load(file_path, map_location=args.device, weights_only=True)
            if args.model_type == "hunyuan_dit":
                weights = weights["module"]
        elif file_path.endswith(".safetensors"):
gushiqiao's avatar
gushiqiao committed
505
            # Use lazy loading for safetensors to reduce memory usage
506
            with safe_open(file_path, framework="pt") as f:
gushiqiao's avatar
gushiqiao committed
507
508
509
510
511
512
513
514
515
516
                # Only load tensors when needed (lazy loading)
                weights = {}
                keys = f.keys()

                # For large files, show progress
                if len(keys) > 100:
                    for k in tqdm(keys, desc=f"Loading {os.path.basename(file_path)}", leave=False):
                        weights[k] = f.get_tensor(k)
                else:
                    weights = {k: f.get_tensor(k) for k in keys}
517
518
519
520
521

        duplicate_keys = set(weights.keys()) & set(merged_weights.keys())
        if duplicate_keys:
            raise ValueError(f"Duplicate keys found: {duplicate_keys} in file {file_path}")

gushiqiao's avatar
gushiqiao committed
522
523
        # Update weights more efficiently
        merged_weights.update(weights)
GoatWu's avatar
GoatWu committed
524

gushiqiao's avatar
gushiqiao committed
525
526
527
528
        # Clear weights dict to free memory
        del weights
        if len(src_files) > 1:
            gc.collect()  # Force garbage collection between files
GoatWu's avatar
GoatWu committed
529

530
531
532
533
    if args.direction is not None:
        rules = get_key_mapping_rules(args.direction, args.model_type)
        converted_weights = {}
        logger.info("Converting keys...")
gushiqiao's avatar
gushiqiao committed
534
535
536
537
538
539

        # Pre-compile regex patterns for better performance
        compiled_rules = [(re.compile(pattern), replacement) for pattern, replacement in rules]

        def convert_key(key):
            """Convert a single key using compiled rules"""
540
            new_key = key
gushiqiao's avatar
gushiqiao committed
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
            for pattern, replacement in compiled_rules:
                new_key = pattern.sub(replacement, new_key)
            return new_key

        # Batch convert keys using list comprehension (faster than loop)
        keys_list = list(merged_weights.keys())

        # Use parallel processing for large models
        if len(keys_list) > 1000 and args.parallel:
            logger.info(f"Using parallel processing for {len(keys_list)} keys")
            # Use ThreadPoolExecutor for I/O bound regex operations
            num_workers = min(8, multiprocessing.cpu_count())

            with ThreadPoolExecutor(max_workers=num_workers) as executor:
                # Submit all conversion tasks
                future_to_key = {executor.submit(convert_key, key): key for key in keys_list}

                # Process results as they complete with progress bar
                for future in tqdm(as_completed(future_to_key), total=len(keys_list), desc="Converting keys (parallel)"):
                    original_key = future_to_key[future]
                    new_key = future.result()
                    converted_weights[new_key] = merged_weights[original_key]
        else:
            # For smaller models, use simple loop with less overhead
            for key in tqdm(keys_list, desc="Converting keys"):
                new_key = convert_key(key)
                converted_weights[new_key] = merged_weights[key]
568
569
570
    else:
        converted_weights = merged_weights

gushiqiao's avatar
gushiqiao committed
571
572
573
    # Apply LoRA AFTER key conversion to ensure proper key matching
    if args.lora_path is not None:
        # Handle alpha list - if single alpha, replicate for all LoRAs
gushiqiao's avatar
gushiqiao committed
574
575
576
577
578
579
580
581
582
583
584
585
        if args.lora_alpha is not None:
            if len(args.lora_alpha) == 1 and len(args.lora_path) > 1:
                args.lora_alpha = args.lora_alpha * len(args.lora_path)
            elif len(args.lora_alpha) != len(args.lora_path):
                raise ValueError(f"Number of lora_alpha ({len(args.lora_alpha)}) must match number of lora_path ({len(args.lora_path)}) or be 1")

