converter.py 22.7 KB
Newer Older
1
2
3
4
5
6
import os
import re
import gc
import glob
import json
import argparse
gushiqiao's avatar
gushiqiao committed
7
import shutil
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import torch
from safetensors import safe_open, torch as st
from loguru import logger
from tqdm import tqdm
from collections import defaultdict


def get_key_mapping_rules(direction, model_type):
    if model_type == "wan_dit":
        unified_rules = [
            {
                "forward": (r"^head\.head$", "proj_out"),
                "backward": (r"^proj_out$", "head.head"),
            },
            {
                "forward": (r"^head\.modulation$", "scale_shift_table"),
                "backward": (r"^scale_shift_table$", "head.modulation"),
            },
            {
                "forward": (
                    r"^text_embedding\.0\.",
                    "condition_embedder.text_embedder.linear_1.",
                ),
                "backward": (
                    r"^condition_embedder.text_embedder.linear_1\.",
                    "text_embedding.0.",
                ),
            },
            {
                "forward": (
                    r"^text_embedding\.2\.",
                    "condition_embedder.text_embedder.linear_2.",
                ),
                "backward": (
                    r"^condition_embedder.text_embedder.linear_2\.",
                    "text_embedding.2.",
                ),
            },
            {
                "forward": (
                    r"^time_embedding\.0\.",
                    "condition_embedder.time_embedder.linear_1.",
                ),
                "backward": (
                    r"^condition_embedder.time_embedder.linear_1\.",
                    "time_embedding.0.",
                ),
            },
            {
                "forward": (
                    r"^time_embedding\.2\.",
                    "condition_embedder.time_embedder.linear_2.",
                ),
                "backward": (
                    r"^condition_embedder.time_embedder.linear_2\.",
                    "time_embedding.2.",
                ),
            },
            {
                "forward": (r"^time_projection\.1\.", "condition_embedder.time_proj."),
                "backward": (r"^condition_embedder.time_proj\.", "time_projection.1."),
            },
            {
                "forward": (r"blocks\.(\d+)\.self_attn\.q\.", r"blocks.\1.attn1.to_q."),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_q\.",
                    r"blocks.\1.self_attn.q.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.self_attn\.k\.", r"blocks.\1.attn1.to_k."),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_k\.",
                    r"blocks.\1.self_attn.k.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.self_attn\.v\.", r"blocks.\1.attn1.to_v."),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_v\.",
                    r"blocks.\1.self_attn.v.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.self_attn\.o\.",
                    r"blocks.\1.attn1.to_out.0.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_out\.0\.",
                    r"blocks.\1.self_attn.o.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.q\.",
                    r"blocks.\1.attn2.to_q.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_q\.",
                    r"blocks.\1.cross_attn.q.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.k\.",
                    r"blocks.\1.attn2.to_k.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_k\.",
                    r"blocks.\1.cross_attn.k.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.v\.",
                    r"blocks.\1.attn2.to_v.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_v\.",
                    r"blocks.\1.cross_attn.v.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.o\.",
                    r"blocks.\1.attn2.to_out.0.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_out\.0\.",
                    r"blocks.\1.cross_attn.o.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.norm3\.", r"blocks.\1.norm2."),
                "backward": (r"blocks\.(\d+)\.norm2\.", r"blocks.\1.norm3."),
            },
            {
                "forward": (r"blocks\.(\d+)\.ffn\.0\.", r"blocks.\1.ffn.net.0.proj."),
                "backward": (
                    r"blocks\.(\d+)\.ffn\.net\.0\.proj\.",
                    r"blocks.\1.ffn.0.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.ffn\.2\.", r"blocks.\1.ffn.net.2."),
                "backward": (r"blocks\.(\d+)\.ffn\.net\.2\.", r"blocks.\1.ffn.2."),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.modulation\.",
                    r"blocks.\1.scale_shift_table.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.scale_shift_table(?=\.|$)",
                    r"blocks.\1.modulation",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.k_img\.",
                    r"blocks.\1.attn2.add_k_proj.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.add_k_proj\.",
                    r"blocks.\1.cross_attn.k_img.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.v_img\.",
                    r"blocks.\1.attn2.add_v_proj.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.add_v_proj\.",
                    r"blocks.\1.cross_attn.v_img.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.norm_k_img\.weight",
                    r"blocks.\1.attn2.norm_added_k.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.norm_added_k\.weight",
                    r"blocks.\1.cross_attn.norm_k_img.weight",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.0\.",
                    r"condition_embedder.image_embedder.norm1.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.norm1\.",
                    r"img_emb.proj.0.",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.1\.",
                    r"condition_embedder.image_embedder.ff.net.0.proj.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.ff\.net\.0\.proj\.",
                    r"img_emb.proj.1.",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.3\.",
                    r"condition_embedder.image_embedder.ff.net.2.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.ff\.net\.2\.",
                    r"img_emb.proj.3.",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.4\.",
                    r"condition_embedder.image_embedder.norm2.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.norm2\.",
                    r"img_emb.proj.4.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.self_attn\.norm_q\.weight",
                    r"blocks.\1.attn1.norm_q.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.norm_q\.weight",
                    r"blocks.\1.self_attn.norm_q.weight",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.self_attn\.norm_k\.weight",
                    r"blocks.\1.attn1.norm_k.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.norm_k\.weight",
                    r"blocks.\1.self_attn.norm_k.weight",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.norm_q\.weight",
                    r"blocks.\1.attn2.norm_q.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.norm_q\.weight",
                    r"blocks.\1.cross_attn.norm_q.weight",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.norm_k\.weight",
                    r"blocks.\1.attn2.norm_k.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.norm_k\.weight",
                    r"blocks.\1.cross_attn.norm_k.weight",
                ),
            },
            # head projection mapping
            {
                "forward": (r"^head\.head\.", "proj_out."),
                "backward": (r"^proj_out\.", "head.head."),
            },
        ]

