converter.py 41 KB
Newer Older
PengGao's avatar
PengGao committed
1
import argparse
2
3
4
import gc
import glob
import json
gushiqiao's avatar
gushiqiao committed
5
import multiprocessing
PengGao's avatar
PengGao committed
6
7
import os
import re
gushiqiao's avatar
gushiqiao committed
8
import shutil
PengGao's avatar
PengGao committed
9
from collections import defaultdict
gushiqiao's avatar
gushiqiao committed
10
from concurrent.futures import ThreadPoolExecutor, as_completed
PengGao's avatar
PengGao committed
11

12
13
import torch
from loguru import logger
gushiqiao's avatar
gushiqiao committed
14
from qtorch.quant import float_quantize
PengGao's avatar
PengGao committed
15
16
17
from safetensors import safe_open
from safetensors import torch as st
from tqdm import tqdm
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297


def get_key_mapping_rules(direction, model_type):
    if model_type == "wan_dit":
        unified_rules = [
            {
                "forward": (r"^head\.head$", "proj_out"),
                "backward": (r"^proj_out$", "head.head"),
            },
            {
                "forward": (r"^head\.modulation$", "scale_shift_table"),
                "backward": (r"^scale_shift_table$", "head.modulation"),
            },
            {
                "forward": (
                    r"^text_embedding\.0\.",
                    "condition_embedder.text_embedder.linear_1.",
                ),
                "backward": (
                    r"^condition_embedder.text_embedder.linear_1\.",
                    "text_embedding.0.",
                ),
            },
            {
                "forward": (
                    r"^text_embedding\.2\.",
                    "condition_embedder.text_embedder.linear_2.",
                ),
                "backward": (
                    r"^condition_embedder.text_embedder.linear_2\.",
                    "text_embedding.2.",
                ),
            },
            {
                "forward": (
                    r"^time_embedding\.0\.",
                    "condition_embedder.time_embedder.linear_1.",
                ),
                "backward": (
                    r"^condition_embedder.time_embedder.linear_1\.",
                    "time_embedding.0.",
                ),
            },
            {
                "forward": (
                    r"^time_embedding\.2\.",
                    "condition_embedder.time_embedder.linear_2.",
                ),
                "backward": (
                    r"^condition_embedder.time_embedder.linear_2\.",
                    "time_embedding.2.",
                ),
            },
            {
                "forward": (r"^time_projection\.1\.", "condition_embedder.time_proj."),
                "backward": (r"^condition_embedder.time_proj\.", "time_projection.1."),
            },
            {
                "forward": (r"blocks\.(\d+)\.self_attn\.q\.", r"blocks.\1.attn1.to_q."),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_q\.",
                    r"blocks.\1.self_attn.q.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.self_attn\.k\.", r"blocks.\1.attn1.to_k."),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_k\.",
                    r"blocks.\1.self_attn.k.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.self_attn\.v\.", r"blocks.\1.attn1.to_v."),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_v\.",
                    r"blocks.\1.self_attn.v.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.self_attn\.o\.",
                    r"blocks.\1.attn1.to_out.0.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.to_out\.0\.",
                    r"blocks.\1.self_attn.o.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.q\.",
                    r"blocks.\1.attn2.to_q.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_q\.",
                    r"blocks.\1.cross_attn.q.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.k\.",
                    r"blocks.\1.attn2.to_k.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_k\.",
                    r"blocks.\1.cross_attn.k.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.v\.",
                    r"blocks.\1.attn2.to_v.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_v\.",
                    r"blocks.\1.cross_attn.v.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.o\.",
                    r"blocks.\1.attn2.to_out.0.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.to_out\.0\.",
                    r"blocks.\1.cross_attn.o.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.norm3\.", r"blocks.\1.norm2."),
                "backward": (r"blocks\.(\d+)\.norm2\.", r"blocks.\1.norm3."),
            },
            {
                "forward": (r"blocks\.(\d+)\.ffn\.0\.", r"blocks.\1.ffn.net.0.proj."),
                "backward": (
                    r"blocks\.(\d+)\.ffn\.net\.0\.proj\.",
                    r"blocks.\1.ffn.0.",
                ),
            },
            {
                "forward": (r"blocks\.(\d+)\.ffn\.2\.", r"blocks.\1.ffn.net.2."),
                "backward": (r"blocks\.(\d+)\.ffn\.net\.2\.", r"blocks.\1.ffn.2."),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.modulation\.",
                    r"blocks.\1.scale_shift_table.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.scale_shift_table(?=\.|$)",
                    r"blocks.\1.modulation",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.k_img\.",
                    r"blocks.\1.attn2.add_k_proj.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.add_k_proj\.",
                    r"blocks.\1.cross_attn.k_img.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.v_img\.",
                    r"blocks.\1.attn2.add_v_proj.",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.add_v_proj\.",
                    r"blocks.\1.cross_attn.v_img.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.norm_k_img\.weight",
                    r"blocks.\1.attn2.norm_added_k.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.norm_added_k\.weight",
                    r"blocks.\1.cross_attn.norm_k_img.weight",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.0\.",
                    r"condition_embedder.image_embedder.norm1.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.norm1\.",
                    r"img_emb.proj.0.",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.1\.",
                    r"condition_embedder.image_embedder.ff.net.0.proj.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.ff\.net\.0\.proj\.",
                    r"img_emb.proj.1.",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.3\.",
                    r"condition_embedder.image_embedder.ff.net.2.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.ff\.net\.2\.",
                    r"img_emb.proj.3.",
                ),
            },
            {
                "forward": (
                    r"img_emb\.proj\.4\.",
                    r"condition_embedder.image_embedder.norm2.",
                ),
                "backward": (
                    r"condition_embedder\.image_embedder\.norm2\.",
                    r"img_emb.proj.4.",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.self_attn\.norm_q\.weight",
                    r"blocks.\1.attn1.norm_q.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.norm_q\.weight",
                    r"blocks.\1.self_attn.norm_q.weight",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.self_attn\.norm_k\.weight",
                    r"blocks.\1.attn1.norm_k.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn1\.norm_k\.weight",
                    r"blocks.\1.self_attn.norm_k.weight",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.norm_q\.weight",
                    r"blocks.\1.attn2.norm_q.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.norm_q\.weight",
                    r"blocks.\1.cross_attn.norm_q.weight",
                ),
            },
            {
                "forward": (
                    r"blocks\.(\d+)\.cross_attn\.norm_k\.weight",
                    r"blocks.\1.attn2.norm_k.weight",
                ),
                "backward": (
                    r"blocks\.(\d+)\.attn2\.norm_k\.weight",
                    r"blocks.\1.cross_attn.norm_k.weight",
                ),
            },
            # head projection mapping
            {
                "forward": (r"^head\.head\.", "proj_out."),
                "backward": (r"^proj_out\.", "head.head."),
            },
        ]