        # Normalize strength list
        if args.lora_strength is not None:
            if len(args.lora_strength) == 1 and len(args.lora_path) > 1:
                args.lora_strength = args.lora_strength * len(args.lora_path)
            elif len(args.lora_strength) != len(args.lora_path):
                raise ValueError(f"Number of strength ({len(args.lora_strength)}) must match number of lora_path ({len(args.lora_path)}) or be 1")
gushiqiao's avatar
gushiqiao committed
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

        # Determine if we should apply key mapping rules to LoRA keys
        key_mapping_rules = None
        if args.lora_key_convert == "convert" and args.direction is not None:
            # Apply same conversion as model
            key_mapping_rules = get_key_mapping_rules(args.direction, args.model_type)
            logger.info("Applying key conversion to LoRA weights")
        elif args.lora_key_convert == "same":
            # Don't convert LoRA keys
            logger.info("Using original LoRA keys without conversion")
        else:  # auto
            # Auto-detect: if model was converted, try with conversion first
            if args.direction is not None:
                key_mapping_rules = get_key_mapping_rules(args.direction, args.model_type)
                logger.info("Auto mode: will try with key conversion first")

gushiqiao's avatar
gushiqiao committed
602
        for idx, path in enumerate(args.lora_path):
gushiqiao's avatar
gushiqiao committed
603
            # Pass key mapping rules to handle converted keys properly
gushiqiao's avatar
gushiqiao committed
604
605
606
            strength = args.lora_strength[idx] if args.lora_strength is not None else 1.0
            alpha = args.lora_alpha[idx] if args.lora_alpha is not None else None
            load_loras(path, converted_weights, alpha, key_mapping_rules, strength=strength)
gushiqiao's avatar
gushiqiao committed
607

608
    if args.quantized:
gushiqiao's avatar
gushiqiao committed
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
        if args.full_quantized and args.comfyui_mode:
            logger.info("Quant all tensors...")
            for k in converted_weights.keys():
                converted_weights[k] = converted_weights[k].float().to(args.linear_dtype)
        else:
            converted_weights = quantize_model(
                converted_weights,
                w_bit=args.bits,
                target_keys=args.target_keys,
                adapter_keys=args.adapter_keys,
                key_idx=args.key_idx,
                ignore_key=args.ignore_key,
                linear_dtype=args.linear_dtype,
                non_linear_dtype=args.non_linear_dtype,
                comfyui_mode=args.comfyui_mode,
                comfyui_keys=args.comfyui_keys,
            )
626
627
628
629
630
631
632
633

    os.makedirs(args.output, exist_ok=True)

    if args.output_ext == ".pth":
        torch.save(converted_weights, os.path.join(args.output, args.output_name + ".pth"))

    else:
        index = {"metadata": {"total_size": 0}, "weight_map": {}}
gushiqiao's avatar
gushiqiao committed
634
635
636
637
        if args.single_file:
            output_filename = f"{args.output_name}.safetensors"
            output_path = os.path.join(args.output, output_filename)
            logger.info(f"Saving model to single file: {output_path}")
638

gushiqiao's avatar
gushiqiao committed
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
            # For memory efficiency with large models
            try:
                # If model is very large (over threshold), consider warning
                total_size = sum(tensor.numel() * tensor.element_size() for tensor in converted_weights.values())
                total_size_gb = total_size / (1024**3)

                if total_size_gb > 10:  # Warn if model is larger than 10GB
                    logger.warning(f"Model size is {total_size_gb:.2f}GB. This will require significant memory to save as a single file.")
                    logger.warning("Consider using --save_by_block or default chunked saving for better memory efficiency.")