        if direction == "forward":
            return [rule["forward"] for rule in unified_rules]
        elif direction == "backward":
            return [rule["backward"] for rule in unified_rules]
        else:
            raise ValueError(f"Invalid direction: {direction}")
    else:
        raise ValueError(f"Unsupported model type: {model_type}")


def quantize_tensor(w, w_bit=8, dtype=torch.int8):
    """
    Quantize a 2D tensor to specified bit width using symmetric min-max quantization

    Args:
        w: Input tensor to quantize (must be 2D)
        w_bit: Quantization bit width (default: 8)

    Returns:
        quantized: Quantized tensor (int8)
        scales: Scaling factors per row
    """
    if w.dim() != 2:
        raise ValueError(f"Only 2D tensors supported. Got {w.dim()}D tensor")
    if torch.isnan(w).any():
        raise ValueError("Tensor contains NaN values")
    if w_bit != 8:
        raise ValueError("Only support 8 bits")

    org_w_shape = w.shape
    # Calculate quantization parameters
    max_val = w.abs().amax(dim=1, keepdim=True).clamp(min=1e-5)

    if dtype == torch.float8_e4m3fn:
        qmin, qmax = -448, 448
    elif dtype == torch.int8:
        qmin, qmax = -128, 127

    # Quantize tensor
    scales = max_val / qmax

    if dtype == torch.float8_e4m3fn:
        w_q = torch.clamp(w / scales, qmin, qmax).to(dtype)
    else:
        w_q = torch.clamp(torch.round(w / scales), qmin, qmax).to(dtype)

    assert torch.isnan(scales).sum() == 0
    assert torch.isnan(w_q).sum() == 0

    scales = scales.view(org_w_shape[0], -1)
    w_q = w_q.reshape(org_w_shape)

    return w_q, scales


def quantize_model(
    weights,
    w_bit=8,
    target_keys=["attn", "ffn"],
    min_params=1e6,
    key_idx=2,
    ignore_key=None,
    dtype=torch.int8,
):
    """
    Quantize model weights in-place

    Args:
        weights: Model state dictionary
        w_bit: Quantization bit width
        target_keys: List of module names to quantize
        min_params: Minimum parameter count to process tensor

    Returns:
        Modified state dictionary with quantized weights and scales
    """
    total_quantized = 0
    total_size = 0
    keys = list(weights.keys())

    with tqdm(keys, desc="Quantizing weights") as pbar:
        for key in pbar:
            pbar.set_postfix(current_key=key, refresh=False)

            if ignore_key is not None and ignore_key in key:
                del weights[key]
                continue

            tensor = weights[key]

            # Skip non-tensors, small tensors, and non-2D tensors
            if not isinstance(tensor, torch.Tensor) or tensor.numel() < min_params or tensor.dim() != 2:
                continue

            # Check if key matches target modules
            parts = key.split(".")
            if len(parts) < key_idx + 1 or parts[key_idx] not in target_keys:
                continue

            try:
                # Quantize tensor and store results
                w_q, scales = quantize_tensor(tensor, w_bit, dtype)