        if direction == "forward":
            return [rule["forward"] for rule in unified_rules]
        elif direction == "backward":
            return [rule["backward"] for rule in unified_rules]
        else:
            raise ValueError(f"Invalid direction: {direction}")
    else:
        raise ValueError(f"Unsupported model type: {model_type}")


gushiqiao's avatar
gushiqiao committed
298
def quantize_tensor(w, w_bit=8, dtype=torch.int8, comfyui_mode=False):
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    """
    Quantize a 2D tensor to specified bit width using symmetric min-max quantization

    Args:
        w: Input tensor to quantize (must be 2D)
        w_bit: Quantization bit width (default: 8)

    Returns:
        quantized: Quantized tensor (int8)
        scales: Scaling factors per row
    """
    if w.dim() != 2:
        raise ValueError(f"Only 2D tensors supported. Got {w.dim()}D tensor")
    if torch.isnan(w).any():
        raise ValueError("Tensor contains NaN values")
    if w_bit != 8:
        raise ValueError("Only support 8 bits")

    org_w_shape = w.shape
    # Calculate quantization parameters
gushiqiao's avatar
gushiqiao committed
319
320
321
322
    if not comfyui_mode:
        max_val = w.abs().amax(dim=1, keepdim=True).clamp(min=1e-5)
    else:
        max_val = w.abs().max()
323
324

    if dtype == torch.float8_e4m3fn:
gushiqiao's avatar
gushiqiao committed
325
326
        finfo = torch.finfo(dtype)
        qmin, qmax = finfo.min, finfo.max
327
328
329
330
331
332
    elif dtype == torch.int8:
        qmin, qmax = -128, 127
    # Quantize tensor
    scales = max_val / qmax

    if dtype == torch.float8_e4m3fn:
gushiqiao's avatar
gushiqiao committed
333
334
335
        scaled_tensor = w / scales
        scaled_tensor = torch.clip(scaled_tensor, qmin, qmax)
        w_q = float_quantize(scaled_tensor.float(), 4, 3, rounding="nearest").to(dtype)
336
337
338
339
340
341
    else:
        w_q = torch.clamp(torch.round(w / scales), qmin, qmax).to(dtype)

    assert torch.isnan(scales).sum() == 0
    assert torch.isnan(w_q).sum() == 0

gushiqiao's avatar
gushiqiao committed
342
343
344
    if not comfyui_mode:
        scales = scales.view(org_w_shape[0], -1)
        w_q = w_q.reshape(org_w_shape)
345
346
347
348
349

    return w_q, scales


def quantize_model(
gushiqiao's avatar
gushiqiao committed
350
    weights, w_bit=8, target_keys=["attn", "ffn"], adapter_keys=None, key_idx=2, ignore_key=None, linear_dtype=torch.int8, non_linear_dtype=torch.float, comfyui_mode=False, comfyui_keys=[]
351
352
353
354
355
356
357
358
359
360
361
362
363
):
    """
    Quantize model weights in-place

    Args:
        weights: Model state dictionary
        w_bit: Quantization bit width
        target_keys: List of module names to quantize

    Returns:
        Modified state dictionary with quantized weights and scales
    """
    total_quantized = 0
gushiqiao's avatar
gushiqiao committed
364
365
366
    original_size = 0
    quantized_size = 0
    non_quantized_size = 0
367
368
369
370
371
372
    keys = list(weights.keys())

    with tqdm(keys, desc="Quantizing weights") as pbar:
        for key in pbar:
            pbar.set_postfix(current_key=key, refresh=False)

373
            if ignore_key is not None and any(ig_key in key for ig_key in ignore_key):
374
375
376
377
378
                del weights[key]
                continue

            tensor = weights[key]