                # Save the entire model as a single file
                st.save_file(converted_weights, output_path)
                logger.info(f"Model saved successfully to: {output_path} ({total_size_gb:.2f}GB)")

            except MemoryError:
                logger.error("Memory error while saving. The model is too large to save as a single file.")
                logger.error("Please use --save_by_block or remove --single_file to use chunked saving.")
                raise
            except Exception as e:
                logger.error(f"Error saving model: {e}")
                raise
        elif args.save_by_block:
661
662
663
664
665
666
667
668
669
            logger.info("Backward conversion: grouping weights by block")
            block_groups = defaultdict(dict)
            non_block_weights = {}
            block_pattern = re.compile(r"blocks\.(\d+)\.")

            for key, tensor in converted_weights.items():
                match = block_pattern.search(key)
                if match:
                    block_idx = match.group(1)
670
671
                    if args.model_type == "wan_animate_dit" and "face_adapter" in key:
                        block_idx = str(int(block_idx) * 5)
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
                    block_groups[block_idx][key] = tensor
                else:
                    non_block_weights[key] = tensor

            for block_idx, weights_dict in tqdm(block_groups.items(), desc="Saving block chunks"):
                output_filename = f"block_{block_idx}.safetensors"
                output_path = os.path.join(args.output, output_filename)
                st.save_file(weights_dict, output_path)
                for key in weights_dict:
                    index["weight_map"][key] = output_filename
                index["metadata"]["total_size"] += os.path.getsize(output_path)

            if non_block_weights:
                output_filename = f"non_block.safetensors"
                output_path = os.path.join(args.output, output_filename)
                st.save_file(non_block_weights, output_path)
                for key in non_block_weights:
                    index["weight_map"][key] = output_filename
                index["metadata"]["total_size"] += os.path.getsize(output_path)

        else:
            chunk_idx = 0
            current_chunk = {}
            for idx, (k, v) in tqdm(enumerate(converted_weights.items()), desc="Saving chunks"):
                current_chunk[k] = v
697
                if args.chunk_size > 0 and (idx + 1) % args.chunk_size == 0:
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
                    output_filename = f"{args.output_name}_part{chunk_idx}.safetensors"
                    output_path = os.path.join(args.output, output_filename)
                    logger.info(f"Saving chunk to: {output_path}")
                    st.save_file(current_chunk, output_path)
                    for key in current_chunk:
                        index["weight_map"][key] = output_filename
                    index["metadata"]["total_size"] += os.path.getsize(output_path)
                    current_chunk = {}
                    chunk_idx += 1

            if current_chunk:
                output_filename = f"{args.output_name}_part{chunk_idx}.safetensors"
                output_path = os.path.join(args.output, output_filename)
                logger.info(f"Saving final chunk to: {output_path}")
                st.save_file(current_chunk, output_path)
                for key in current_chunk:
                    index["weight_map"][key] = output_filename
                index["metadata"]["total_size"] += os.path.getsize(output_path)

        # Save index file
718
719
720
721
722
        if not args.single_file:
            index_path = os.path.join(args.output, "diffusion_pytorch_model.safetensors.index.json")
            with open(index_path, "w", encoding="utf-8") as f:
                json.dump(index, f, indent=2)
            logger.info(f"Index file written to: {index_path}")
723

gushiqiao's avatar
gushiqiao committed
724
    if os.path.isdir(args.source) and args.copy_no_weight_files:
gushiqiao's avatar
gushiqiao committed
725
726
727
728
        copy_non_weight_files(args.source, args.output)


def copy_non_weight_files(source_dir, target_dir):
gushiqiao's avatar
Fix  
gushiqiao committed
729
    ignore_extensions = [".pth", ".pt", ".safetensors", ".index.json"]
gushiqiao's avatar
gushiqiao committed
730
731
732

    logger.info(f"Start copying non-weighted files and subdirectories...")

gushiqiao's avatar
Fix  
gushiqiao committed
733
    for item in tqdm(os.listdir(source_dir), desc="copy non-weighted file"):
gushiqiao's avatar
gushiqiao committed
734
735
736
737
738
739
740
741
742
        source_item = os.path.join(source_dir, item)
        target_item = os.path.join(target_dir, item)

        try:
            if os.path.isdir(source_item):
                os.makedirs(target_item, exist_ok=True)
                copy_non_weight_files(source_item, target_item)
            elif os.path.isfile(source_item) and not any(source_item.endswith(ext) for ext in ignore_extensions):
                shutil.copy2(source_item, target_item)
gushiqiao's avatar
Fix  
gushiqiao committed
743
                logger.debug(f"copy file: {source_item} -> {target_item}")
gushiqiao's avatar
gushiqiao committed
744
        except Exception as e:
gushiqiao's avatar
Fix  
gushiqiao committed
745
            logger.error(f"copy {source_item} : {str(e)}")
gushiqiao's avatar
gushiqiao committed
746
747
748

    logger.info(f"Non-weight files and subdirectories copied")