                # Replace original tensor and store scales
                weights[key] = w_q
                weights[key + "_scale"] = scales

                total_quantized += 1
                total_size += tensor.numel() * tensor.element_size() / (1024**2)  # MB
                del w_q, scales

            except Exception as e:
                logger.error(f"Error quantizing {key}: {str(e)}")

            gc.collect()

        logger.info(f"Quantized {total_quantized} tensors, reduced size by {total_size:.2f} MB")
    return weights


def convert_weights(args):
    if os.path.isdir(args.source):
        src_files = glob.glob(os.path.join(args.source, "*.safetensors"), recursive=True)
    elif args.source.endswith((".pth", ".safetensors", "pt")):
        src_files = [args.source]
    else:
        raise ValueError("Invalid input path")

    merged_weights = {}
    logger.info(f"Processing source files: {src_files}")
    for file_path in tqdm(src_files, desc="Loading weights"):
        logger.info(f"Loading weights from: {file_path}")
        if file_path.endswith(".pt") or file_path.endswith(".pth"):
            weights = torch.load(file_path, map_location=args.device, weights_only=True)
            if args.model_type == "hunyuan_dit":
                weights = weights["module"]
        elif file_path.endswith(".safetensors"):
            with safe_open(file_path, framework="pt") as f:
                weights = {k: f.get_tensor(k) for k in f.keys()}

        duplicate_keys = set(weights.keys()) & set(merged_weights.keys())
        if duplicate_keys:
            raise ValueError(f"Duplicate keys found: {duplicate_keys} in file {file_path}")
        merged_weights.update(weights)

    if args.direction is not None:
        rules = get_key_mapping_rules(args.direction, args.model_type)
        converted_weights = {}
        logger.info("Converting keys...")
        for key in tqdm(merged_weights.keys(), desc="Converting keys"):
            new_key = key
            for pattern, replacement in rules:
                new_key = re.sub(pattern, replacement, new_key)
            converted_weights[new_key] = merged_weights[key]
    else:
        converted_weights = merged_weights

    if args.quantized:
        converted_weights = quantize_model(
            converted_weights,
            w_bit=args.bits,
            target_keys=args.target_keys,
            min_params=args.min_params,
            key_idx=args.key_idx,
            ignore_key=args.ignore_key,
            dtype=args.dtype,
        )

    os.makedirs(args.output, exist_ok=True)

    if args.output_ext == ".pth":
        torch.save(converted_weights, os.path.join(args.output, args.output_name + ".pth"))

    else:
        index = {"metadata": {"total_size": 0}, "weight_map": {}}

        if args.save_by_block:
            logger.info("Backward conversion: grouping weights by block")
            block_groups = defaultdict(dict)
            non_block_weights = {}
            block_pattern = re.compile(r"blocks\.(\d+)\.")

            for key, tensor in converted_weights.items():
                match = block_pattern.search(key)
                if match:
                    block_idx = match.group(1)
                    block_groups[block_idx][key] = tensor
                else:
                    non_block_weights[key] = tensor

            for block_idx, weights_dict in tqdm(block_groups.items(), desc="Saving block chunks"):
                output_filename = f"block_{block_idx}.safetensors"
                output_path = os.path.join(args.output, output_filename)
                st.save_file(weights_dict, output_path)
                for key in weights_dict:
                    index["weight_map"][key] = output_filename
                index["metadata"]["total_size"] += os.path.getsize(output_path)

            if non_block_weights:
                output_filename = f"non_block.safetensors"
                output_path = os.path.join(args.output, output_filename)
                st.save_file(non_block_weights, output_path)
                for key in non_block_weights:
                    index["weight_map"][key] = output_filename
                index["metadata"]["total_size"] += os.path.getsize(output_path)

        else:
            chunk_idx = 0
            current_chunk = {}
            for idx, (k, v) in tqdm(enumerate(converted_weights.items()), desc="Saving chunks"):
                current_chunk[k] = v
                if (idx + 1) % args.chunk_size == 0 and args.chunk_size > 0:
                    output_filename = f"{args.output_name}_part{chunk_idx}.safetensors"
                    output_path = os.path.join(args.output, output_filename)
                    logger.info(f"Saving chunk to: {output_path}")
                    st.save_file(current_chunk, output_path)
                    for key in current_chunk:
                        index["weight_map"][key] = output_filename
                    index["metadata"]["total_size"] += os.path.getsize(output_path)
                    current_chunk = {}
                    chunk_idx += 1

            if current_chunk:
                output_filename = f"{args.output_name}_part{chunk_idx}.safetensors"
                output_path = os.path.join(args.output, output_filename)
                logger.info(f"Saving final chunk to: {output_path}")
                st.save_file(current_chunk, output_path)
                for key in current_chunk:
                    index["weight_map"][key] = output_filename
                index["metadata"]["total_size"] += os.path.getsize(output_path)

        # Save index file
        index_path = os.path.join(args.output, "diffusion_pytorch_model.safetensors.index.json")
        with open(index_path, "w", encoding="utf-8") as f:
            json.dump(index, f, indent=2)
        logger.info(f"Index file written to: {index_path}")

gushiqiao's avatar
gushiqiao committed
520
521
522
523
524
525
526
527
528
    if os.path.isdir(args.source):
        copy_non_weight_files(args.source, args.output)


def copy_non_weight_files(source_dir, target_dir):
    ignore_extensions = [".pth", ".pt", ".safetensors"]

    logger.info(f"Start copying non-weighted files and subdirectories...")