379
            # Skip non-tensors and non-2D tensors
gushiqiao's avatar
gushiqiao committed
380
            if not isinstance(tensor, torch.Tensor) or tensor.dim() != 2:
gushiqiao's avatar
gushiqiao committed
381
382
                if tensor.dtype != non_linear_dtype:
                    weights[key] = tensor.to(non_linear_dtype)
gushiqiao's avatar
gushiqiao committed
383
384
385
                    non_quantized_size += weights[key].numel() * weights[key].element_size()
                else:
                    non_quantized_size += tensor.numel() * tensor.element_size()
386
387
388
389
                continue

            # Check if key matches target modules
            parts = key.split(".")
390

gushiqiao's avatar
gushiqiao committed
391
392
393
394
            if comfyui_mode and key in comfyui_keys:
                pass
            elif len(parts) < key_idx + 1 or parts[key_idx] not in target_keys:
                if adapter_keys is None:
395
396
                    if tensor.dtype != non_linear_dtype:
                        weights[key] = tensor.to(non_linear_dtype)
gushiqiao's avatar
gushiqiao committed
397
398
399
400
401
402
403
404
405
406
407
408
                        non_quantized_size += weights[key].numel() * weights[key].element_size()
                    else:
                        non_quantized_size += tensor.numel() * tensor.element_size()
                elif not any(adapter_key in parts for adapter_key in adapter_keys):
                    if tensor.dtype != non_linear_dtype:
                        weights[key] = tensor.to(non_linear_dtype)
                        non_quantized_size += weights[key].numel() * weights[key].element_size()
                    else:
                        non_quantized_size += tensor.numel() * tensor.element_size()
                else:
                    non_quantized_size += tensor.numel() * tensor.element_size()
                continue
409

gushiqiao's avatar
gushiqiao committed
410
411
412
413
414
415
            # try:
            original_tensor_size = tensor.numel() * tensor.element_size()
            original_size += original_tensor_size

            # Quantize tensor and store results
            w_q, scales = quantize_tensor(tensor, w_bit, linear_dtype, comfyui_mode)
416

gushiqiao's avatar
gushiqiao committed
417
418
419
420
421
            # Replace original tensor and store scales
            weights[key] = w_q
            if comfyui_mode:
                weights[key.replace(".weight", ".scale_weight")] = scales
            else:
422
423
                weights[key + "_scale"] = scales

gushiqiao's avatar
gushiqiao committed
424
425
426
            quantized_tensor_size = w_q.numel() * w_q.element_size()
            scale_size = scales.numel() * scales.element_size()
            quantized_size += quantized_tensor_size + scale_size
427

gushiqiao's avatar
gushiqiao committed
428
429
430
431
432
            total_quantized += 1
            del w_q, scales

            # except Exception as e:
            #     logger.error(f"Error quantizing {key}: {str(e)}")
433
434
435

            gc.collect()

gushiqiao's avatar
gushiqiao committed
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
    original_size_mb = original_size / (1024**2)
    quantized_size_mb = quantized_size / (1024**2)
    non_quantized_size_mb = non_quantized_size / (1024**2)
    total_final_size_mb = (quantized_size + non_quantized_size) / (1024**2)
    size_reduction_mb = original_size_mb - quantized_size_mb

    logger.info(f"Quantized {total_quantized} tensors")
    logger.info(f"Original quantized tensors size: {original_size_mb:.2f} MB")
    logger.info(f"After quantization size: {quantized_size_mb:.2f} MB (includes scales)")
    logger.info(f"Non-quantized tensors size: {non_quantized_size_mb:.2f} MB")
    logger.info(f"Total final model size: {total_final_size_mb:.2f} MB")
    logger.info(f"Size reduction in quantized tensors: {size_reduction_mb:.2f} MB ({size_reduction_mb / original_size_mb * 100:.1f}%)")

    if comfyui_mode:
        weights["scaled_fp8"] = torch.zeros(2, dtype=torch.float8_e4m3fn)

452
453
454
    return weights


gushiqiao's avatar
gushiqiao committed
455
456
def load_loras(lora_path, weight_dict, alpha, key_mapping_rules=None):
    logger.info(f"Loading LoRA from: {lora_path} with alpha={alpha}")
GoatWu's avatar
GoatWu committed
457
458
459
460
461
    with safe_open(lora_path, framework="pt") as f:
        lora_weights = {k: f.get_tensor(k) for k in f.keys()}

    lora_pairs = {}
    lora_diffs = {}
gushiqiao's avatar
gushiqiao committed
462
    lora_alphas = {}  # Store LoRA-specific alpha values
GoatWu's avatar
GoatWu committed
463

gushiqiao's avatar
gushiqiao committed
464
465
466
467
468
469
470
471
472
473
474
475
476
477
    # Extract LoRA alpha values if present
    for key in lora_weights.keys():
        if key.endswith(".alpha"):
            base_key = key[:-6]  # Remove .alpha
            lora_alphas[base_key] = lora_weights[key].item()