749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772

def main():
    parser = argparse.ArgumentParser(description="Model weight format converter")
    parser.add_argument("-s", "--source", required=True, help="Input path (file or directory)")
    parser.add_argument("-o_e", "--output_ext", default=".safetensors", choices=[".pth", ".safetensors"])
    parser.add_argument("-o_n", "--output_name", type=str, default="converted", help="Output file name")
    parser.add_argument("-o", "--output", required=True, help="Output directory path")
    parser.add_argument(
        "-d",
        "--direction",
        choices=[None, "forward", "backward"],
        default=None,
        help="Conversion direction: forward = 'lightx2v' -> 'Diffusers', backward = reverse",
    )
    parser.add_argument(
        "-c",
        "--chunk-size",
        type=int,
        default=100,
        help="Chunk size for saving (only applies to forward), 0 = no chunking",
    )
    parser.add_argument(
        "-t",
        "--model_type",
773
        choices=["wan_dit", "hunyuan_dit", "wan_t5", "wan_clip", "wan_animate_dit", "qwen_image_dit"],
774
775
776
777
778
779
        default="wan_dit",
        help="Model type",
    )
    parser.add_argument("-b", "--save_by_block", action="store_true")

    # Quantization
gushiqiao's avatar
gushiqiao committed
780
781
    parser.add_argument("--comfyui_mode", action="store_true")
    parser.add_argument("--full_quantized", action="store_true")
782
783
784
785
786
    parser.add_argument("--quantized", action="store_true")
    parser.add_argument("--bits", type=int, default=8, choices=[8], help="Quantization bit width")
    parser.add_argument(
        "--device",
        type=str,
787
        default="cuda",
788
789
790
        help="Device to use for quantization (cpu/cuda)",
    )
    parser.add_argument(
gushiqiao's avatar
gushiqiao committed
791
        "--linear_dtype",
792
793
        type=str,
        choices=["torch.int8", "torch.float8_e4m3fn"],
gushiqiao's avatar
gushiqiao committed
794
795
796
797
798
799
800
801
        help="Data type for linear",
    )
    parser.add_argument(
        "--non_linear_dtype",
        type=str,
        default="torch.float32",
        choices=["torch.bfloat16", "torch.float16"],
        help="Data type for non-linear",
802
    )
GoatWu's avatar
GoatWu committed
803
804
805
806
807
    parser.add_argument("--lora_path", type=str, nargs="*", help="Path(s) to LoRA file(s). Can specify multiple paths separated by spaces.")
    parser.add_argument(
        "--lora_alpha",
        type=float,
        nargs="*",
gushiqiao's avatar
gushiqiao committed
808
809
810
811
812
813
814
815
        default=None,
        help="Alpha for LoRA weight scaling, Default non scaling. ",
    )
    parser.add_argument(
        "--lora_strength",
        type=float,
        nargs="*",
        help="Additional strength factor(s) for LoRA deltas; default 1.0",
GoatWu's avatar
GoatWu committed
816
    )
gushiqiao's avatar
gushiqiao committed
817
    parser.add_argument("--copy_no_weight_files", action="store_true")
gushiqiao's avatar
gushiqiao committed
818
819
820
821
822
823
824
825
826
    parser.add_argument("--single_file", action="store_true", help="Save as a single safetensors file instead of chunking (warning: requires loading entire model in memory)")
    parser.add_argument(
        "--lora_key_convert",
        choices=["auto", "same", "convert"],
        default="auto",
        help="How to handle LoRA key conversion: 'auto' (detect from LoRA), 'same' (use original keys), 'convert' (apply same conversion as model)",
    )
    parser.add_argument("--parallel", action="store_true", default=True, help="Use parallel processing for faster conversion (default: True)")
    parser.add_argument("--no-parallel", dest="parallel", action="store_false", help="Disable parallel processing")
827
828
    args = parser.parse_args()

gushiqiao's avatar
gushiqiao committed
829
830
831
832
833
834
835
    # Validate conflicting arguments
    if args.single_file and args.save_by_block:
        parser.error("--single_file and --save_by_block cannot be used together. Choose one saving strategy.")