gushiqiao's avatar
Fix  
gushiqiao committed
529
    for item in tqdm(os.listdir(source_dir), desc="copy non-weighted file"):
gushiqiao's avatar
gushiqiao committed
530
531
532
533
534
535
536
537
538
        source_item = os.path.join(source_dir, item)
        target_item = os.path.join(target_dir, item)

        try:
            if os.path.isdir(source_item):
                os.makedirs(target_item, exist_ok=True)
                copy_non_weight_files(source_item, target_item)
            elif os.path.isfile(source_item) and not any(source_item.endswith(ext) for ext in ignore_extensions):
                shutil.copy2(source_item, target_item)
gushiqiao's avatar
Fix  
gushiqiao committed
539
                logger.debug(f"copy file: {source_item} -> {target_item}")
gushiqiao's avatar
gushiqiao committed
540
        except Exception as e:
gushiqiao's avatar
Fix  
gushiqiao committed
541
            logger.error(f"copy {source_item} : {str(e)}")
gushiqiao's avatar
gushiqiao committed
542
543
544

    logger.info(f"Non-weight files and subdirectories copied")

545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607

def main():
    parser = argparse.ArgumentParser(description="Model weight format converter")
    parser.add_argument("-s", "--source", required=True, help="Input path (file or directory)")
    parser.add_argument("-o_e", "--output_ext", default=".safetensors", choices=[".pth", ".safetensors"])
    parser.add_argument("-o_n", "--output_name", type=str, default="converted", help="Output file name")
    parser.add_argument("-o", "--output", required=True, help="Output directory path")
    parser.add_argument(
        "-d",
        "--direction",
        choices=[None, "forward", "backward"],
        default=None,
        help="Conversion direction: forward = 'lightx2v' -> 'Diffusers', backward = reverse",
    )
    parser.add_argument(
        "-c",
        "--chunk-size",
        type=int,
        default=100,
        help="Chunk size for saving (only applies to forward), 0 = no chunking",
    )
    parser.add_argument(
        "-t",
        "--model_type",
        choices=["wan_dit", "hunyuan_dit", "wan_t5", "wan_clip"],
        default="wan_dit",
        help="Model type",
    )
    parser.add_argument("-b", "--save_by_block", action="store_true")

    # Quantization
    parser.add_argument("--quantized", action="store_true")
    parser.add_argument("--bits", type=int, default=8, choices=[8], help="Quantization bit width")
    parser.add_argument(
        "--min_params",
        type=int,
        default=1000000,
        help="Minimum parameters to consider for quantization",
    )
    parser.add_argument(
        "--device",
        type=str,
        default="cpu",
        help="Device to use for quantization (cpu/cuda)",
    )
    parser.add_argument(
        "--dtype",
        type=str,
        choices=["torch.int8", "torch.float8_e4m3fn"],
        help="Data type for quantization",
    )
    args = parser.parse_args()

    if args.dtype == "torch.int8":
        args.dtype = torch.int8
    elif args.dtype == "torch.float8_e4m3fn":
        args.dtype = torch.float8_e4m3fn
    else:
        raise ValueError(f"Not support dtype :{args.dtype}")

    model_type_keys_map = {
        "wan_dit": {
            "key_idx": 2,
gushiqiao's avatar
gushiqiao committed
608
            "target_keys": ["self_attn", "cross_attn", "ffn"],
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
            "ignore_key": None,
        },
        "hunyuan_dit": {
            "key_idx": 2,
            "target_keys": [
                "img_mod",
                "img_attn_qkv",
                "img_attn_proj",
                "img_mlp",
                "txt_mod",
                "txt_attn_qkv",
                "txt_attn_proj",
                "txt_mlp",
                "linear1",
                "linear2",
                "modulation",
            ],
            "ignore_key": None,
        },
        "wan_t5": {"key_idx": 2, "target_keys": ["attn", "ffn"], "ignore_key": None},
        "wan_clip": {
            "key_idx": 3,
            "target_keys": ["attn", "mlp"],
            "ignore_key": "textual",
        },
    }

    args.target_keys = model_type_keys_map[args.model_type]["target_keys"]
    args.key_idx = model_type_keys_map[args.model_type]["key_idx"]
    args.ignore_key = model_type_keys_map[args.model_type]["ignore_key"]

    if os.path.isfile(args.output):
        raise ValueError("Output path must be a directory, not a file")

    logger.info("Starting model weight conversion...")
    convert_weights(args)
    logger.info(f"Conversion completed! Files saved to: {args.output}")


if __name__ == "__main__":
    main()