    # Handle different prefixes: "diffusion_model." or "transformer_blocks." or no prefix
    def get_model_key(lora_key, suffix_to_remove, suffix_to_add):
        """Extract the model weight key from LoRA key"""
        # Remove the LoRA-specific suffix
        if lora_key.endswith(suffix_to_remove):
            base = lora_key[: -len(suffix_to_remove)]
        else:
            return None
GoatWu's avatar
GoatWu committed
478

gushiqiao's avatar
gushiqiao committed
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
        # For Qwen models, keep transformer_blocks prefix
        # Check if this is a Qwen-style LoRA (transformer_blocks.NUMBER.)
        if base.startswith("transformer_blocks.") and base.split(".")[1].isdigit():
            # Keep the full path for Qwen models
            model_key = base + suffix_to_add
        else:
            # Remove common prefixes for other models
            prefixes_to_remove = ["diffusion_model.", "model.", "unet."]
            for prefix in prefixes_to_remove:
                if base.startswith(prefix):
                    base = base[len(prefix) :]
                    break
            model_key = base + suffix_to_add

        # Apply key mapping rules if provided (for converted models)
        if key_mapping_rules:
            for pattern, replacement in key_mapping_rules:
                model_key = re.sub(pattern, replacement, model_key)

        return model_key

    # Collect all LoRA pairs and diffs
GoatWu's avatar
GoatWu committed
501
    for key in lora_weights.keys():
gushiqiao's avatar
gushiqiao committed
502
503
        # Skip alpha parameters
        if key.endswith(".alpha"):
GoatWu's avatar
GoatWu committed
504
505
            continue

gushiqiao's avatar
gushiqiao committed
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
        # Pattern 1: .lora_down.weight / .lora_up.weight
        if key.endswith(".lora_down.weight"):
            base = key[: -len(".lora_down.weight")]
            up_key = base + ".lora_up.weight"
            if up_key in lora_weights:
                model_key = get_model_key(key, ".lora_down.weight", ".weight")
                if model_key:
                    lora_pairs[model_key] = (key, up_key)

        # Pattern 2: .lora_A.weight / .lora_B.weight
        elif key.endswith(".lora_A.weight"):
            base = key[: -len(".lora_A.weight")]
            b_key = base + ".lora_B.weight"
            if b_key in lora_weights:
                model_key = get_model_key(key, ".lora_A.weight", ".weight")
                if model_key:
                    lora_pairs[model_key] = (key, b_key)

        # Pattern 3: diff weights (direct addition)
        elif key.endswith(".diff"):
            model_key = get_model_key(key, ".diff", ".weight")
            if model_key:
                lora_diffs[model_key] = key

        elif key.endswith(".diff_b"):
            model_key = get_model_key(key, ".diff_b", ".bias")
            if model_key:
                lora_diffs[model_key] = key

        elif key.endswith(".diff_m"):
            model_key = get_model_key(key, ".diff_m", ".modulation")
            if model_key:
                lora_diffs[model_key] = key
GoatWu's avatar
GoatWu committed
539
540

    applied_count = 0
gushiqiao's avatar
gushiqiao committed
541
542
543
    unused_lora_keys = set()

    # Apply LoRA weights by iterating through model weights
GoatWu's avatar
GoatWu committed
544
    for name, param in weight_dict.items():
gushiqiao's avatar
gushiqiao committed
545
        # Apply LoRA pairs (matmul pattern)
GoatWu's avatar
GoatWu committed
546
        if name in lora_pairs:
gushiqiao's avatar
gushiqiao committed
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
            name_lora_down, name_lora_up = lora_pairs[name]
            lora_down = lora_weights[name_lora_down].to(param.device, param.dtype)
            lora_up = lora_weights[name_lora_up].to(param.device, param.dtype)

            # Get LoRA-specific alpha if available, otherwise use global alpha
            base_key = name_lora_down[: -len(".lora_down.weight")] if name_lora_down.endswith(".lora_down.weight") else name_lora_down[: -len(".lora_A.weight")]
            lora_alpha = lora_alphas.get(base_key, alpha)

            # Calculate rank from dimensions
            rank = lora_down.shape[0]  # rank is the output dimension of down projection

            try:
                # Standard LoRA formula: W' = W + (alpha/rank) * BA
                # where B = up (rank x out_features), A = down (rank x in_features)
                # Note: PyTorch linear layers store weight as (out_features, in_features)

                if len(lora_down.shape) == 2 and len(lora_up.shape) == 2:
                    # For linear layers: down is (rank, in_features), up is (out_features, rank)
                    lora_delta = torch.mm(lora_up, lora_down) * (lora_alpha / rank)
                else:
                    # For other shapes, try element-wise multiplication or skip
                    logger.warning(f"Unexpected LoRA shape for {name}: down={lora_down.shape}, up={lora_up.shape}")
                    continue

                param.data += lora_delta
                applied_count += 1
                logger.debug(f"Applied LoRA to {name} with alpha={lora_alpha}, rank={rank}")
            except Exception as e:
                logger.warning(f"Failed to apply LoRA pair for {name}: {e}")
                logger.warning(f"  Shapes - param: {param.shape}, down: {lora_down.shape}, up: {lora_up.shape}")

        # Apply diff weights (direct addition)
GoatWu's avatar
GoatWu committed
579
580
581
        elif name in lora_diffs:
            name_diff = lora_diffs[name]
            lora_diff = lora_weights[name_diff].to(param.device, param.dtype)
Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
582
            try:
gushiqiao's avatar
gushiqiao committed
583
                param.data += lora_diff * alpha
Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
584
                applied_count += 1
gushiqiao's avatar
gushiqiao committed
585
                logger.debug(f"Applied LoRA diff to {name}")
Zhuguanyu Wu's avatar
Zhuguanyu Wu committed
586
            except Exception as e:
gushiqiao's avatar
gushiqiao committed
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
                logger.warning(f"Failed to apply LoRA diff for {name}: {e}")