    if args.single_file and args.chunk_size > 0 and args.chunk_size != 100:
        logger.warning("--chunk_size is ignored when using --single_file option.")

gushiqiao's avatar
Fix  
gushiqiao committed
836
    if args.quantized:
gushiqiao's avatar
gushiqiao committed
837
838
        args.linear_dtype = eval(args.linear_dtype)
        args.non_linear_dtype = eval(args.non_linear_dtype)
gushiqiao's avatar
Fix  
gushiqiao committed
839
840

        model_type_keys_map = {
841
842
            "qwen_image_dit": {
                "key_idx": 2,
gushiqiao's avatar
gushiqiao committed
843
                "target_keys": ["attn", "img_mlp", "txt_mlp", "txt_mod", "img_mod"],
844
                "ignore_key": None,
gushiqiao's avatar
gushiqiao committed
845
846
847
848
849
850
851
852
                "comfyui_keys": [
                    "time_text_embed.timestep_embedder.linear_1.weight",
                    "time_text_embed.timestep_embedder.linear_2.weight",
                    "img_in.weight",
                    "txt_in.weight",
                    "norm_out.linear.weight",
                    "proj_out.weight",
                ],
853
            },
gushiqiao's avatar
Fix  
gushiqiao committed
854
855
856
            "wan_dit": {
                "key_idx": 2,
                "target_keys": ["self_attn", "cross_attn", "ffn"],
857
                "ignore_key": ["ca", "audio"],
gushiqiao's avatar
Fix  
gushiqiao committed
858
            },
859
            "wan_animate_dit": {"key_idx": 2, "target_keys": ["self_attn", "cross_attn", "ffn"], "adapter_keys": ["linear1_kv", "linear1_q", "linear2"], "ignore_key": None},
gushiqiao's avatar
Fix  
gushiqiao committed
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
            "hunyuan_dit": {
                "key_idx": 2,
                "target_keys": [
                    "img_mod",
                    "img_attn_qkv",
                    "img_attn_proj",
                    "img_mlp",
                    "txt_mod",
                    "txt_attn_qkv",
                    "txt_attn_proj",
                    "txt_mlp",
                    "linear1",
                    "linear2",
                    "modulation",
                ],
                "ignore_key": None,
            },
            "wan_t5": {"key_idx": 2, "target_keys": ["attn", "ffn"], "ignore_key": None},
            "wan_clip": {
                "key_idx": 3,
                "target_keys": ["attn", "mlp"],
                "ignore_key": "textual",
            },
        }

        args.target_keys = model_type_keys_map[args.model_type]["target_keys"]
886
        args.adapter_keys = model_type_keys_map[args.model_type]["adapter_keys"] if "adapter_keys" in model_type_keys_map[args.model_type] else None
gushiqiao's avatar
Fix  
gushiqiao committed
887
888
        args.key_idx = model_type_keys_map[args.model_type]["key_idx"]
        args.ignore_key = model_type_keys_map[args.model_type]["ignore_key"]
gushiqiao's avatar
gushiqiao committed
889
        args.comfyui_keys = model_type_keys_map[args.model_type]["comfyui_keys"] if "comfyui_keys" in model_type_keys_map[args.model_type] else None
890
891
892
893
894
895
896
897
898
899
900

    if os.path.isfile(args.output):
        raise ValueError("Output path must be a directory, not a file")

    logger.info("Starting model weight conversion...")
    convert_weights(args)
    logger.info(f"Conversion completed! Files saved to: {args.output}")


if __name__ == "__main__":
    main()