    # Check for unused LoRA weights (potential key mismatch issues)
    used_lora_keys = set()
    for down_key, up_key in lora_pairs.values():
        used_lora_keys.add(down_key)
        used_lora_keys.add(up_key)
    for diff_key in lora_diffs.values():
        used_lora_keys.add(diff_key)

    all_lora_keys = set(k for k in lora_weights.keys() if not k.endswith(".alpha"))
    unused_lora_keys = all_lora_keys - used_lora_keys

    if unused_lora_keys:
        logger.warning(f"Found {len(unused_lora_keys)} unused LoRA weights - this may indicate key mismatch:")
        for key in list(unused_lora_keys)[:10]:  # Show first 10
            logger.warning(f"  Unused: {key}")
        if len(unused_lora_keys) > 10:
            logger.warning(f"  ... and {len(unused_lora_keys) - 10} more")

    logger.info(f"Applied {applied_count} LoRA weight adjustments out of {len(lora_pairs) + len(lora_diffs)} possible")

    if applied_count == 0 and (lora_pairs or lora_diffs):
        logger.error("No LoRA weights were applied! Check for key name mismatches.")
        logger.info("Model weight keys sample: " + str(list(weight_dict.keys())[:5]))
        logger.info("LoRA pairs keys sample: " + str(list(lora_pairs.keys())[:5]))
        logger.info("LoRA diff keys sample: " + str(list(lora_diffs.keys())[:5]))
GoatWu's avatar
GoatWu committed
614
615


616
617
618
619
620
621
622
623
624
625
def convert_weights(args):
    if os.path.isdir(args.source):
        src_files = glob.glob(os.path.join(args.source, "*.safetensors"), recursive=True)
    elif args.source.endswith((".pth", ".safetensors", "pt")):
        src_files = [args.source]
    else:
        raise ValueError("Invalid input path")

    merged_weights = {}
    logger.info(f"Processing source files: {src_files}")
gushiqiao's avatar
gushiqiao committed
626
627

    # Optimize loading for better memory usage
628
629
630
631
632
633
634
    for file_path in tqdm(src_files, desc="Loading weights"):
        logger.info(f"Loading weights from: {file_path}")
        if file_path.endswith(".pt") or file_path.endswith(".pth"):
            weights = torch.load(file_path, map_location=args.device, weights_only=True)
            if args.model_type == "hunyuan_dit":
                weights = weights["module"]
        elif file_path.endswith(".safetensors"):
gushiqiao's avatar
gushiqiao committed
635
            # Use lazy loading for safetensors to reduce memory usage
636
            with safe_open(file_path, framework="pt") as f:
gushiqiao's avatar
gushiqiao committed
637
638
639
640
641
642
643
644
645
646
                # Only load tensors when needed (lazy loading)
                weights = {}
                keys = f.keys()

                # For large files, show progress
                if len(keys) > 100:
                    for k in tqdm(keys, desc=f"Loading {os.path.basename(file_path)}", leave=False):
                        weights[k] = f.get_tensor(k)
                else:
                    weights = {k: f.get_tensor(k) for k in keys}
647
648
649
650
651

        duplicate_keys = set(weights.keys()) & set(merged_weights.keys())
        if duplicate_keys:
            raise ValueError(f"Duplicate keys found: {duplicate_keys} in file {file_path}")

gushiqiao's avatar
gushiqiao committed
652
653
        # Update weights more efficiently
        merged_weights.update(weights)
GoatWu's avatar
GoatWu committed
654

gushiqiao's avatar
gushiqiao committed
655
656
657
658
        # Clear weights dict to free memory
        del weights
        if len(src_files) > 1:
            gc.collect()  # Force garbage collection between files
GoatWu's avatar
GoatWu committed
659

660
661
662
663
    if args.direction is not None:
        rules = get_key_mapping_rules(args.direction, args.model_type)
        converted_weights = {}
        logger.info("Converting keys...")
gushiqiao's avatar
gushiqiao committed
664
665
666
667
668
669

        # Pre-compile regex patterns for better performance
        compiled_rules = [(re.compile(pattern), replacement) for pattern, replacement in rules]

        def convert_key(key):
            """Convert a single key using compiled rules"""
670
            new_key = key
gushiqiao's avatar
gushiqiao committed
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
            for pattern, replacement in compiled_rules:
                new_key = pattern.sub(replacement, new_key)
            return new_key

        # Batch convert keys using list comprehension (faster than loop)
        keys_list = list(merged_weights.keys())

        # Use parallel processing for large models
        if len(keys_list) > 1000 and args.parallel:
            logger.info(f"Using parallel processing for {len(keys_list)} keys")
            # Use ThreadPoolExecutor for I/O bound regex operations
            num_workers = min(8, multiprocessing.cpu_count())

            with ThreadPoolExecutor(max_workers=num_workers) as executor:
                # Submit all conversion tasks
                future_to_key = {executor.submit(convert_key, key): key for key in keys_list}

                # Process results as they complete with progress bar
                for future in tqdm(as_completed(future_to_key), total=len(keys_list), desc="Converting keys (parallel)"):
                    original_key = future_to_key[future]
                    new_key = future.result()
                    converted_weights[new_key] = merged_weights[original_key]
        else:
            # For smaller models, use simple loop with less overhead
            for key in tqdm(keys_list, desc="Converting keys"):
                new_key = convert_key(key)
                converted_weights[new_key] = merged_weights[key]
698
699
700
    else:
        converted_weights = merged_weights

gushiqiao's avatar
gushiqiao committed
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
    # Apply LoRA AFTER key conversion to ensure proper key matching
    if args.lora_path is not None:
        # Handle alpha list - if single alpha, replicate for all LoRAs
        if len(args.lora_alpha) == 1 and len(args.lora_path) > 1:
            args.lora_alpha = args.lora_alpha * len(args.lora_path)
        elif len(args.lora_alpha) != len(args.lora_path):
            raise ValueError(f"Number of lora_alpha ({len(args.lora_alpha)}) must match number of lora_path ({len(args.lora_path)}) or be 1")

        # Determine if we should apply key mapping rules to LoRA keys
        key_mapping_rules = None
        if args.lora_key_convert == "convert" and args.direction is not None:
            # Apply same conversion as model
            key_mapping_rules = get_key_mapping_rules(args.direction, args.model_type)
            logger.info("Applying key conversion to LoRA weights")
        elif args.lora_key_convert == "same":
            # Don't convert LoRA keys
            logger.info("Using original LoRA keys without conversion")
        else:  # auto
            # Auto-detect: if model was converted, try with conversion first
            if args.direction is not None:
                key_mapping_rules = get_key_mapping_rules(args.direction, args.model_type)
                logger.info("Auto mode: will try with key conversion first")

        for path, alpha in zip(args.lora_path, args.lora_alpha):
            # Pass key mapping rules to handle converted keys properly
            load_loras(path, converted_weights, alpha, key_mapping_rules)

728
    if args.quantized:
gushiqiao's avatar
gushiqiao committed
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
        if args.full_quantized and args.comfyui_mode:
            logger.info("Quant all tensors...")
            for k in converted_weights.keys():
                converted_weights[k] = converted_weights[k].float().to(args.linear_dtype)
        else:
            converted_weights = quantize_model(
                converted_weights,
                w_bit=args.bits,
                target_keys=args.target_keys,
                adapter_keys=args.adapter_keys,
                key_idx=args.key_idx,
                ignore_key=args.ignore_key,
                linear_dtype=args.linear_dtype,
                non_linear_dtype=args.non_linear_dtype,
                comfyui_mode=args.comfyui_mode,
                comfyui_keys=args.comfyui_keys,
            )
746
747
748
749
750
751
752
753

    os.makedirs(args.output, exist_ok=True)

    if args.output_ext == ".pth":
        torch.save(converted_weights, os.path.join(args.output, args.output_name + ".pth"))

    else:
        index = {"metadata": {"total_size": 0}, "weight_map": {}}
gushiqiao's avatar
gushiqiao committed
754
755
756
757
        if args.single_file:
            output_filename = f"{args.output_name}.safetensors"
            output_path = os.path.join(args.output, output_filename)
            logger.info(f"Saving model to single file: {output_path}")
758

gushiqiao's avatar
gushiqiao committed
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
            # For memory efficiency with large models
            try:
                # If model is very large (over threshold), consider warning
                total_size = sum(tensor.numel() * tensor.element_size() for tensor in converted_weights.values())
                total_size_gb = total_size / (1024**3)

                if total_size_gb > 10:  # Warn if model is larger than 10GB
                    logger.warning(f"Model size is {total_size_gb:.2f}GB. This will require significant memory to save as a single file.")
                    logger.warning("Consider using --save_by_block or default chunked saving for better memory efficiency.")

                # Save the entire model as a single file
                st.save_file(converted_weights, output_path)
                logger.info(f"Model saved successfully to: {output_path} ({total_size_gb:.2f}GB)")

            except MemoryError:
                logger.error("Memory error while saving. The model is too large to save as a single file.")
                logger.error("Please use --save_by_block or remove --single_file to use chunked saving.")
                raise
            except Exception as e:
                logger.error(f"Error saving model: {e}")
                raise
        elif args.save_by_block:
781
782
783
784
785
786
787
788
789
            logger.info("Backward conversion: grouping weights by block")
            block_groups = defaultdict(dict)
            non_block_weights = {}
            block_pattern = re.compile(r"blocks\.(\d+)\.")

            for key, tensor in converted_weights.items():
                match = block_pattern.search(key)
                if match:
                    block_idx = match.group(1)
790
791
                    if args.model_type == "wan_animate_dit" and "face_adapter" in key:
                        block_idx = str(int(block_idx) * 5)
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
                    block_groups[block_idx][key] = tensor
                else:
                    non_block_weights[key] = tensor

            for block_idx, weights_dict in tqdm(block_groups.items(), desc="Saving block chunks"):
                output_filename = f"block_{block_idx}.safetensors"
                output_path = os.path.join(args.output, output_filename)
                st.save_file(weights_dict, output_path)
                for key in weights_dict:
                    index["weight_map"][key] = output_filename
                index["metadata"]["total_size"] += os.path.getsize(output_path)

            if non_block_weights:
                output_filename = f"non_block.safetensors"
                output_path = os.path.join(args.output, output_filename)
                st.save_file(non_block_weights, output_path)
                for key in non_block_weights:
                    index["weight_map"][key] = output_filename
                index["metadata"]["total_size"] += os.path.getsize(output_path)

        else:
            chunk_idx = 0
            current_chunk = {}
            for idx, (k, v) in tqdm(enumerate(converted_weights.items()), desc="Saving chunks"):
                current_chunk[k] = v
817
                if args.chunk_size > 0 and (idx + 1) % args.chunk_size == 0:
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
                    output_filename = f"{args.output_name}_part{chunk_idx}.safetensors"
                    output_path = os.path.join(args.output, output_filename)
                    logger.info(f"Saving chunk to: {output_path}")
                    st.save_file(current_chunk, output_path)
                    for key in current_chunk:
                        index["weight_map"][key] = output_filename
                    index["metadata"]["total_size"] += os.path.getsize(output_path)
                    current_chunk = {}
                    chunk_idx += 1

            if current_chunk:
                output_filename = f"{args.output_name}_part{chunk_idx}.safetensors"
                output_path = os.path.join(args.output, output_filename)
                logger.info(f"Saving final chunk to: {output_path}")
                st.save_file(current_chunk, output_path)
                for key in current_chunk:
                    index["weight_map"][key] = output_filename
                index["metadata"]["total_size"] += os.path.getsize(output_path)

        # Save index file
        index_path = os.path.join(args.output, "diffusion_pytorch_model.safetensors.index.json")
        with open(index_path, "w", encoding="utf-8") as f:
            json.dump(index, f, indent=2)
        logger.info(f"Index file written to: {index_path}")

gushiqiao's avatar
gushiqiao committed
843
    if os.path.isdir(args.source) and args.copy_no_weight_files:
gushiqiao's avatar
gushiqiao committed
844
845
846
847
        copy_non_weight_files(args.source, args.output)


def copy_non_weight_files(source_dir, target_dir):
gushiqiao's avatar
Fix  
gushiqiao committed
848
    ignore_extensions = [".pth", ".pt", ".safetensors", ".index.json"]
gushiqiao's avatar
gushiqiao committed
849
850
851

    logger.info(f"Start copying non-weighted files and subdirectories...")

gushiqiao's avatar
Fix  
gushiqiao committed
852
    for item in tqdm(os.listdir(source_dir), desc="copy non-weighted file"):
gushiqiao's avatar
gushiqiao committed
853
854
855
856
857
858
859
860
861
        source_item = os.path.join(source_dir, item)
        target_item = os.path.join(target_dir, item)

        try:
            if os.path.isdir(source_item):
                os.makedirs(target_item, exist_ok=True)
                copy_non_weight_files(source_item, target_item)
            elif os.path.isfile(source_item) and not any(source_item.endswith(ext) for ext in ignore_extensions):
                shutil.copy2(source_item, target_item)
gushiqiao's avatar
Fix  
gushiqiao committed
862
                logger.debug(f"copy file: {source_item} -> {target_item}")
gushiqiao's avatar
gushiqiao committed
863
        except Exception as e:
gushiqiao's avatar
Fix  
gushiqiao committed
864
            logger.error(f"copy {source_item} : {str(e)}")
gushiqiao's avatar
gushiqiao committed
865
866
867

    logger.info(f"Non-weight files and subdirectories copied")

868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891

def main():
    parser = argparse.ArgumentParser(description="Model weight format converter")
    parser.add_argument("-s", "--source", required=True, help="Input path (file or directory)")
    parser.add_argument("-o_e", "--output_ext", default=".safetensors", choices=[".pth", ".safetensors"])
    parser.add_argument("-o_n", "--output_name", type=str, default="converted", help="Output file name")
    parser.add_argument("-o", "--output", required=True, help="Output directory path")
    parser.add_argument(
        "-d",
        "--direction",
        choices=[None, "forward", "backward"],
        default=None,
        help="Conversion direction: forward = 'lightx2v' -> 'Diffusers', backward = reverse",
    )
    parser.add_argument(
        "-c",
        "--chunk-size",
        type=int,
        default=100,
        help="Chunk size for saving (only applies to forward), 0 = no chunking",
    )
    parser.add_argument(
        "-t",
        "--model_type",
892
        choices=["wan_dit", "hunyuan_dit", "wan_t5", "wan_clip", "wan_animate_dit", "qwen_image_dit"],
893
894
895
896
897
898
        default="wan_dit",
        help="Model type",
    )
    parser.add_argument("-b", "--save_by_block", action="store_true")

    # Quantization
gushiqiao's avatar
gushiqiao committed
899
900
    parser.add_argument("--comfyui_mode", action="store_true")
    parser.add_argument("--full_quantized", action="store_true")
901
902
903
904
905
906
907
908
909
    parser.add_argument("--quantized", action="store_true")
    parser.add_argument("--bits", type=int, default=8, choices=[8], help="Quantization bit width")
    parser.add_argument(
        "--device",
        type=str,
        default="cpu",
        help="Device to use for quantization (cpu/cuda)",
    )
    parser.add_argument(
gushiqiao's avatar
gushiqiao committed
910
        "--linear_dtype",
911
912
        type=str,
        choices=["torch.int8", "torch.float8_e4m3fn"],
gushiqiao's avatar
gushiqiao committed
913
914
915
916
917
918
919
920
        help="Data type for linear",
    )
    parser.add_argument(
        "--non_linear_dtype",
        type=str,
        default="torch.float32",
        choices=["torch.bfloat16", "torch.float16"],
        help="Data type for non-linear",
921
    )
GoatWu's avatar
GoatWu committed
922
923
924
925
926
927
928
929
    parser.add_argument("--lora_path", type=str, nargs="*", help="Path(s) to LoRA file(s). Can specify multiple paths separated by spaces.")
    parser.add_argument(
        "--lora_alpha",
        type=float,
        nargs="*",
        default=[1.0],
        help="Alpha for LoRA weight scaling",
    )
gushiqiao's avatar
gushiqiao committed
930
    parser.add_argument("--copy_no_weight_files", action="store_true")
gushiqiao's avatar
gushiqiao committed
931
932
933
934
935
936
937
938
939
    parser.add_argument("--single_file", action="store_true", help="Save as a single safetensors file instead of chunking (warning: requires loading entire model in memory)")
    parser.add_argument(
        "--lora_key_convert",
        choices=["auto", "same", "convert"],
        default="auto",
        help="How to handle LoRA key conversion: 'auto' (detect from LoRA), 'same' (use original keys), 'convert' (apply same conversion as model)",
    )
    parser.add_argument("--parallel", action="store_true", default=True, help="Use parallel processing for faster conversion (default: True)")
    parser.add_argument("--no-parallel", dest="parallel", action="store_false", help="Disable parallel processing")
940
941
    args = parser.parse_args()

gushiqiao's avatar
gushiqiao committed
942
943
944
945
946
947
948
    # Validate conflicting arguments
    if args.single_file and args.save_by_block:
        parser.error("--single_file and --save_by_block cannot be used together. Choose one saving strategy.")

    if args.single_file and args.chunk_size > 0 and args.chunk_size != 100:
        logger.warning("--chunk_size is ignored when using --single_file option.")

gushiqiao's avatar
Fix  
gushiqiao committed
949
    if args.quantized:
gushiqiao's avatar
gushiqiao committed
950
951
        args.linear_dtype = eval(args.linear_dtype)
        args.non_linear_dtype = eval(args.non_linear_dtype)
gushiqiao's avatar
Fix  
gushiqiao committed
952
953

        model_type_keys_map = {
954
955
            "qwen_image_dit": {
                "key_idx": 2,
gushiqiao's avatar
gushiqiao committed
956
                "target_keys": ["attn", "img_mlp", "txt_mlp", "txt_mod", "img_mod"],
957
                "ignore_key": None,
gushiqiao's avatar
gushiqiao committed
958
959
960
961
962
963
964
965
                "comfyui_keys": [
                    "time_text_embed.timestep_embedder.linear_1.weight",
                    "time_text_embed.timestep_embedder.linear_2.weight",
                    "img_in.weight",
                    "txt_in.weight",
                    "norm_out.linear.weight",
                    "proj_out.weight",
                ],
966
            },
gushiqiao's avatar
Fix  
gushiqiao committed
967
968
969
            "wan_dit": {
                "key_idx": 2,
                "target_keys": ["self_attn", "cross_attn", "ffn"],
970
                "ignore_key": ["ca", "audio"],
gushiqiao's avatar
Fix  
gushiqiao committed
971
            },
972
            "wan_animate_dit": {"key_idx": 2, "target_keys": ["self_attn", "cross_attn", "ffn"], "adapter_keys": ["linear1_kv", "linear1_q", "linear2"], "ignore_key": None},
gushiqiao's avatar
Fix  
gushiqiao committed
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
            "hunyuan_dit": {
                "key_idx": 2,
                "target_keys": [
                    "img_mod",
                    "img_attn_qkv",
                    "img_attn_proj",
                    "img_mlp",
                    "txt_mod",
                    "txt_attn_qkv",
                    "txt_attn_proj",
                    "txt_mlp",
                    "linear1",
                    "linear2",
                    "modulation",
                ],
                "ignore_key": None,
            },
            "wan_t5": {"key_idx": 2, "target_keys": ["attn", "ffn"], "ignore_key": None},
            "wan_clip": {
                "key_idx": 3,
                "target_keys": ["attn", "mlp"],
                "ignore_key": "textual",
            },
        }

        args.target_keys = model_type_keys_map[args.model_type]["target_keys"]
999
        args.adapter_keys = model_type_keys_map[args.model_type]["adapter_keys"] if "adapter_keys" in model_type_keys_map[args.model_type] else None
gushiqiao's avatar
Fix  
gushiqiao committed
1000
1001
        args.key_idx = model_type_keys_map[args.model_type]["key_idx"]
        args.ignore_key = model_type_keys_map[args.model_type]["ignore_key"]
gushiqiao's avatar
gushiqiao committed
1002
        args.comfyui_keys = model_type_keys_map[args.model_type]["comfyui_keys"] if "comfyui_keys" in model_type_keys_map[args.model_type] else None
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013

    if os.path.isfile(args.output):
        raise ValueError("Output path must be a directory, not a file")

    logger.info("Starting model weight conversion...")
    convert_weights(args)
    logger.info(f"Conversion completed! Files saved to: {args.output}")


if __name__ == "__main__":
    main()